Search results for: propagation delay
1179 Development of a Complete Single Jet Common Rail Injection System Gas Dynamic Model for Hydrogen Fueled Engine with Port Injection Feeding System
Authors: Mohammed Kamil, M. M. Rahman, Rosli A. Bakar
Abstract:
Modeling of hydrogen fueled engine (H2ICE) injection system is a very important tool that can be used for explaining or predicting the effect of advanced injection strategies on combustion and emissions. In this paper, a common rail injection system (CRIS) is proposed for 4-strokes 4-cylinders hydrogen fueled engine with port injection feeding system (PIH2ICE). For this system, a numerical one-dimensional gas dynamic model is developed considering single injection event for each injector per a cycle. One-dimensional flow equations in conservation form are used to simulate wave propagation phenomenon throughout the CR (accumulator). Using this model, the effect of common rail on the injection system characteristics is clarified. These characteristics include: rail pressure, sound velocity, rail mass flow rate, injected mass flow rate and pressure drop across injectors. The interaction effects of operational conditions (engine speed and rail pressure) and geometrical features (injector hole diameter) are illustrated; and the required compromised solutions are highlighted. The CRIS is shown to be a promising enhancement for PIH2ICE.Keywords: common rail, hydrogen engine, port injection, wave propagation
Procedia PDF Downloads 4241178 A Joint Possibilistic-Probabilistic Tool for Load Flow Uncertainty Assessment-Part II: Case Studies
Authors: Morteza Aien, Masoud Rashidinejad, Mahmud Fotuhi-Firuzabad
Abstract:
Power systems are innately uncertain systems. To face with such uncertain systems, robust uncertainty assessment tools are appealed. This paper inspects the uncertainty assessment formulation of the load flow (LF) problem considering different kinds of uncertainties, developed in its companion paper through some case studies. The proposed methodology is based on the evidence theory and joint propagation of possibilistic and probabilistic uncertainties. The load and wind power generation are considered as probabilistic uncertain variables and the electric vehicles (EVs) and gas turbine distributed generation (DG) units are considered as possibilistic uncertain variables. The cumulative distribution function (CDF) of the system output parameters obtained by the pure probabilistic method lies within the belief and plausibility functions obtained by the joint propagation approach. Furthermore, the imprecision in the DG parameters is explicitly reflected by the gap between the belief and plausibility functions. This gap, due to the epistemic uncertainty on the DG resources parameters grows as the penetration level increases.Keywords: electric vehicles, joint possibilistic- probabilistic uncertainty modeling, uncertain load flow, wind turbine generator
Procedia PDF Downloads 4311177 The Important of Nutritional Status in Rehabilitation of Children with CP: Saudi Perspective
Authors: Reem Al-Garni
Abstract:
Malnutrition is a global epidemic, but the under-weight or Failure-To-Thrive risk is increasing in rehabilitation setting and considered one of the contribution factor for developmental delay. Beside the consequences of malnutrition on children growth and development, there are other side-effects that might delay or hold the progress of rehabilitation. The awareness for malnutrition must be raised and discussed by the rehabilitation team, to promote the treatment and to optimize the client care. The solution can start from food supplements intake and / or Enteral Nutrition plan, depending on the malnutrition level and to reach the goal, the medical team should to work together in order to provide comprehensive treatment and to help the family to be able to manage their child condition. We have explore the outcomes of rehabilitation between the children with CP whose diagnosed with malnutrition and children with normal body Wight Over a period of 4 months who received 4-6 weeks of rehabilitation two hours daily by using WeeFIM score to measure rehabilitation outcomes. WeeFIM measures and covers various domains, such as: self-care, mobility, locomotion, communication and other psycho-social aspects. Our findings reported that children with normal body Wight has better outcomes and improvement comparing with children with malnutrition for the entire study sample.Keywords: Cerebral Palsy (CP), pediatric Functional Independent Measure (WeeFIM), rehabilitation, malnutrition
Procedia PDF Downloads 3181176 Effect of Wind and Humidity on Microwave Links in Al-Khoms City-Libya
Authors: Mustafa S. Agha, Asma M. Eshahriy
Abstract:
The propagation of electromagnetic waves in millimeter band is severely affected by rain, and dust particles in terms of attenuation and de-polarization. The computations of dust and/or sand storms require knowledge of electrical properties of the scattering particles and climate conditions at the studied region in the west north region of Libya. (Al -Khoms) To compute the effect of dust and sand particles on the propagation of electromagnetic waves, it is required to collect the sand particles carried out by the wind, measure the particles size distribution (PSD), calculate the concentration, and carry chemical analysis of the contents, then the dielectric constant can be calculated. The main object of this paper is to study the effect of sand and dust storms on wireless communication, such as microwave links, in the north region of Libya (Al -Khoms) of Libya (Nagaza stations, Al-khoms center stations, Al-khoms gateway stations) by determining of the attenuation loss per unit length and cross-polarization discrimination (XPD) change due to the effect of sand and dust storms on wireless communication systems (GSM signal). The result showed that there is some consideration that has to be taken into account in the communication power budget .Keywords: attenuation, scattering, transmission loss, electromagnetic waves
Procedia PDF Downloads 4311175 A Dynamic Symplectic Manifold Analysis for Wave Propagation in Porous Media
Authors: K. I. M. Guerra, L. A. P. Silva, J. C. Leal
Abstract:
This study aims to understand with more amplitude and clarity the behavior of a porous medium where a pressure wave travels, translated into relative displacements inside the material, using mathematical tools derived from topology and symplectic geometry. The paper starts with a given partial differential equation based on the continuity and conservation theorems to describe the traveling wave through the porous body. A solution for this equation is proposed after all boundary, and initial conditions are fixed, and it’s accepted that the solution lies in a manifold U of purely spatial dimensions and that is embedded in the Real n-dimensional manifold, with spatial and kinetic dimensions. It’s shown that the U manifold of lower dimensions than IRna, where it is embedded, inherits properties of the vector spaces existing inside the topology it lies on. Then, a second manifold (U*), embedded in another space called IRnb of stress dimensions, is proposed and there’s a non-degenerative function that maps it into the U manifold. This relation is proved as a transformation in between two corresponding admissible solutions of the differential equation in distinct dimensions and properties, leading to a more visual and intuitive understanding of the whole dynamic process of a stress wave through a porous medium and also highlighting the dimensional invariance of Terzaghi’s theory for any coordinate system.Keywords: poremechanics, soil dynamics, symplectic geometry, wave propagation
Procedia PDF Downloads 2961174 A Topology-Based Dynamic Repair Strategy for Enhancing Urban Road Network Resilience under Flooding
Authors: Xuhui Lin, Qiuchen Lu, Yi An, Tao Yang
Abstract:
As global climate change intensifies, extreme weather events such as floods increasingly threaten urban infrastructure, making the vulnerability of urban road networks a pressing issue. Existing static repair strategies fail to adapt to the rapid changes in road network conditions during flood events, leading to inefficient resource allocation and suboptimal recovery. The main research gap lies in the lack of repair strategies that consider both the dynamic characteristics of networks and the progression of flood propagation. This paper proposes a topology-based dynamic repair strategy that adjusts repair priorities based on real-time changes in flood propagation and traffic demand. Specifically, a novel method is developed to assess and enhance the resilience of urban road networks during flood events. The method combines road network topological analysis, flood propagation modelling, and traffic flow simulation, introducing a local importance metric to dynamically evaluate the significance of road segments across different spatial and temporal scales. Using London's road network and rainfall data as a case study, the effectiveness of this dynamic strategy is compared to traditional and Transport for London (TFL) strategies. The most significant highlight of the research is that the dynamic strategy substantially reduced the number of stranded vehicles across different traffic demand periods, improving efficiency by up to 35.2%. The advantage of this method lies in its ability to adapt in real-time to changes in network conditions, enabling more precise resource allocation and more efficient repair processes. This dynamic strategy offers significant value to urban planners, traffic management departments, and emergency response teams, helping them better respond to extreme weather events like floods, enhance overall urban resilience, and reduce economic losses and social impacts.Keywords: Urban resilience, road networks, flood response, dynamic repair strategy, topological analysis
Procedia PDF Downloads 351173 Lamb Waves Propagation in Elastic-Viscoelastic Three-Layer Adhesive Joints
Authors: Pezhman Taghipour Birgani, Mehdi Shekarzadeh
Abstract:
In this paper, the propagation of lamb waves in three-layer joints is investigated using global matrix method. Theoretical boundary value problem in three-layer adhesive joints with perfect bond and traction free boundary conditions on their outer surfaces is solved to find a combination of frequencies and modes with the lowest attenuation. The characteristic equation is derived by applying continuity and boundary conditions in three-layer joints using global matrix method. Attenuation and phase velocity dispersion curves are obtained with numerical solution of this equation by a computer code for a three-layer joint, including an aluminum repair patch bonded to the aircraft aluminum skin by a layer of viscoelastic epoxy adhesive. To validate the numerical solution results of the characteristic equation, wave structure curves are plotted for a special mode in two different frequencies in the adhesive joint. The purpose of present paper is to find a combination of frequencies and modes with minimum attenuation in high and low frequencies. These frequencies and modes are recognizable by transducers in inspections with Lamb waves because of low attenuation level.Keywords: three-layer adhesive joints, viscoelastic, lamb waves, global matrix method
Procedia PDF Downloads 3931172 Simulation for Squat Exercise of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform
Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho
Abstract:
In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, feedback delay, and signal noise were added to a simulation model of an active-controlled vibration isolation system to regulate the movement of the exercise platform. Previous simulation work was conducted primarily via MATLAB/Simulink. Two additional simulation tools used in this study were Trick and MBDyn, NASA co-developed software simulation environments. Simulation results obtained from these three tools were very similar. All simulation results support the hypothesis that an active-controlled vibration isolation system outperforms a passive-controlled system even with the addition of feedback delay and signal noise to the active-controlled system. In this paper, squat exercise was used in creating excited force to the simulation model. The exciter force from a squat exercise was calculated from the motion capture of an exerciser. The simulation results demonstrate much greater transmitted force reduction in the active-controlled system than the passive-controlled system.Keywords: control, counterweight, isolation, vibration
Procedia PDF Downloads 1131171 A Comparative Evaluation of the SIR and SEIZ Epidemiological Models to Describe the Diffusion Characteristics of COVID-19 Polarizing Viewpoints on Online
Authors: Maryam Maleki, Esther Mead, Mohammad Arani, Nitin Agarwal
Abstract:
This study is conducted to examine how opposing viewpoints related to COVID-19 were diffused on Twitter. To accomplish this, six datasets using two epidemiological models, SIR (Susceptible, Infected, Recovered) and SEIZ (Susceptible, Exposed, Infected, Skeptics), were analyzed. The six datasets were chosen because they represent opposing viewpoints on the COVID-19 pandemic. Three of the datasets contain anti-subject hashtags, while the other three contain pro-subject hashtags. The time frame for all datasets is three years, starting from January 2020 to December 2022. The findings revealed that while both models were effective in evaluating the propagation trends of these polarizing viewpoints, the SEIZ model was more accurate with a relatively lower error rate (6.7%) compared to the SIR model (17.3%). Additionally, the relative error for both models was lower for anti-subject hashtags compared to pro-subject hashtags. By leveraging epidemiological models, insights into the propagation trends of polarizing viewpoints on Twitter were gained. This study paves the way for the development of methods to prevent the spread of ideas that lack scientific evidence while promoting the dissemination of scientifically backed ideas.Keywords: mathematical modeling, epidemiological model, seiz model, sir model, covid-19, twitter, social network analysis, social contagion
Procedia PDF Downloads 621170 Language Development in Rare Diseases: Angelman Syndrome vs Prader-Willi Syndrome
Authors: Sara Canas Pedrosa, Esther Moraleda SepuLveda
Abstract:
Angelman Syndrome (AS) and Prader-Willi Syndrome (PWS) are considered rare genetic disorders that share the same chromosomal region: 15q11.2-q13. This is why both share some common characteristics, such as, delay in language development. However, there is still little research that specifically focuses on the linguistic profile in these populations. Therefore, the objective of this study was to know the characteristics of oral and written language that Angelman Syndrome and Prader-Willi Syndrome present from the point of view of parents. The sample consisted of 36 families (with children between 6 and 17 years old), of which 23 had children with AS and 13 had children with PWS. All of them answered the Language Assessment Scale of the standardized test CELF-4, Spanish Clinical Evaluation of Language Fundamentals-4 (Wiig, Secord & Semel, 2006). The scale is made up of 40 items that assesses the perception of parents in areas such as: difficulty of listening, speaking, reading and writing. The results indicate that the majority of parents manifest problems in almost all the sub-areas related to oral language and written language, taking into account that many do not achieve a literacy level, with similar results in comparison with both syndromes. These data support the importance of working on oral language delay and its relationship with the subsequent learning of literacy throughout its development.Keywords: Angelman Syndrome , development, language, Prader-Willi Syndrome
Procedia PDF Downloads 1381169 Leakage Current Analysis of FinFET Based 7T SRAM at 32nm Technology
Authors: Chhavi Saxena
Abstract:
FinFETs can be a replacement for bulk-CMOS transistors in many different designs. Its low leakage/standby power property makes FinFETs a desirable option for memory sub-systems. Memory modules are widely used in most digital and computer systems. Leakage power is very important in memory cells since most memory applications access only one or very few memory rows at a given time. As technology scales down, the importance of leakage current and power analysis for memory design is increasing. In this paper, we discover an option for low power interconnect synthesis at the 32nm node and beyond, using Fin-type Field-Effect Transistors (FinFETs) which are a promising substitute for bulk CMOS at the considered gate lengths. We consider a mechanism for improving FinFETs efficiency, called variable supply voltage schemes. In this paper, we’ve illustrated the design and implementation of FinFET based 4x4 SRAM cell array by means of one bit 7T SRAM. FinFET based 7T SRAM has been designed and analysis have been carried out for leakage current, dynamic power and delay. For the validation of our design approach, the output of FinFET SRAM array have been compared with standard CMOS SRAM and significant improvements are obtained in proposed model.Keywords: FinFET, 7T SRAM cell, leakage current, delay
Procedia PDF Downloads 4551168 Empirical Investigation of Bullwhip Effect with Sensitivity Analysis in Supply Chain
Authors: Shoaib Yousaf
Abstract:
The main purpose of this research is to the empirical investigation of the bullwhip effect under sensitivity analysis in the two-tier supply chain. The simulation modeling technique has been applied in this research as a research methodology to see the sensitivity analysis of the bullwhip effect in the rice industry of Pakistan. The research comprises two case studies that have been chosen as a sample. The results of this research have confirmed that reduction in production delay reduces the bullwhip effect, which conforms to the time compressing paradigm and the significance of the reduction in production delay to lessen demand amplification. The result of this research also indicates that by increasing the value of time to adjust inventory decreases the bullwhip effect. Furthermore, by decreasing the value of alpha increases the damping effect of the exponential smoother, it is not surprising that it also reduces the bullwhip effect. Moreover, by reducing the value of time to work in progress also reduces the bullwhip effect. This research will help practitioners and operation managers to reduces the major costs of their products in three ways. They can reduce their i) inventory levels, ii) better utilize their capacity and iii) improve their forecasting techniques. However, this study is based on two tier supply chain, while in reality the supply chain has got many tiers. Hence, future work will be extended across more than two-tier supply chains.Keywords: bullwhip effect, rice industry, supply chain dynamics, simulation, sensitivity analysis
Procedia PDF Downloads 1441167 A System Dynamics Model for Assessment of Alternative Energy Policy Measures: A Case of Energy Management System as an Energy Efficiency Policy Tool
Authors: Andra Blumberga, Uldis Bariss, Anna Kubule, Dagnija Blumberga
Abstract:
European Union Energy Efficiency Directive provides a set of binding energy efficiency measures to reach. Each of the member states can use either energy efficiency obligation scheme or alternative policy measures or combination of both. Latvian government has decided to divide savings among obligation scheme (65%) and alternative measures (35%). This decision might lead to significant energy tariff increase hence impact on the national economy. To assess impact of alternative policy measures focusing on energy management scheme based on ISO 50001 and ability to decrease share of obligation scheme a System Dynamics modeling was used. Simulation results show that energy efficiency goal can be met with alternative policy measure to large energy consumers in industrial, tertiary and public sectors by applying the energy tax exemption for implementers of energy management system. A delay in applying alternative policy measures plays very important role in reaching the energy efficiency goal. One year delay in implementation of this policy measure reduces cumulative energy savings from 2016 to 2017 from 5200 GWh to 3000 GWh in 2020.Keywords: system dynamics, energy efficiency, policy measure, energy management system, obligation scheme
Procedia PDF Downloads 2821166 Real Time Traffic Performance Study over MPLS VPNs with DiffServ
Authors: Naveed Ghani
Abstract:
With the arrival of higher speed communication links and mature application running over the internet, the requirement for reliable, efficient and robust network designs rising day by day. Multi-Protocol Label Switching technology (MPLS) Virtual Private Networks (VPNs) have committed to provide optimal network services. They are gaining popularity in industry day by day. Enterprise customers are moving to service providers that offer MPLS VPNs. The main reason for this shifting is the capability of MPLS VPN to provide built in security features and any-to-any connectivity. MPLS VPNs improved the network performance due to fast label switching as compare to traditional IP Forwarding but traffic classification and policing was still required on per hop basis to enhance the performance of real time traffic which is delay sensitive (particularly voice and video). QoS (Quality of service) is the most important factor to prioritize enterprise networks’ real time traffic such as voice and video. This thesis is focused on the study of QoS parameters (e.g. delay, jitter and MOS (Mean Opinion Score)) for the real time traffic over MPLS VPNs. DiffServ (Differentiated Services) QoS model will be used over MPLS VPN network to get end-to-end service quality.Keywords: network, MPLS, VPN, DiffServ, MPLS VPN, DiffServ QoS, QoS Model, GNS2
Procedia PDF Downloads 4261165 Application of Computational Flow Dynamics (CFD) Analysis for Surge Inception and Propagation for Low Head Hydropower Projects
Authors: M. Mohsin Munir, Taimoor Ahmad, Javed Munir, Usman Rashid
Abstract:
Determination of maximum elevation of a flowing fluid due to sudden rejection of load in a hydropower facility is of great interest to hydraulic engineers to ensure safety of the hydraulic structures. Several mathematical models exist that employ one-dimensional modeling for the determination of surge but none of these perfectly simulate real-time circumstances. The paper envisages investigation of surge inception and propagation for a Low Head Hydropower project using Computational Fluid Dynamics (CFD) analysis on FLOW-3D software package. The fluid dynamic model utilizes its analysis for surge by employing Reynolds’ Averaged Navier-Stokes Equations (RANSE). The CFD model is designed for a case study at Taunsa hydropower Project in Pakistan. Various scenarios have run through the model keeping in view upstream boundary conditions. The prototype results were then compared with the results of physical model testing for the same scenarios. The results of the numerical model proved quite accurate coherence with the physical model testing and offers insight into phenomenon which are not apparent in physical model and shall be adopted in future for the similar low head projects limiting delays and cost incurred in the physical model testing.Keywords: surge, FLOW-3D, numerical model, Taunsa, RANSE
Procedia PDF Downloads 3611164 Simulation of Mid Infrared Supercontinuum Generation in Silicon Germanium Photonic Waveguides for Gas Spectroscopy
Authors: Proficiency Munsaka, Peter Baricholo, Erich Rohwer
Abstract:
Pulse evolutions along the 5 cm long, 6.0 ×4.2 μm² cross-section silicon germanium (SiGe) photonic waveguides were simulated and compared with experiments. Simulations were carried out by solving a generalized nonlinear Schrodinger equation (GNLSE) for an optical pulse evolution along the length of the SiGe photonic waveguides by the split-step Fourier method (SSFM). The solution obtained from the SSFM gave the pulse envelope in both time and spectral domain calculated at each distance step along the propagation direction. The SiGe photonic waveguides were pumped in an anomalous group velocity dispersion (GVD) regime using a 4.7 μm, 210 fs femtosecond laser to produce a significant supercontinuum (SC). The simulated propagation of ultrafast pulse along the SiGe photonic waveguides produced an SC covering the atmospheric window (2.5-8.5 μm) containing the molecular fingerprints for important gases. Thus, the mid-infrared supercontinuum generation in SiGe photonic waveguides system can be commercialized for gas spectroscopy for detecting gases that include CO₂, CH₄, H₂O, SO₂, SO₃, NO₂, H₂S, CO, and NO at trace level using absorption spectroscopy technique. The simulated profile evolutions are spectrally and temporally similar to those obtained by other researchers. Obtained evolution profiles are characterized by pulse compression, Soliton fission, dispersive wave generation, stimulated Raman Scattering, and Four Wave mixing.Keywords: silicon germanium photonic waveguide, supercontinuum generation, spectroscopy, mid infrared
Procedia PDF Downloads 1311163 Pulsed Laser Single Event Transients in 0.18 μM Partially-Depleted Silicon-On-Insulator Device
Authors: MeiBo, ZhaoXing, LuoLei, YuQingkui, TangMin, HanZhengsheng
Abstract:
The Single Event Transients (SETs) were investigated on 0.18μm PDSOI transistors and 100 series CMOS inverter chain using pulse laser. The effect of different laser energy and device bias for waveform on SET was characterized experimentally, as well as the generation and propagation of SET in inverter chain. In this paper, the effects of struck transistors type and struck locations on SETs were investigated. The results showed that when irradiate NMOSFETs from 100th to 2nd stages, the SET pulse width measured at the output terminal increased from 287.4 ps to 472.9 ps; and when irradiate PMOSFETs from 99th to 1st stages, the SET pulse width increased from 287.4 ps to 472.9 ps. When struck locations were close to the output of the chain, the SET pulse was narrow; however, when struck nodes were close to the input, the SET pulse was broadening. SET pulses were progressively broadened up when propagating along inverter chains. The SET pulse broadening is independent of the type of struck transistors. Through analysis, history effect induced threshold voltage hysteresis in PDSOI is the reason of pulse broadening. The positive pulse observed by oscilloscope, contrary to the expected results, is because of charging and discharging of capacitor.Keywords: single event transients, pulse laser, partially-depleted silicon-on-insulator, propagation-induced pulse broadening effect
Procedia PDF Downloads 4121162 Keying Effect During Fracture of Stainless Steel
Authors: Farej Ahmed Emhmmed
Abstract:
Fracture of duplex stainless steels (DSS) was investigated in air and in 3.5 wt % NaCl solution. Tow sets of fatigued specimens were heat treated at 475ºC for different times and pulled to failure either in air or after kept in 3.5% NaCl with polarization of -900 mV/ SCE. Fracture took place in general by ferrite cleavage and austenite ductile fracture in transgranular mode. Specimens measured stiffness (Ms) was affected by the aging time, with higher values measured for specimens aged for longer times. Microstructural features played a role in "blocking" the crack propagation process leading to lower the CTOD values specially for specimens aged for short times. Unbroken ligaments/ austenite were observed at the crack wake. These features may exerted a bridging stress, blocking effect, at the crack tip giving resistance to the crack propagation process i.e the crack mouth opening was reduced. Higher stress intensity factor Kıc values were observed with increased amounts of crack growth suggesting longer zone of unbroken ligaments in the crack wake. The bridging zone was typically several mm in length. Attempt to model the bridge stress was suggested to understand the role of ligaments/unbroken austenite in increasing the fracture toughness factor.Keywords: stainless steels, fracture toughness, crack keying effect, ligaments
Procedia PDF Downloads 3591161 Exponential Stabilization of a Flexible Structure via a Delayed Boundary Control
Authors: N. Smaoui, B. Chentouf
Abstract:
The boundary stabilization problem of the rotating disk-beam system is a topic of interest in research studies. This system involves a flexible beam attached to the center of a disk, and the control and stabilization of this system have been extensively studied. This research focuses on the case where the center of mass is fixed in an inertial frame, and the rotation of the center is non-uniform. The system is represented by a set of nonlinear coupled partial differential equations and ordinary differential equations. The boundary stabilization problem of this system via a delayed boundary control is considered. We assume that the boundary control is either of a force type control or a moment type control and is subject to the presence of a constant time-delay. The aim of this research is threefold: First, we demonstrate that the rotating disk-beam system is well-posed in an appropriate functional space. Then, we establish the exponential stability property of the system. Finally, we provide numerical simulations that illustrate the theoretical findings. The research utilizes the semigroup theory to establish the well-posedness of the system. The resolvent method is then employed to prove the exponential stability property. Finally, the finite element method is used to demonstrate the theoretical results through numerical simulations. The research findings indicate that the rotating disk-beam system can be stabilized using a boundary control with a time delay. The proof of stability is based on the resolvent method and a variation of constants formula. The numerical simulations further illustrate the theoretical results. The findings have potential implications for the design and implementation of control strategies in similar systems. In conclusion, this research demonstrates that the rotating disk-beam system can be stabilized using a boundary control with time delay. The well-posedness and exponential stability properties are established through theoretical analysis, and these findings are further supported by numerical simulations. The research contributes to the understanding and practical application of control strategies for flexible structures, providing insights into the stability of rotating disk-beam systems.Keywords: rotating disk-beam, delayed force control, delayed moment control, torque control, exponential stability
Procedia PDF Downloads 751160 Nephroblastoma at Universitas Academic Hospital Complex in the Last 20 Years
Authors: I. Iroka, L. Mgidlana, J. Willoughby, S. Dhlamini, P. Nxumalo, S. Sefadi, A. Mthembu, E. Gerber, E. Brits
Abstract:
Introduction: Nephroblastoma is a common paediatric tumor with good survival rates when diagnosed and treated early. Method: This retrospective study aimed to describe the patients with nephroblastoma seen at Universitas Academic Hospital Complex between the years 2000 and 2020. Results: In the study period, there were 207 patients identified. The patient profile had slightly more male than female patients; the median age was under four years of age. The study found a median delay of one month between symptom onset and diagnosis; a common cause was a delay in seeking care. Patients diagnosed and treated more than a month after symptoms started had poorer survival rates. There was a higher rate of Stage IV disease compared to similar studies in South Africa. Good preoperative histology and no relapse had good survival rates.. Patients from Lesotho had longer delays and presented with more severe diseases than the South African cohort. Conclusion: Early identification and treatment lead to better outcomes. Health-seeking behaviour, misdiagnosis, and referral delays might contribute to the long delays. A targeted study for patients from Lesotho is recommended.Keywords: nephroblastoma, South Africa, Lesotho, developing country
Procedia PDF Downloads 981159 Risk Factors Affecting Construction Project Cost in Oman
Authors: Omar Amoudi, Latifa Al Brashdi
Abstract:
Construction projects are always subject to risks and uncertainties due to its unique and dynamic nature, outdoor work environment, the wide range of skills employed, various parties involved in addition to situation of construction business environment at large. Altogether, these risks and uncertainties affect projects objectives and lead to cost overruns, delay, and poor quality. Construction projects in Oman often experience cost overruns and delay. Managing these risks and reducing their impacts on construction cost requires firstly identifying these risks, and then analyzing their severity on project cost to obtain deep understanding about these risks. This in turn will assist construction managers in managing and tacking these risks. This paper aims to investigate the main risk factors that affect construction projects cost in the Sultanate of Oman. In order to achieve the main aim, literature review was carried out to identify the main risk factors affecting construction cost. Thirty-three risk factors were identified from the literature. Then, a questionnaire survey was designed and distributed among construction professionals (i.e., client, contractor and consultant) to obtain their opinion toward the probability of occurrence for each risk factor and its possible impact on construction project cost. The collected data was analyzed based on qualitative aspects and in several ways. The severity of each risk factor was obtained by multiplying the probability occurrence of a risk factor with its impact. The findings of this study reveal that the most significant risk factors that have high severity impact on construction project cost are: Change of Oil Price, Delay of Materials and Equipment Delivery, Changes in Laws and Regulations, Improper Budgeting, and Contingencies, Lack of Skilled Workforce and Personnel, Delays Caused by Contractor, Delays of Owner Payments, Delays Caused by Client, and Funding Risk. The results can be used as a basis for construction managers to make informed decisions and produce risk response procedures and strategies to tackle these risks and reduce their negative impacts on construction project cost.Keywords: construction cost, construction projects, Oman, risk factors, risk management
Procedia PDF Downloads 3451158 Electro-Hydrodynamic Effects Due to Plasma Bullet Propagation
Authors: Panagiotis Svarnas, Polykarpos Papadopoulos
Abstract:
Atmospheric-pressure cold plasmas continue to gain increasing interest for various applications due to their unique properties, like cost-efficient production, high chemical reactivity, low gas temperature, adaptability, etc. Numerous designs have been proposed for these plasmas production in terms of electrode configuration, driving voltage waveform and working gas(es). However, in order to exploit most of the advantages of these systems, the majority of the designs are based on dielectric-barrier discharges (DBDs) either in filamentary or glow regimes. A special category of the DBD-based atmospheric-pressure cold plasmas refers to the so-called plasma jets, where a carrier noble gas is guided by the dielectric barrier (usually a hollow cylinder) and left to flow up to the atmospheric air where a complicated hydrodynamic interplay takes place. Although it is now well established that these plasmas are generated due to ionizing waves reminding in many ways streamer propagation, they exhibit discrete characteristics which are better mirrored on the terms 'guided streamers' or 'plasma bullets'. These 'bullets' travel with supersonic velocities both inside the dielectric barrier and the channel formed by the noble gas during its penetration into the air. The present work is devoted to the interpretation of the electro-hydrodynamic effects that take place downstream of the dielectric barrier opening, i.e., in the noble gas-air mixing area where plasma bullet propagate under the influence of local electric fields in regions of variable noble gas concentration. Herein, we focus on the role of the local space charge and the residual ionic charge left behind after the bullet propagation in the gas flow field modification. The study communicates both experimental and numerical results, coupled in a comprehensive manner. The plasma bullets are here produced by a custom device having a quartz tube as a dielectric barrier and two external ring-type electrodes driven by sinusoidal high voltage at 10 kHz. Helium gas is fed to the tube and schlieren photography is employed for mapping the flow field downstream of the tube orifice. Mixture mass conservation equation, momentum conservation equation, energy conservation equation in terms of temperature and helium transfer equation are simultaneously solved, leading to the physical mechanisms that govern the experimental results. Namely, we deal with electro-hydrodynamic effects mainly due to momentum transfer from atomic ions to neutrals. The atomic ions are left behind as residual charge after the bullet propagation and gain energy from the locally created electric field. The electro-hydrodynamic force is eventually evaluated.Keywords: atmospheric-pressure plasmas, dielectric-barrier discharges, schlieren photography, electro-hydrodynamic force
Procedia PDF Downloads 1391157 Simulation Study of Enhanced Terahertz Radiation Generation by Two-Color Laser Plasma Interaction
Authors: Nirmal Kumar Verma, Pallavi Jha
Abstract:
Terahertz (THz) radiation generation by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization and spectroscopic techniques. Due to non ionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser - plasma based THz radiation sources. The present paper is devoted to the simulation study of the enhanced THz radiation generation by propagation of two-color, linearly polarized laser pulses through magnetized plasma. The two laser pulses orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode.Keywords: two-color laser pulses, terahertz radiation, magnetized plasma, ordinary and extraordinary mode
Procedia PDF Downloads 3011156 Factors Impeding Learners’ Use of the Blackboard System in Kingdom of Saudi Arabia
Authors: Omran Alharbi, Victor Lally
Abstract:
In recent decades, a number of educational institutions around the world have come to depend on technology such as the Blackboard system to improve their educational environment. On the other hand, there are many factors that delay the usage of this technology, especially in developing nations such as Saudi Arabia. The goal of this study was to investigate learner’s views of the use of Blackboard in one Saudi university in order to gain a comprehensive view of the factors that delay the implementation of technology in Saudi institutions. This study utilizes a qualitative approach, with data being collected through semi-structured interviews. Six participants from different disciplines took part in this study. The findings indicated that there are two levels of factors that affect students’ use of the Blackboard system. These are factors at the institutional level, such as lack of technical support and lack of training support, which lead to insufficient training related to the Blackboard system. The second level of factors is at the individual level, for example, a lack of teacher motivation and encouragement. In addition, students do not have sufficient levels of skills or knowledge related to how to use the Blackboard in their learning. Conclusion: learners confronted and faced two main types of factors (at the institution level and individual level) that delayed and impeded their learning. Institutions in KSA should take steps and implement strategies to remove or reduce these factors in order to allow students to benefit from the latest technology in their learning.Keywords: blackboard, factors, KSA, learners
Procedia PDF Downloads 2141155 Development of Precise Ephemeris Generation Module for Thaichote Satellite Operations
Authors: Manop Aorpimai, Ponthep Navakitkanok
Abstract:
In this paper, the development of the ephemeris generation module used for the Thaichote satellite operations is presented. It is a vital part of the flight dynamics system, which comprises, the orbit determination, orbit propagation, event prediction and station-keeping maneuver modules. In the generation of the spacecraft ephemeris data, the estimated orbital state vector from the orbit determination module is used as an initial condition. The equations of motion are then integrated forward in time to predict the satellite states. The higher geopotential harmonics, as well as other disturbing forces, are taken into account to resemble the environment in low-earth orbit. Using a highly accurate numerical integrator based on the Burlish-Stoer algorithm the ephemeris data can be generated for long-term predictions, by using a relatively small computation burden and short calculation time. Some events occurring during the prediction course that are related to the mission operations, such as the satellite’s rise/set viewed from the ground station, Earth and Moon eclipses, the drift in ground track as well as the drift in the local solar time of the orbital plane are all detected and reported. When combined with other modules to form a flight dynamics system, this application is aimed to be applied for the Thaichote satellite and successive Thailand’s Earth-observation missions.Keywords: flight dynamics system, orbit propagation, satellite ephemeris, Thailand’s Earth Observation Satellite
Procedia PDF Downloads 3771154 Distributed Control Strategy for Dispersed Energy Storage Units in the DC Microgrid Based on Discrete Consensus
Authors: Hanqing Yang, Xiang Meng, Qi Li, Weirong Chen
Abstract:
The SOC (state of charge) based droop control has limitations on the load power sharing among different energy storage units, due to the line impedance. In this paper, a distributed control strategy for dispersed energy storage units in the DC microgrid based on discrete consensus is proposed. Firstly, a sparse information communication network is built. Thus, local controllers can communicate with its neighbors using voltage, current and SOC information. An average voltage of grid can be evaluated to compensate voltage offset by droop control, and an objective virtual resistance fulfilling above requirement can be dynamically calculated to distribute load power according to the SOC of the energy storage units. Then, the stability of the whole system and influence of communication delay are analyzed. It can be concluded that this control strategy can improve the robustness and flexibility, because of having no center controller. Finally, a model of DC microgrid with dispersed energy storage units and loads is built, the discrete distributed algorithm is established and communication protocol is developed. The co-simulation between Matlab/Simulink and JADE (Java agent development framework) has verified the effectiveness of proposed control strategy.Keywords: dispersed energy storage units, discrete consensus algorithm, state of charge, communication delay
Procedia PDF Downloads 2801153 Spatiotemporal Propagation and Pattern of Epileptic Spike Predict Seizure Onset Zone
Authors: Mostafa Mohammadpour, Christoph Kapeller, Christy Li, Josef Scharinger, Christoph Guger
Abstract:
Interictal spikes provide valuable information on electrocorticography (ECoG), which aids in surgical planning for patients who suffer from refractory epilepsy. However, the shape and temporal dynamics of these spikes remain unclear. The purpose of this work was to analyze the shape of interictal spikes and measure their distance to the seizure onset zone (SOZ) to use in epilepsy surgery. Thirteen patients' data from the iEEG portal were retrospectively studied. For analysis, half an hour of ECoG data was used from each patient, with the data being truncated before the onset of a seizure. Spikes were first detected and grouped in a sequence, then clustered into interictal epileptiform discharges (IEDs) and non-IED groups using two-step clustering. The distance of the spikes from IED and non-IED groups to SOZ was quantified and compared using the Wilcoxon rank-sum test. Spikes in the IED group tended to be in SOZ or close to it, while spikes in the non-IED group were in distance of SOZ or non-SOZ area. At the group level, the distribution for sharp wave, positive baseline shift, slow wave, and slow wave to sharp wave ratio was significantly different for IED and non-IED groups. The distance of the IED cluster was 10.00mm and significantly closer to the SOZ than the 17.65mm for non-IEDs. These findings provide insights into the shape and spatiotemporal dynamics of spikes that could influence the network mechanisms underlying refractory epilepsy.Keywords: spike propagation, spike pattern, clustering, SOZ
Procedia PDF Downloads 631152 The Effects of Zinc Oxide Nanoparticles Loaded with Indole-3-Acetic Acid and Indole-3-Butyric Acid on in vitro Rooting of Apple Microcuttings
Authors: Shabnam Alizadeh, Hatice Dumanoglu
Abstract:
Plant tissue culture is a substantial plant propagation technique for mass clonal production throughout the year, regardless of time in fruit species. However, the rooting achievement must be enhanced in the difficult-to-root genotypes. Classical auxin applications in clonal propagation of these genotypes are inadequate to solve the rooting problem. Nanoparticles having different physical and chemical properties from bulk material could enhance the rooting success of controlled release of these substances when loaded with auxin due to their ability to reach the active substance up to the target cells as a carrier system.The purpose of this study is to investigate the effects of zinc oxide nanoparticles loaded with indole-3-acetic acid (IAA-nZnO) and indole-3-butyric acid (IBA-nZnO) on in vitro rooting of microcuttings in a difficult-to-root apple genotype (Malus domestica Borkh.). Rooting treatments consisted of IBA or IAA at concentrations of 0.5, 1.0, 2.0, 3.0 mg/L; nZnO, IAA-nZnO and IBA-nZnO at doses of 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 mg/L were used. All components were added to the Murashige and Skoog (MS) basal medium at strength ½ with 2% sucrose and 0.7% agar before autoclaving. In the study, no rooting occurred in control and nZnO applications. Especially, 1.0 mg/L and 2.0 mg/L IBA-nZnO nanoparticle applications (containing 0.5 mg/L and 0.9 mg/L IBA), respectively with rooting rates of 40.3% and 70.4%, rooting levels of 2.0±0.4 and 2.3±0.4, 2.6±0.7 and 2.5±0.6 average root numbers and 20.4±1.6 mm and 20.2±3.4 mm average root lengths put forward as effective applications.Keywords: Auxin, Malus, nanotechnology, zinc oxide nanoparticles
Procedia PDF Downloads 1441151 A Comparative Study of Sampling-Based Uncertainty Propagation with First Order Error Analysis and Percentile-Based Optimization
Authors: M. Gulam Kibria, Shourav Ahmed, Kais Zaman
Abstract:
In system analysis, the information on the uncertain input variables cause uncertainty in the system responses. Different probabilistic approaches for uncertainty representation and propagation in such cases exist in the literature. Different uncertainty representation approaches result in different outputs. Some of the approaches might result in a better estimation of system response than the other approaches. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge (MUQC) has posed challenges about uncertainty quantification. Subproblem A, the uncertainty characterization subproblem, of the challenge posed is addressed in this study. In this subproblem, the challenge is to gather knowledge about unknown model inputs which have inherent aleatory and epistemic uncertainties in them with responses (output) of the given computational model. We use two different methodologies to approach the problem. In the first methodology we use sampling-based uncertainty propagation with first order error analysis. In the other approach we place emphasis on the use of Percentile-Based Optimization (PBO). The NASA Langley MUQC’s subproblem A is developed in such a way that both aleatory and epistemic uncertainties need to be managed. The challenge problem classifies each uncertain parameter as belonging to one the following three types: (i) An aleatory uncertainty modeled as a random variable. It has a fixed functional form and known coefficients. This uncertainty cannot be reduced. (ii) An epistemic uncertainty modeled as a fixed but poorly known physical quantity that lies within a given interval. This uncertainty is reducible. (iii) A parameter might be aleatory but sufficient data might not be available to adequately model it as a single random variable. For example, the parameters of a normal variable, e.g., the mean and standard deviation, might not be precisely known but could be assumed to lie within some intervals. It results in a distributional p-box having the physical parameter with an aleatory uncertainty, but the parameters prescribing its mathematical model are subjected to epistemic uncertainties. Each of the parameters of the random variable is an unknown element of a known interval. This uncertainty is reducible. From the study, it is observed that due to practical limitations or computational expense, the sampling is not exhaustive in sampling-based methodology. That is why the sampling-based methodology has high probability of underestimating the output bounds. Therefore, an optimization-based strategy to convert uncertainty described by interval data into a probabilistic framework is necessary. This is achieved in this study by using PBO.Keywords: aleatory uncertainty, epistemic uncertainty, first order error analysis, uncertainty quantification, percentile-based optimization
Procedia PDF Downloads 2401150 Electromagnetic Radiation Generation by Two-Color Sinusoidal Laser Pulses Propagating in Plasma
Authors: Nirmal Kumar Verma, Pallavi Jha
Abstract:
Generation of the electromagnetic radiation oscillating at the frequencies in the terahertz range by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization, and spectroscopic techniques. Due to nonionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals, when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser-plasma based THz radiation sources. The present paper is devoted to the study of the enhanced electromagnetic radiation generation by propagation of two-color, linearly polarized laser pulses through the magnetized plasma. The two lasers pulse orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through the homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode.Keywords: two-color laser pulses, electromagnetic radiation, magnetized plasma, ordinary and extraordinary modes
Procedia PDF Downloads 285