Search results for: mixed matrix membrane
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5880

Search results for: mixed matrix membrane

5520 An Efficient Fundamental Matrix Estimation for Moving Object Detection

Authors: Yeongyu Choi, Ju H. Park, S. M. Lee, Ho-Youl Jung

Abstract:

In this paper, an improved method for estimating fundamental matrix is proposed. The method is applied effectively to monocular camera based moving object detection. The method consists of corner points detection, moving object’s motion estimation and fundamental matrix calculation. The corner points are obtained by using Harris corner detector, motions of moving objects is calculated from pyramidal Lucas-Kanade optical flow algorithm. Through epipolar geometry analysis using RANSAC, the fundamental matrix is calculated. In this method, we have improved the performances of moving object detection by using two threshold values that determine inlier or outlier. Through the simulations, we compare the performances with varying the two threshold values.

Keywords: corner detection, optical flow, epipolar geometry, RANSAC

Procedia PDF Downloads 407
5519 Geometric and Algebraic Properties of the Eigenvalues of Monotone Matrices

Authors: Brando Vagenende, Marie-Anne Guerry

Abstract:

For stochastic matrices of any order, the geometric description of the convex set of eigenvalues is completely known. The purpose of this study is to investigate the subset of the monotone matrices. This type of matrix appears in contexts such as intergenerational occupational mobility, equal-input modeling, and credit ratings-based systems. Monotone matrices are stochastic matrices in which each row stochastically dominates the previous row. The monotonicity property of a stochastic matrix can be expressed by a nonnegative lower-order matrix with the same eigenvalues as the original monotone matrix (except for the eigenvalue 1). Specifically, the aim of this research is to focus on the properties of eigenvalues of monotone matrices. For those matrices up to order 3, there already exists a complete description of the convex set of eigenvalues. For monotone matrices of order at least 4, this study gives, through simulations, more insight into the geometric description of their eigenvalues. Furthermore, this research treats in a geometric and algebraic way the properties of eigenvalues of monotone matrices of order at least 4.

Keywords: eigenvalues of matrices, finite Markov chains, monotone matrices, nonnegative matrices, stochastic matrices

Procedia PDF Downloads 80
5518 Properties of Bio-Phenol Formaldehyde Composites Filled with Empty Fruit Bunch Fiber

Authors: Sharifah Nabihah Syed Jaafar, Umar Adli Amran, Rasidi Roslan, Chia Chin Hua, Sarani Zakaria

Abstract:

Bio-composites derived from plant fiber and bio-derived polymer, are likely more ecofriendly and demonstrate competitive performance with petroleum based. In this research, the green phenolic resin was used as a matrix and oil palm empty fruit bunch fiber (EFB) was used as filler. The matrix was synthesized from soda lignin, phenol and hydrochloric acid as a catalyst. The phenolic resin was synthesized via liquefaction and condensation to enhance the combination of phenol during the process. Later, the phenolic resin was mixed with EFB by using mechanical stirrer and was molded with hot press at 180 oC. In this research, the composites were prepared with EFB content of 5%, 10%, 15% and 20%. The samples that viewed under scanning electron microscopy (SEM) showed that the EFB filler remained embedded in the resin. From impact and hardness testing, samples 10% of EFB showed the optimum properties meanwhile sample 15% showed the optimum properties for flexural testing. Thermal stability of the composites was investigated using thermogravimetric (TGA) analysis and found that the weight loss and the activation energy (Ea) of the composites samples were decreased as the filler content increased.

Keywords: EFB, liquefaction, phenol formaldehyde, lignin

Procedia PDF Downloads 589
5517 Sterols Regulate the Activity of Phospholipid Scramblase by Interacting through Putative Cholesterol Binding Motif

Authors: Muhasin Koyiloth, Sathyanarayana N. Gummadi

Abstract:

Biological membranes are ordered association of lipids, proteins, and carbohydrates. Lipids except sterols possess asymmetric distribution across the bilayer. Eukaryotic membranes possess a group of lipid translocators called scramblases that disrupt phospholipid asymmetry. Their action is implicated in cell activation during wound healing and phagocytic clearance of apoptotic cells. Cholesterol is one of the major membrane lipids distributed evenly on both the leaflet and can directly influence the membrane fluidity through the ordering effect. The fluidity has an impact on the activity of several membrane proteins. The palmitoylated phospholipid scramblases localized to the lipid raft which is characterized by a higher number of sterols. Here we propose that cholesterol can interact with scramblases through putative CRAC motif and can modulate their activity. To prove this, we reconstituted phospholipid scramblase 1 of C. elegans (SCRM-1) in proteoliposomes containing different amounts of cholesterol (Liquid ordered/Lo). We noted that the presence of cholesterol reduced the scramblase activity of wild-type SCRM-1. The interaction between SCRM-1 and cholesterol was confirmed by fluorescence spectroscopy using NBD-Chol. Also, we observed loss of such interaction when one of I273 in the CRAC motif mutated to Asp. Interestingly, the point mutant has partially retained scramblase activity in Lo vesicles. The current study elucidated the important interaction between cholesterol and SCRM-1 to fine-tune its activity in artificial membranes.

Keywords: artificial membranes, CRAC motif, plasma membrane, PL scramblase

Procedia PDF Downloads 175
5516 Kalman Filter Gain Elimination in Linear Estimation

Authors: Nicholas D. Assimakis

Abstract:

In linear estimation, the traditional Kalman filter uses the Kalman filter gain in order to produce estimation and prediction of the n-dimensional state vector using the m-dimensional measurement vector. The computation of the Kalman filter gain requires the inversion of an m x m matrix in every iteration. In this paper, a variation of the Kalman filter eliminating the Kalman filter gain is proposed. In the time varying case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix and the inversion of an m x m matrix in every iteration. In the time invariant case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix in every iteration. The proposed Kalman filter gain elimination algorithm may be faster than the conventional Kalman filter, depending on the model dimensions.

Keywords: discrete time, estimation, Kalman filter, Kalman filter gain

Procedia PDF Downloads 195
5515 Isolation, Characterization and Myogenic Differentiation of Synovial Mesenchymal Stem Cells

Authors: Fatma Y. Meligy

Abstract:

Objectives: The objectives of this study aimed to isolate and characterize mesenchymal stem cells (MSCs) derived from synovial membrane. Then to assess the potentiality of myogenic differentiation of these isolated MSCs. Methods: The MSCs were isolated from synovial membrane by digestion method. Three adult rats were used. The 5 -azacytidine was added to the cultured cells for one day. The isolated cells and treated cells are assessed using immunoflouresence, flowcytometry, PCR and real time PCR. Results: The isolated stem cells showed morphological aspect of stem cells they showed strong positivity to CD44 and CD90 in immunoflouresence while in CD34 and CD45 showed negative reaction. The treated cells with 5-azacytidine was shown to have positive reaction for desmin. Flowcytometric analysis showed that synovial MSCs had strong positive percentage for CD44(%98)and CD90 (%97) and low percentage for CD34 & CD45 while the treated cells showed positive percentage for myogenic marker myogenin (85%). As regard the PCR and Real time PCR, the treated cells showed positive reaction to the desmin primer. Conclusion: The adult MSCs were isolated successfully from synovial membrane and characterized with stem cell markers. The isolated cells could be differentiated in vitro into myogenic cells. These differentiated cells could be used in auto-replacement of diseased or traumatized muscle cells as a regenerative therapy for muscle disorders and trauma.

Keywords: mesenchymal stem cells, synovial membrane, myogenic differentiation

Procedia PDF Downloads 306
5514 System Identification in Presence of Outliers

Authors: Chao Yu, Qing-Guo Wang, Dan Zhang

Abstract:

The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low-rank, sparse matrices and further recast as a semidefinite programming (SDP) problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered “clean” data from the proposed method can give much better parameter estimation compared with that based on the raw data.

Keywords: outlier detection, system identification, matrix decomposition, low-rank matrix, sparsity, semidefinite programming, interior-point methods, denoising

Procedia PDF Downloads 307
5513 Kinetic and Removable of Amoxicillin Using Aliquat336 as a Carrier via a HFSLM

Authors: Teerapon Pirom, Ura Pancharoen

Abstract:

Amoxicillin is an antibiotic which is widely used to treat various infections in both human beings and animals. However, when amoxicillin is released into the environment, it is a major problem. Amoxicillin causes bacterial resistance to these drugs and failure of treatment with antibiotics. Liquid membrane is of great interest as a promising method for the separation and recovery of the target ions from aqueous solutions due to the use of carriers for the transport mechanism, resulting in highly selectivity and rapid transportation of the desired metal ions. The simultaneous processes of extraction and stripping in a single unit operation of liquid membrane system are very interesting. Therefore, it is practical to apply liquid membrane, particularly the HFSLM for industrial applications as HFSLM is proved to be a separation process with lower capital and operating costs, low energy and extractant with long life time, high selectivity and high fluxes compared with solid membranes. It is a simple design amenable to scaling up for industrial applications. The extraction and recovery for (Amoxicillin) through the hollow fiber supported liquid membrane (HFSLM) using aliquat336 as a carrier were explored with the experimental data. The important variables affecting on transport of amoxicillin viz. extractant concentration and operating time were investigated. The highest AMOX- extraction percentages of 85.35 and Amoxicillin stripping of 80.04 were achieved with the best condition at 6 mmol/L [aliquat336] and operating time 100 min. The extraction reaction order (n) and the extraction reaction rate constant (kf) were found to be 1.00 and 0.0344 min-1, respectively.

Keywords: aliquat336, amoxicillin, HFSLM, kinetic

Procedia PDF Downloads 275
5512 Energy Saving and Performance Evaluation of an Air Handling Unit Integrated with a Membrane Energy Exchanger for Cold Climates

Authors: Peng Liu, Maria Justo Alonso, Hans Martin Mathisen

Abstract:

A theoretical model is developed to evaluate the performance and energy saving potential of an air handling unit integrated with a membrane energy exchanger in cold climates. The recovered sensible and latent heat, fan preheating use for frost prevention and heating energy consumed by heating coil after the ventilator is compared for the air handling unit combined heat and energy exchanger respectively. A concept of coefficient of performance of air handling unit is presented and applied to assess the energy use of air handling unit (AHU) in cold climates. The analytic results indicate downsizing of the preheating coil before exchanger and heating coils after exchanger are expected since the required power to preheat and condition the air is reduced compared to heat exchanger when the MEE is integrated with AHU. Simultaneously, a superior ratio of energy recovered (RER) is obtained from AHU build-in a counter-flow MEE. The AHU with sensible-only heat exchanger has noticeably low RER, around 1 at low outdoor air temperature where the maximum energy rate is desired to condition the severe cold and dry air.

Keywords: membrane energy exchanger, cold climate, energy efficient building, HVAC

Procedia PDF Downloads 326
5511 Polyurethane Membrane Mechanical Property Study for a Novel Carotid Covered Stent

Authors: Keping Zuo, Jia Yin Chia, Gideon Praveen Kumar Vijayakumar, Foad Kabinejadian, Fangsen Cui, Pei Ho, Hwa Liang Leo

Abstract:

Carotid artery is the major vessel supplying blood to the brain. Carotid artery stenosis is one of the three major causes of stroke and the stroke is the fourth leading cause of death and the first leading cause of disability in most developed countries. Although there is an increasing interest in carotid artery stenting for treatment of cervical carotid artery bifurcation therosclerotic disease, currently available bare metal stents cannot provide an adequate protection against the detachment of the plaque fragments over diseased carotid artery, which could result in the formation of micro-emboli and subsequent stroke. Our research group has recently developed a novel preferential covered-stent for carotid artery aims to prevent friable fragments of atherosclerotic plaques from flowing into the cerebral circulation, and yet retaining the ability to preserve the flow of the external carotid artery. The preliminary animal studies have demonstrated the potential of this novel covered-stent design for the treatment of carotid therosclerotic stenosis. The purpose of this study is to evaluate the biomechanical property of PU membrane of different concentration configurations in order to refine the stent coating technique and enhance the clinical performance of our novel carotid covered stent. Results from this study also provide necessary material property information crucial for accurate simulation analysis for our stents. Method: Medical grade Polyurethane (ChronoFlex AR) was used to prepare PU membrane specimens. Different PU membrane configurations were subjected to uniaxial test: 22%, 16%, and 11% PU solution were made by mixing the original solution with proper amount of the Dimethylacetamide (DMAC). The specimens were then immersed in physiological saline solution for 24 hours before test. All specimens were moistened with saline solution before mounting and subsequent uniaxial testing. The specimens were preconditioned by loading the PU membrane sample to a peak stress of 5.5 Mpa for 10 consecutive cycles at a rate of 50 mm/min. The specimens were then stretched to failure at the same loading rate. Result: The results showed that the stress-strain response curves of all PU membrane samples exhibited nonlinear characteristic. For the ultimate failure stress, 22% PU membrane was significantly higher than 16% (p<0.05). In general, our preliminary results showed that lower concentration PU membrane is stiffer than the higher concentration one. From the perspective of mechanical properties, 22% PU membrane is a better choice for the covered stent. Interestingly, the hyperelastic Ogden model is able to accurately capture the nonlinear, isotropic stress-strain behavior of PU membrane with R2 of 0.9977 ± 0.00172. This result will be useful for future biomechanical analysis of our stent designs and will play an important role for computational modeling of our covered stent fatigue study.

Keywords: carotid artery, covered stent, nonlinear, hyperelastic, stress, strain

Procedia PDF Downloads 310
5510 Classifications of Sleep Apnea (Obstructive, Central, Mixed) and Hypopnea Events Using Wavelet Packet Transform and Support Vector Machines (VSM)

Authors: Benghenia Hadj Abd El Kader

Abstract:

Sleep apnea events as obstructive, central, mixed or hypopnea are characterized by frequent breathing cessations or reduction in upper airflow during sleep. An advanced method for analyzing the patterning of biomedical signals to recognize obstructive sleep apnea and hypopnea is presented. In the aim to extract characteristic parameters, which will be used for classifying the above stated (obstructive, central, mixed) sleep apnea and hypopnea, the proposed method is based first on the analysis of polysomnography signals such as electrocardiogram signal (ECG) and electromyogram (EMG), then classification of the (obstructive, central, mixed) sleep apnea and hypopnea. The analysis is carried out using the wavelet transform technique in order to extract characteristic parameters whereas classification is carried out by applying the SVM (support vector machine) technique. The obtained results show good recognition rates using characteristic parameters.

Keywords: obstructive, central, mixed, sleep apnea, hypopnea, ECG, EMG, wavelet transform, SVM classifier

Procedia PDF Downloads 371
5509 Physicochemical Characterization of Low Sulfonated Polyether Ether Ketone/ Layered Double Hydroxide/Sepiolite Hybrid to Improve the Performance of Sulfonated Poly Ether Ether Ketone Composite Membranes for Proton Exchange Membrane Fuel Cells

Authors: Zakaria Ahmed, Khaled Charradi, Sherif M. A. S. Keshk, Radhouane Chtourou

Abstract:

Sulfonated poly ether ether ketone (SPEEK) with a low sulfonation degree was blended using nanofiller Layered Double Hydroxide (LDH, Mg2AlCl) /sepiolite nanostructured material as additive to use as an electrolyte membrane for fuel cell application. Characterization assessments, i.e., mechanical stability, thermal gravimetric analysis, ion exchange capability, swelling properties, water uptake capacities, electrochemical impedance spectroscopy analysis, and Fourier transform infrared spectroscopy (FTIR) of the composite membranes were conducted. The presence of LDH/sepiolite nanoarchitecture material within SPEEK was found to have the highest water retention and proton conductivity value at high temperature rather than LDH/SPEEK and pristine SPEEK membranes.

Keywords: SPEEK, sepiolite clay, LDH clay, proton exchange membrane

Procedia PDF Downloads 123
5508 Design Exploration on Mixed-Use Development of Island House: Take the Southeast Coastal Area of Chinese as an Example

Authors: Fu Jiayan, Wang Zhu, Sun Jiaojiao

Abstract:

Mixed-use development is one of the most important trends in new island house transformation along southeast coastal area in China. Unique island geographical environment and profound fishing village culture coexist for a long time in this. With artistic creation for the purpose of the "live-work" houses are in a large number of emergence, however, still lack of systematic strategy. Based on space effect from marine resources to regional human settlements, this article teases out the evolution regularity of island settlement context and architectural form, then, puts forward the formation mechanism and construction model of art island houses. Thereby, to further explore space design method and site creation strategy of mixed-use development.

Keywords: mixed-use, island house, art creation, Southeast Coastal Area of Chinese

Procedia PDF Downloads 445
5507 Rapid Identification of Thermophilic Campylobacter Species from Retail Poultry Meat Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry

Authors: Graziella Ziino, Filippo Giarratana, Stefania Maria Marotta, Alessandro Giuffrida, Antonio Panebianco

Abstract:

In Europe, North America and Japan, campylobacteriosis is one of the leading food-borne bacterial illnesses, often related to the consumption of poultry meats and/or by-products. The aim of this study was the evaluation of Campylobacter contamination of poultry meats marketed in Sicily (Italy) using both traditional methods and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS). MALDI-TOF MS is considered a promising rapid (less than 1 hour) identification method for food borne pathogens bacteria. One hundred chicken and turkey meat preparations (no. 68 hamburgers, no. 21 raw sausages, no. 4 meatballs and no. 7 meat rolls) were taken from different butcher’s shops and large scale retailers and submitted to detection/enumeration of Campylobacter spp. according to EN ISO 10272-1:2006 and EN ISO 10272-2:2006. Campylobacter spp. was detected with general low counts in 44 samples (44%), of which 30 from large scale retailers and 14 from butcher’s shops. Chicken meats were significantly more contaminated than turkey meats. Among the preparations, Campylobacter spp. was found in 85.71% of meat rolls, 50% of meatballs, 44.12% of hamburgers and 28.57% of raw sausages. A total of 100 strains, 2-3 from each positive samples, were isolated for the identification by phenotypic, biomolecular and MALDI-TOF MS methods. C. jejuni was the predominant strains (63%), followed by C. coli (33%) and C. lari (4%). MALDI-TOF MS correctly identified 98% of the strains at the species level, only 1% of the tested strains were not identified. In the last 1%, a mixture of two different species was mixed in the same sample and MALDI-TOF MS correctly identified at least one of the strains. Considering the importance of rapid identification of pathogens in the food matrix, this method is highly recommended for the identification of suspected colonies of Campylobacteria.

Keywords: campylobacter spp., Food Microbiology, matrix-assisted laser desorption ionization-time of flight mass spectrometry, rapid microbial identification

Procedia PDF Downloads 292
5506 Spark Plasma Sintering of Aluminum-Based Composites Reinforced by Nanocrystalline Carbon-Coated Intermetallic Particles

Authors: B. Z. Manuel, H. D. Esmeralda, H. S. Felipe, D. R. Héctor, D. de la Torre Sebastián, R. L. Diego

Abstract:

Aluminum Matrix Composites reinforced with nanocrystalline Ni3Al carbon-coated intermetallic particles, were synthesized by powder metallurgy. Powder mixture of aluminum with 0.5-volume fraction of reinforcement particles was compacted by spark plasma sintering (SPS) technique and the compared with conventional sintering process. The better results for SPS technique were obtained in 520ºC-5kN-3min.The hardness (70.5±8 HV) and the elastic modulus (95 GPa) were evaluated in function of sintering conditions for SPS technique; it was found that the incorporation of these kind of reinforcement particles in aluminum matrix improve its mechanical properties. The densities were about 94% and 97% of the theoretical density. The carbon coating avoided the interfacial reaction between matrix-particle at high temperature (520°C) without show composition change either intermetallic dissolution.

Keywords: aluminum matrix composites, intermetallics, spark plasma sintering, nanocrystalline

Procedia PDF Downloads 452
5505 Preparation of Bacterial Cellulose Membranes from Nata de Coco for CO2/CH4 Separation

Authors: Yanin Hosakun, Sujitra Wongkasemjit, Thanyalak Chaisuwan

Abstract:

Carbon dioxide removal from natural gas is an important process because the existence of carbon dioxide in natural gas contributes to pipeline corrosion, reduces the heating value, and takes up volume in the pipeline. In this study, bacterial cellulose was chosen for the CO2/CH4 gas separation membrane due to its unique structure and prominent properties. Additionally, it can simply be obtained by culturing the bacteria so called “Acetobacter xylinum” through fermentation of coconut juice. Bacterial cellulose membranes with and without silver ions were prepared and studied for the separation performance of CO2 and CH4.

Keywords: bacterial cellulose, CO2, CH4 separation, membrane, nata de coco

Procedia PDF Downloads 252
5504 The Impact of β Nucleating Agents and Carbon-Based Nanomaterials on Water Vapor Permeability of Polypropylene Composite Films

Authors: Glykeria A. Visvini, George Ν. Mathioudakis, Amaia Soto Beobide, George A. Voyiatzis

Abstract:

Polymer nanocomposites are materials in which a polymer matrix is reinforced with nanoscale inclusions, such as nanoparticles, nanoplates, or nanofibers. These nanoscale inclusions can significantly enhance the mechanical, thermal, electrical, and other properties of the polymer matrix, making them attractive for a wide range of industrial applications. These properties can be tailored by adjusting the type and the concentration of the nanoinclusions, which provides a high degree of flexibility in their design and development. An important property that polymeric membranes can exhibit is water vapor permeability (WVP). This can be accomplished by various methods, including the incorporation of micro/nano-fillers into the polymer matrix. In this way, a micro/nano-pore network can be formed, allowing water vapor to permeate through the membrane. At the same time, the membrane can be stretched uni- or bi-axially, creating aligned or cross-linked micropores in the composite, respectively, which can also increase the WVP. Nowadays, in industry, stretched films reinforced with CaCO3 develop micro-porosity sufficient to give them breathability characteristics. Carbon-based nanomaterials, such as graphene oxide (GO), are tentatively expected to be able to effectively improve the WVP of corresponding composite polymer films. The presence in the GO structure of various functional oxidizing groups enhances its ability to attract and channel water molecules, exploiting the unique large surface area of graphene that allows the rapid transport of water molecules. Polypropylene (PP) is widely used in various industrial applications due to its desirable properties, including good chemical resistance, excellent thermal stability, low cost, and easy processability. The specific properties of PP are highly influenced by its crystalline behavior, which is determined by its processing conditions. The development of the β-crystalline phase in PP, in combination with stretching, is anticipating improving the microporosity of the polymer matrix, thereby enhancing its WVP. The aim of present study is to create breathable PP composite membranes using carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and graphene nanoplatelets (GNPs). Unlike traditional methods that rely on the drawing process to enhance the WVP of PP, this study intents to develop a low-cost approach using melt mixing with β-nucleating agents and carbon fillers to create highly breathable PP composite membranes. The study aims to investigate how the concentration of these additives affects the water vapor transport properties of the resulting PP films/membranes. The presence of β-nucleating agents and carbon fillers is expected to enhance β-phase growth in PP, while an alternation between β- and α-phase is expected to lead to improved microporosity and WVP. Our ambition is to develop highly breathable PP composite films with superior performance and at a lower cost compared to the benchmark. Acknowledgment: This research has been co‐financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call «Special Actions "AQUACULTURE"-"INDUSTRIAL MATERIALS"-"OPEN INNOVATION IN CULTURE"» (project code: Τ6YBP-00337)

Keywords: carbon based nanomaterials, nanocomposites, nucleating agent, polypropylene, water vapor permeability

Procedia PDF Downloads 86
5503 Effect of Al Particles on Corrosion Resistance of Electrodeposited Ni-Al Composite Coatings

Authors: M. Adabi, A. Amadeh

Abstract:

Electrodeposition is known as a relatively economical and simple technique commonly used for preparation of metallic and composite coatings. Electrodeposited composite coatings produced by dispersion of particles into the metal matrix show better properties than pure metallic coatings. In recent years, many researches were carried out on Ni matrix coatings reinforced by ceramic particles such as Ni-SiC, Ni-Al2O3, Ni-WC, Ni-CeO2, Ni-ZrO2, Ni-TiO2 to improve their corrosion and wear resistance. However, little effort has been made on incorporation of metal particles into Ni matrix. Therefore, the aim of this work was to produce Ni–Al composite coating on 6061 aluminum alloy by pulse plating and to investigate the effects of electrodeposition parameters, e.g. concentration Al particles in the electrolyte and current density, on composition and corrosion resistance of the composite coatings. The morphology and corrosion behavior of the coated 6061 Al alloys were studied by means of scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer (EDS) and potentiodynamic polarization method, respectively. The results indicated that the addition of Al particles up to 50 g L-1 increased the amount of co-deposited Al particles in nickel matrix. It is also observed that the incorporation of Al particles decreased with increasing current density. Meanwhile, the corrosion resistance of the coatings shows an increment by increasing the content of Al particles into nickel matrix.

Keywords: Ni-Al composite coating, current density, corrosion resistance

Procedia PDF Downloads 487
5502 Optimization of Tangential Flow Filtration Process for Purifying DNA Vaccine

Authors: Piyakajornkul T., Noppiboon S., Hochareon L., Kitsubun P.

Abstract:

Nowadays, DNA vaccines become an interesting subject in the third vaccine generation. The platform of DNA vaccines production has been developed and its downstream process becomes challenging due to the quality of the products in terms of purity and percentage of supercoiled DNA. To overcome these challenges, tangential flow filtration (TFF), which is involved in the purification process, could be used since it provides effective separation of impurity prior to performing further purification steps. However, operating conditions of TFF is varied based on several factors such as sizes of target particle and impurities, a concentration of solution as well as a concentration polarization on the membrane surface. In this study, pVAX1/lacZ was used as a model of TFF optimization in order to prevent a concentration polarization that can lead to the membrane fouling and also minimize a diafiltration volume while maintaining the maximum permeate flux resulting in proper operating times and buffer volume. By using trans membrane pressure (TMP) excursion method, feed flow rates and TMP were varied. The results showed a correlation of permeate flux with TMP where the maximum volume concentration factor reached 2.5 times of the initial volume when feed flow rate and TMP were 7 liters/m²/min and 1 bar, respectively. It was optimal operating conditions before TFF system undergone pressure independent regime. In addition, the diafiltration volume was 14 times of the concentrated volume prior to performing a further anion chromatography process.

Keywords: concentration polarization, DNA vaccines, optimization, permeate flux, pressure dependent, tangential flow filtration (TFF), trans membrane pressure (TMP)

Procedia PDF Downloads 158
5501 Morphology and Permeability of Biomimetic Cellulose Triacetate-Impregnated Membranes: in situ Synchrotron Imaging and Experimental Studies

Authors: Amira Abdelrasoul

Abstract:

This study aimed to ascertain the controlled permeability of biomimetic cellulose triacetate (CTA) membranes by investigating the electrical oscillatory behavior across impregnated membranes (IM). The biomimetic CTA membranes were infused with a fatty acid to induce electrical oscillatory behavior and, hence, to ensure controlled permeability. In situ synchrotron radiation micro-computed tomography (SR-μCT) at the BioMedical Imaging and Therapy (BMIT) Beamline at the Canadian Light Source (CLS) was used to evaluate the main morphology of IMs compared to neat CTA membranes to ensure fatty acid impregnation inside the pores of the membrane matrices. A monochromatic beam at 20 keV was used for the visualization of the morphology of the membrane. The X-ray radiographs were recorded by means of a beam monitor AA-40 (500 μm LuAG scintillator, Hamamatsu, Japan) coupled with a high-resolution camera, providing a pixel size of 5.5 μm and a field of view (FOV) of 4.4 mm × 2.2 mm. Changes were evident in the phase transition temperatures of the impregnated CTA membrane at the melting temperature of the fatty acid. The pulsations of measured voltages were related to changes in the salt concentration of KCl in the vicinity of the electrode. Amplitudes and frequencies of voltage pulsations were dependent on the temperature and concentration of the KCl solution, which controlled the permeability of the biomimetic membranes. The presented smart biomimetic membrane successfully combined porous polymer support and impregnating liquid not only imitate the main barrier properties of the biological membranes but could be easily modified to achieve some new properties, such as facilitated and active transport, regulation by chemical, physical and pharmaceutical factors. These results open new frontiers for the facilitation and regulation of active transport and permeability through biomimetic smart membranes for a variety of biomedical and drug delivery applications.

Keywords: biomimetic, membrane, synchrotron, permeability, morphology

Procedia PDF Downloads 101
5500 Multi-Analyte Indium Gallium Zinc Oxide-Based Dielectric Electrolyte-Insulator-Semiconductor Sensing Membranes

Authors: Chyuan Haur Kao, Hsiang Chen, Yu Sheng Tsai, Chen Hao Hung, Yu Shan Lee

Abstract:

Dielectric electrolyte-insulator-semiconductor sensing membranes-based biosensors have been intensively investigated because of their simple fabrication, low cost, and fast response. However, to enhance their sensing performance, it is worthwhile to explore alternative materials, distinct processes, and novel treatments. An ISFET can be viewed as a variation of MOSFET with the dielectric oxide layer as the sensing membrane. Then, modulation on the work function of the gate caused by electrolytes in various ion concentrations could be used to calculate the ion concentrations. Recently, owing to the advancement of CMOS technology, some high dielectric materials substrates as the sensing membranes of electrolyte-insulator-semiconductor (EIS) structures. The EIS with a stacked-layer of SiO₂ layer between the sensing membrane and the silicon substrate exhibited a high pH sensitivity and good long-term stability. IGZO is a wide-bandgap (~3.15eV) semiconductor of the III-VI semiconductor group with several preferable properties, including good transparency, high electron mobility, wide band gap, and comparable with CMOS technology. IGZO was sputtered by reactive radio frequency (RF) on a p-type silicon wafer with various gas ratios of Ar:O₂ and was treated with rapid thermal annealing in O₂ ambient. The sensing performance, including sensitivity, hysteresis, and drift rate was measured and XRD, XPS, and AFM analyses were also used to study the material properties of the IGZO membrane. Moreover, IGZO was used as a sensing membrane in dielectric EIS bio-sensor structures. In addition to traditional pH sensing capability, detection for concentrations of Na+, K+, urea, glucose, and creatinine was performed. Moreover, post rapid thermal annealing (RTA) treatment was confirmed to improve the material properties and enhance the multi-analyte sensing capability for various ions or chemicals in solutions. In this study, the IGZO sensing membrane with annealing in O₂ ambient exhibited a higher sensitivity, higher linearity, higher H+ selectivity, lower hysteresis voltage and lower drift rate. Results indicate that the IGZO dielectric sensing membrane on the EIS structure is promising for future bio-medical device applications.

Keywords: dielectric sensing membrane, IGZO, hydrogen ion, plasma, rapid thermal annealing

Procedia PDF Downloads 251
5499 An Interactive Platform Displaying Mixed Reality Media

Authors: Alfred Chen, Cheng Chieh Hsu, Yu-Pin Ma, Meng-Jie Lin, Fu Pai Chiu, Yi-Yan Sie

Abstract:

This study is attempted to construct a human-computer interactive platform system that has mainly consisted of an augmented hardware system, a software system, a display table, and mixed media. This system has provided with human-computer interaction services through an interactive platform for the tourism industry. A well designed interactive platform, integrating of augmented reality and mixed media, has potential to enhance museum display quality and diversity. Besides, it will create a comprehensive and creative display mode for most museums and historical heritages. Therefore, it is essential to let public understand what the platform is, how it functions, and most importantly how one builds an interactive augmented platform. Hence the authors try to elaborate the construction process of the platform in detail. Thus, there are three issues to be considered, i.e.1) the theory and application of augmented reality, 2) the hardware and software applied, and 3) the mixed media presented. In order to describe how the platform works, Courtesy Door of Tainan Confucius Temple has been selected as case study in this study. As a result, a developed interactive platform has been presented by showing the physical entity object, along with virtual mixing media such as text, images, animation, and video. This platform will result in providing diversified and effective information that will be delivered to the users.

Keywords: human-computer interaction, mixed reality, mixed media, tourism

Procedia PDF Downloads 489
5498 Combination of Electrodialysis and Electrodeionization for Treatment of Condensate from Ammonium Nitrate Production

Authors: Lubomir Machuca, Vit Fara

Abstract:

Ammonium nitrate (AN) is produced by the reaction of ammonia and nitric acid, and a waste condensate is obtained. The condensate contains pure AN in concentration up to 10g/L. The salt content in the condensate is too high to discharge immediately into the river thus it must be treated. This study is concerned with the treatment of condensates from an industrial AN production by combination of electrodialysis (ED) and electrodeionization (EDI). The condensate concentration was in range 1.9–2.5g/L of AN. A pilot ED module with 25 membrane pairs following by a laboratory EDI module with 10 membrane pairs operated continuously during 800 hours. Results confirmed that the combination of ED and EDI is suitable for the condensate treatment.

Keywords: desalination, electrodialysis, electrodeionization, fertilizer industry

Procedia PDF Downloads 240
5497 Carbon Capture: Growth and Development of Membranes in Gas Sequestration

Authors: Sreevalli Bokka

Abstract:

Various technologies are emerging to capture or reduce carbon intensity from a gas stream, such as industrial effluent air and atmosphere. Of these technologies, filter membranes are emerging as a key player in carbon sequestering. The key advantages of these membranes are their high surface area and porosity. Fabricating a filter membrane that has high selectivity for carbon sequestration is challenging as material properties and processing parameters affect the membrane properties. In this study, the growth of the filter membranes and the critical material properties that impact carbon sequestration are presented.

Keywords: membranes, filtration, separations, polymers, carbon capture

Procedia PDF Downloads 69
5496 Visual and Chemical Servoing of a Hexapod Robot in a Confined Environment Using Jacobian Estimator

Authors: Guillaume Morin-Duponchelle, Ahmed Nait Chabane, Benoit Zerr, Pierre Schoesetters

Abstract:

Industrial inspection can be achieved through robotic systems, allowing visual and chemical servoing. A popular scheme for visual servo-controlled robotic is the image-based servoing sys-tems. In this paper, an approach of visual and chemical servoing of a hexapod robot using a visual and chemical Jacobian matrix are proposed. The basic idea behind the visual Jacobian matrix is modeling the differential relationship between the camera system and the robotic control system to detect and track accurately points of interest in confined environments. This approach allows the robot to easily detect and navigates to the QR code or seeks a gas source localization using surge cast algorithm. To track the QR code target, a visual servoing based on Jacobian matrix is used. For chemical servoing, three gas sensors are embedded on the hexapod. A Jacobian matrix applied to the gas concentration measurements allows estimating the direction of the main gas source. The effectiveness of the proposed scheme is first demonstrated on simulation. Finally, a hexapod prototype is designed and built and the experimental validation of the approach is presented and discussed.

Keywords: chemical servoing, hexapod robot, Jacobian matrix, visual servoing, navigation

Procedia PDF Downloads 125
5495 Investigation of Mechanical and Tribological Property of Graphene Reinforced SS-316L Matrix Composite Prepared by Selective Laser Melting

Authors: Ajay Mandal, Jitendar Kumar Tiwari, N. Sathish, A. K. Srivastava

Abstract:

A fundamental investigation is performed on the development of graphene (Gr) reinforced stainless steel 316L (SS 316L) metal matrix composite via selective laser melting (SLM) in order to improve specific strength and wear resistance property of SS 316L. Firstly, SS 316L powder and graphene were mixed in a fixed ratio using low energy planetary ball milling. The milled powder is then subjected to the SLM process to fabricate composite samples at a laser power of 320 W and exposure time of 100 µs. The prepared composite was mechanically tested (hardness and tensile test) at ambient temperature, and obtained results indicate that the properties of the composite increased significantly with the addition of 0.2 wt. % Gr. Increment of about 25% (from 194 to 242 HV) and 70% (from 502 to 850 MPa) is obtained in hardness and yield strength of composite, respectively. Raman mapping and XRD were performed to see the distribution of Gr in the matrix and its effect on the formation of carbide, respectively. Results of Raman mapping show the uniform distribution of graphene inside the matrix. Electron back scatter diffraction (EBSD) map of the prepared composite was analyzed under FESEM in order to understand the microstructure and grain orientation. Due to thermal gradient, elongated grains were observed along the building direction, and grains get finer with the addition of Gr. Most of the mechanical components are subjected to several types of wear conditions. Therefore, it is very necessary to improve the wear property of the component, and hence apart from strength and hardness, a tribological property of composite was also measured under dry sliding condition. Solid lubrication property of Gr plays an important role during the sliding process due to which the wear rate of composite reduces up to 58%. Also, the surface roughness of worn surface reduces up to 70% as measured by 3D surface profilometry. Finally, it can be concluded that SLM is an efficient method of fabricating cutting edge metal matrix nano-composite having Gr like reinforcement, which was very difficult to fabricate through conventional manufacturing techniques. Prepared composite has superior mechanical and tribological properties and can be used for a wide variety of engineering applications. However, due to the unavailability of a considerable amount of literature in a similar domain, more experimental works need to perform, such as thermal property analysis, and is a part of ongoing study.

Keywords: selective laser melting, graphene, composite, mechanical property, tribological property

Procedia PDF Downloads 136
5494 Adaptive Target Detection of High-Range-Resolution Radar in Non-Gaussian Clutter

Authors: Lina Pan

Abstract:

In non-Gaussian clutter of a spherically invariant random vector, in the cases that a certain estimated covariance matrix could become singular, the adaptive target detection of high-range-resolution radar is addressed. Firstly, the restricted maximum likelihood (RML) estimates of unknown covariance matrix and scatterer amplitudes are derived for non-Gaussian clutter. And then the RML estimate of texture is obtained. Finally, a novel detector is devised. It is showed that, without secondary data, the proposed detector outperforms the existing Kelly binary integrator.

Keywords: non-Gaussian clutter, covariance matrix estimation, target detection, maximum likelihood

Procedia PDF Downloads 464
5493 Chemical Functionalization of Graphene Oxide for Improving Mechanical and Thermal Properties of Polyurethane Composites

Authors: Qifei Jing, Vadim V. Silberschmidt, Lin Li, ZhiLi Dong

Abstract:

Graphene oxide (GO) was chemically functionalized to prepare polyurethane (PU) composites with improved mechanical and thermal properties. In order to achieve a well exfoliated and stable GO suspension in an organic solvent (dimethylformamide, DMF), 4, 4′- methylenebis(phenyl isocyanate) and polycaprolactone diol, which were the two monomers for synthesizing PU, were selectively used to functionalize GO. The obtained functionalized GO (FGO) could form homogeneous dispersions in DMF solvent and the PU matrix, as well as provide a good compatibility with the PU matrix. The most efficient improvement of mechanical properties was achieved when 0.4 wt% FGO was added into the PU matrix, showing increases in the tensile stress, elongation at break and toughness by 34.2%, 27.6% and 64.5%, respectively, compared with those of PU. Regarding the thermal stability, PU filled with 1 wt% FGO showed the largest extent of improvement with T2% and T50% (the temperatures at which 2% and 50% weight-loss happened) 16 °C and 21 °C higher than those of PU, respectively. The significant improvement in both mechanical properties and thermal stability of FGO/PU composites should be attributed to the homogeneous dispersion of FGO in the PU matrix and strong interfacial interaction between them.

Keywords: composite, dispersion, graphene oxide, polyurethane

Procedia PDF Downloads 263
5492 Easily Memorable Strong Password Generation and Retrieval

Authors: Shatadru Das, Natarajan Vijayarangan

Abstract:

In this paper, a system and method for generating and recovering an authorization code has been designed and analyzed. The system creates an authorization code by accepting a base-sentence from a user. Based on the characters present in this base-sentence, the system computes a base-sentence matrix. The system also generates a plurality of patterns. The user can either select the pattern from the multiple patterns suggested by the system or can create his/her own pattern. The system then performs multiplications between the base-sentence matrix and the selected pattern matrix at different stages in the path forward, for obtaining a strong authorization code. In case the user forgets the base sentence, the system has a provision to manage and retrieve 'forgotten authorization code'. This is done by fragmenting the base sentence into different matrices and storing the fragmented matrices into a repository after computing matrix multiplication with a security question-answer approach and with a secret key provided by the user.

Keywords: easy authentication, key retrieval, memorable passwords, strong password generation

Procedia PDF Downloads 400
5491 Flue Gas Characterisation for Conversion to Chemicals and Fuels

Authors: Adesola O. Orimoloye, Edward Gobina

Abstract:

Flue gas is the most prevalent source of carbon dioxide off-gas from numerous processes globally. Among the lion's share of this flue gas is the ever-present electric power plant, primarily fuelled by coal, and then secondly, natural gas. The carbon dioxide found in coal fired power plant off gas is among the dirtiest forms of carbon dioxide, even with many of the improvements in the plants; still this will yield sulphur and nitrogen compounds; among other rather nasty compounds and elements; all let to the atmosphere. This presentation will focus on the characterization of carbon dioxide-rich flue gas sources with a view of eventual conversion to chemicals and fuels using novel membrane reactors.

Keywords: flue gas, carbon dioxide, membrane, catalyst, syngas

Procedia PDF Downloads 523