Search results for: Power Devices
7900 Design of Control Systems for Grid Interconnection and Power Control of a Grid Tie Inverter for Micro-Grid Application
Authors: Deepak Choudhary
Abstract:
COEP-Microgrid, a project by the students of College of Engineering Pune aims at establishing a micro grid in the college campus serving as a living laboratory for research and development of novel grid technologies. Proposed micro grid has an AC-bus and DC-bus, interconnected together with a tie line DC-AC converter. In grid-connected mode AC bus of microgrid is synchronized with utility grid. Synchronization with utility grid requires grid and AC bus to have synchronism in frequency, phase sequence and voltage. Power flow requires phase difference between grid and AC bus. Control System is required to effectively regulate power flow between the grid and AC bus. The grid synchronizing control system is composed of frequency and phase control for regulated power flow and voltage control system for reduction of reactive power flow. The control system involves automatic active power flow control. It takes the feedback of DC link Capacitor and changes the power angle accordingly. Control system incorporating voltage, phase and power control was developed for grid-tie inverter. This paper discusses the design, simulation and practical implementation of control system described in various micro grid scenarios.Keywords: microgrid, Grid-tie inverter, voltage control, automatic power control
Procedia PDF Downloads 6647899 Nine-Level Shunt Active Power Filter Associated with a Photovoltaic Array Coupled to the Electrical Distribution Network
Authors: Zahzouh Zoubir, Bouzaouit Azzeddine, Gahgah Mounir
Abstract:
The use of more and more electronic power switches with a nonlinear behavior generates non-sinusoidal currents in distribution networks, which causes damage to domestic and industrial equipment. The multi-level shunt power active filter is subsequently shown to be an adequate solution to the problem raised. Nevertheless, the difficulty of adjusting the active filter DC supply voltage requires another technology to ensure it. In this article, a photovoltaic generator is associated with the DC bus power terminals of the active filter. The proposed system consists of a field of solar panels, three multi-level voltage inverters connected to the power grid and a non-linear load consisting of a six-diode rectifier bridge supplying a resistive-inductive load. Current control techniques of active and reactive power are used to compensate for both harmonic currents and reactive power as well as to inject active solar power into the distribution network. An algorithm of the search method of the maximum power point of type Perturb and observe is applied. Simulation results of the system proposed under the MATLAB/Simulink environment shows that the performance of control commands that reassure the solar power injection in the network, harmonic current compensation and power factor correction.Keywords: Actif power filter, MPPT, pertub&observe algorithm, PV array, PWM-control
Procedia PDF Downloads 3397898 The Effect of Green Power Trading Mechanism on Interregional Power Generation and Transmission in China
Authors: Yan-Shen Yang, Bai-Chen Xie
Abstract:
Background and significance of the study: Both green power trading schemes and interregional power transmission are effective ways to increase green power absorption and achieve renewable power development goals. China accelerates the construction of interregional power transmission lines and the green power market. A critical issue focusing on the close interaction between these two approaches arises, which can heavily affect the green power quota allocation and renewable power development. Existing studies have not discussed this issue adequately, so it is urgent to figure out their relationship to achieve a suitable power market design and a more reasonable power grid construction.Basic methodologies: We develop an equilibrium model of the power market in China to analyze the coupling effect of these two approaches as well as their influence on power generation and interregional transmission in China. Our model considers both the Tradable green certificate (TGC) and green power market, which consists of producers, consumers in the market, and an independent system operator (ISO) minimizing the total system cost. Our equilibrium model includes the decision optimization process of each participant. To reformulate the models presented as a single-level one, we replace the producer, consumer, ISO, and market equilibrium problems with their Karush-Kuhn-Tucker (KKT) conditions, which is further reformulated as a mixed-integer linear programming (MILP) and solved in Gurobi solver. Major findings: The result shows that: (1) the green power market can significantly promote renewable power absorption while the TGC market provides a more flexible way for green power trading. (2) The phenomena of inefficient occupation and no available transmission lines appear simultaneously. The existing interregional transmission lines cannot fully meet the demand for wind and solar PV power trading in some areas while the situation is vice versa in other areas. (3) Synchronous implementation of green power and TGC trading mechanism can benefit the development of green power as well as interregional power transmission. (4) The green power transaction exacerbates the unfair distribution of carbon emissions. The Carbon Gini Coefficient is up to 0.323 under the green power market which shows a high Carbon inequality. The eastern coastal region will benefit the most due to its huge demand for external power.Keywords: green power market, tradable green certificate, interregional power transmission, power market equilibrium model
Procedia PDF Downloads 1477897 Challenges with Synchrophasor Technology Deployments in Electric Power Grids
Authors: Emmanuel U. Oleka, Anil Khanal, Gary L. Lebby, Ali R. Osareh
Abstract:
Synchrophasor technology is fast being deployed in electric power grids all over the world and is fast changing the way the grids are managed. This trend is to continue until the entire power grids are fully connected so they can be monitored and controlled in real-time. Much achievement has been made in the synchrophasor technology development and deployment, and much more are yet to be achieved. Real-time power grid control and protection potentials of synchrophasor are yet to be explored. It is of necessity that researchers keep in view the various challenges that still need to be overcome in expanding the frontiers of synchrophasor technology. This paper outlines the major challenges that should be dealt with in order to achieve the goal of total power grid visualization, monitoring and control using synchrophasor technology.Keywords: electric power grid, grid visualization, phasor measurement unit, synchrophasor
Procedia PDF Downloads 5567896 Optimal Reactive Power Dispatch under Various Contingency Conditions Using Whale Optimization Algorithm
Authors: Khaled Ben Oualid Medani, Samir Sayah
Abstract:
The Optimal Reactive Power Dispatch (ORPD) problem has been solved and analysed usually in the normal conditions. However, network collapses appear in contingency conditions. In this paper, ORPD under several contingencies is presented using the proposed method WOA. To ensure viability of the power system in contingency conditions, several critical cases are simulated in order to prevent and prepare the power system to face such situations. The results obtained are carried out in IEEE 30 bus test system for the solution of ORPD problem in which control of bus voltages, tap position of transformers and reactive power sources are involved. Moreover, another method, namely, Particle Swarm Optimization with Time Varying Acceleration Coefficient (PSO-TVAC) has been compared with the proposed technique. Simulation results indicate that the proposed WOA gives remarkable solution in terms of effectiveness in case of outages.Keywords: optimal reactive power dispatch, power system analysis, real power loss minimization, contingency condition, metaheuristic technique, whale optimization algorithm
Procedia PDF Downloads 1217895 Human-Centred Data Analysis Method for Future Design of Residential Spaces: Coliving Case Study
Authors: Alicia Regodon Puyalto, Alfonso Garcia-Santos
Abstract:
This article presents a method to analyze the use of indoor spaces based on data analytics obtained from inbuilt digital devices. The study uses the data generated by the in-place devices, such as smart locks, Wi-Fi routers, and electrical sensors, to gain additional insights on space occupancy, user behaviour, and comfort. Those devices, originally installed to facilitate remote operations, report data through the internet that the research uses to analyze information on human real-time use of spaces. Using an in-place Internet of Things (IoT) network enables a faster, more affordable, seamless, and scalable solution to analyze building interior spaces without incorporating external data collection systems such as sensors. The methodology is applied to a real case study of coliving, a residential building of 3000m², 7 floors, and 80 users in the centre of Madrid. The case study applies the method to classify IoT devices, assess, clean, and analyze collected data based on the analysis framework. The information is collected remotely, through the different platforms devices' platforms; the first step is to curate the data, understand what insights can be provided from each device according to the objectives of the study, this generates an analysis framework to be escalated for future building assessment even beyond the residential sector. The method will adjust the parameters to be analyzed tailored to the dataset available in the IoT of each building. The research demonstrates how human-centered data analytics can improve the future spatial design of indoor spaces.Keywords: in-place devices, IoT, human-centred data-analytics, spatial design
Procedia PDF Downloads 1977894 Public Perceptions of Solar Energy in South-West Nigeria
Authors: Kugbeme Isumonah
Abstract:
The Nigerian State has continued to battle huge power supply challenges. Erratic supply, low voltage, and billing issues characterize its power sector. Solar power is increasingly being advocated for as a potential to Nigeria’s energy crisis. This study investigates how the Nigerian public perceives solar power. It employs the use of an open-ended online survey eliciting responses from participants resident in two of South-West Nigeria’s largest cities (Lagos and Ibadan). The study found that general attitudes towards solar power are positive, and the energy source is viewed with great optimism within the context of solutions to Nigeria’s energy issues. It also found no significant variation in public perceptions of solar power along demographic lines. Further, it found that finance represents the biggest barrier to broader solar power adoption. The results of this study provide evidence for policy formulation geared towards addressing finance difficulties that currently impede expansion of solar power use in Nigeria.Keywords: public perceptions, solar energy, Nigeria, attitudes
Procedia PDF Downloads 1077893 Impact of the Photovoltaic Integration in Power Distribution Network: Case Study in Badak Liquefied Natural Gas (LNG)
Authors: David Hasurungan
Abstract:
This paper objective is to analyze the impact from photovoltaic system integration to power distribution network. The case study in Badak Liquefied Natural Gas (LNG) plant is presented in this paper. Badak LNG electricity network is operated in islanded mode. The total power generation in Badak LNG plant is significantly affected to feed gas supply. Meanwhile, to support the Government regulation, Badak LNG continuously implemented the grid-connected photovoltaic system in existing power distribution network. The impact between train operational mode change in Badak LNG plant and the growth of photovoltaic system is also encompassed in analysis. The analysis and calculation are performed using software Power Factory 15.1.Keywords: power quality, distribution network, grid-connected photovoltaic system, power management system
Procedia PDF Downloads 3607892 Language in Court: Ideology, Power and Cognition
Authors: Mehdi Damaliamiri
Abstract:
Undoubtedly, the power of language is hardly a new topic; indeed, the persuasive power of language accompanied by ideology has long been recognized in different aspects of life. The two and a half thousand-year-old Bisitun inscriptions in Iran, proclaiming the victories of the Persian King, Darius, are considered by some historians to have been an early example of the use of propaganda. Added to this, the modern age is the true cradle of fully-fledged ideologies and the ongoing process of centrifugal ideologization. The most visible work on ideology today within the field of linguistics is “Critical Discourse Analysis” (CDA). The focus of CDA is on “uncovering injustice, inequality, taking sides with the powerless and suppressed” and making “mechanisms of manipulation, discrimination, demagogy, and propaganda explicit and transparent.” possible way of relating language to ideology is to propose that ideology and language are inextricably intertwined. From this perspective, language is always ideological, and ideology depends on the language. All language use involves ideology, and so ideology is ubiquitous – in our everyday encounters, as much as in the business of the struggle for power within and between the nation-states and social statuses. At the same time, ideology requires language. Its key characteristics – its power and pervasiveness, its mechanisms for continuity and for change – all come out of the inner organization of language. The two phenomena are homologous: they share the same evolutionary trajectory. To get a more robust portrait of the power and ideology, we need to examine its potential place in the structure, and consider how such structures pattern in terms of the functional elements which organize meanings in the clause. This is based on the belief that all grammatical, including syntactic, knowledge is stored mentally as constructions have become immensely popular. When the structure of the clause is taken into account, the power and ideology have a preference for Complement over Subject and Adjunct. The subject is a central interpersonal element in discourse: it is one of two elements that form the central interactive nub of a proposition. Conceptually, there are countless ways of construing a given event and linguistically, a variety of grammatical devices that are usually available as alternate means of coding a given conception, such as political crime and corruption. In the theory of construal, then, which, like transitivity in Halliday, makes options available, Cognitive Linguistics can offer a cognitive account of ideology in language, where ideology is made possible by the choices a language allows for representing the same material situation in different ways. The possibility of promoting alternative construals of the same reality means that any particular choice in representation is always ideologically constrained or motivated and indicates the perspective and interests of the text-producer.Keywords: power, ideology, court, discourse
Procedia PDF Downloads 1637891 Cyber Attacks Management in IoT Networks Using Deep Learning and Edge Computing
Authors: Asmaa El Harat, Toumi Hicham, Youssef Baddi
Abstract:
This survey delves into the complex realm of Internet of Things (IoT) security, highlighting the urgent need for effective cybersecurity measures as IoT devices become increasingly common. It explores a wide array of cyber threats targeting IoT devices and focuses on mitigating these attacks through the combined use of deep learning and machine learning algorithms, as well as edge and cloud computing paradigms. The survey starts with an overview of the IoT landscape and the various types of attacks that IoT devices face. It then reviews key machine learning and deep learning algorithms employed in IoT cybersecurity, providing a detailed comparison to assist in selecting the most suitable algorithms. Finally, the survey provides valuable insights for cybersecurity professionals and researchers aiming to enhance security in the intricate world of IoT.Keywords: internet of things (IoT), cybersecurity, machine learning, deep learning
Procedia PDF Downloads 327890 The Implantable MEMS Blood Pressure Sensor Model With Wireless Powering And Data Transmission
Authors: Vitaliy Petrov, Natalia Shusharina, Vitaliy Kasymov, Maksim Patrushev, Evgeny Bogdanov
Abstract:
The leading worldwide death reasons are ischemic heart disease and other cardiovascular illnesses. Generally, the common symptom is high blood pressure. Long-time blood pressure control is very important for the prophylaxis, correct diagnosis and timely therapy. Non-invasive methods which are based on Korotkoff sounds are impossible to apply often and for a long time. Implantable devices can combine longtime monitoring with high accuracy of measurements. The main purpose of this work is to create a real-time monitoring system for decreasing the death rate from cardiovascular diseases. These days implantable electronic devices began to play an important role in medicine. Usually implantable devices consist of a transmitter, powering which could be wireless with a special made battery and measurement circuit. Common problems in making implantable devices are short lifetime of the battery, big size and biocompatibility. In these work, blood pressure measure will be the focus because it’s one of the main symptoms of cardiovascular diseases. Our device will consist of three parts: the implantable pressure sensor, external transmitter and automated workstation in a hospital. The Implantable part of pressure sensors could be based on piezoresistive or capacitive technologies. Both sensors have some advantages and some limitations. The Developed circuit is based on a small capacitive sensor which is made of the technology of microelectromechanical systems (MEMS). The Capacitive sensor can provide high sensitivity, low power consumption and minimum hysteresis compared to the piezoresistive sensor. For this device, it was selected the oscillator-based circuit where frequency depends from the capacitance of sensor hence from capacitance one can calculate pressure. The external device (transmitter) used for wireless charging and signal transmission. Some implant devices for these applications are passive, the external device sends radio wave signal on internal LC circuit device. The external device gets reflected the signal from the implant and from a change of frequency is possible to calculate changing of capacitance and then blood pressure. However, this method has some disadvantages, such as the patient position dependence and static using. Developed implantable device doesn’t have these disadvantages and sends blood pressure data to the external part in real-time. The external device continuously sends information about blood pressure to hospital cloud service for analysis by a physician. Doctor’s automated workstation at the hospital also acts as a dashboard, which displays actual medical data of patients (which require attention) and stores it in cloud service. Usually, critical heart conditions occur few hours before heart attack but the device is able to send an alarm signal to the hospital for an early action of medical service. The system was tested with wireless charging and data transmission. These results can be used for ASIC design for MEMS pressure sensor.Keywords: MEMS sensor, RF power, wireless data, oscillator-based circuit
Procedia PDF Downloads 5897889 School as a Space of Power: A Foucauldian Critique
Authors: Yildirim Ortaoglan
Abstract:
The attempt to make thought school-like by fitting it into various frameworks with the institutionalization of it is almost simultaneous with philosophy itself. What once sprouted in the “academia” of old has institutionalized under the enlightenment's light, becoming the fundamental space reflecting the spirit of its age. However, the shift from the thinking temple where truth's knowledge was sought to functional spaces where power/power relations are constructed indicates a significant rupture in the meaning of school. Therefore, a genealogical inquiry into the meaning of the school can provide us with a path toward understanding how it should be approached in contemporary times. From this perspective, it is essential to highlight how power/power relations operate in the school in terms of disciplinary practices, temporal management, and spatial organization to construct a distinct subjectivation. Recognizing that the changing and evolving nature of education is related to the structure of space can be understood by revealing how disciplinary power and bio-power, two fundamental aspects of genealogical research, operate. In disciplinary power, the relationship of the subject with discipline, temporal management, and space is about improvement and normalization, while in biopower, it manifests in maximizing utility, increasing free time, and constructing spaces that seem more vital. These indicators not only facilitate the formation of students as a subjectivation but also enable the condition of the possibility of power/power relations. Because power is not applied to subjects but used by them for passage, and behind this lies the idea that the individual is already one of the components of power. As one of the components of power, in terms of subjectivation type, the student is one of the primary targets of power relations. Therefore, conducting a genealogical inquiry of the student as a type of subjectivation and the school as its living area from the philosophical foundations of education may offer a new opportunity for thinking about the contemporary crisis of thought. Within the framework of this possibility, our investigation will consider which aspects of the school and the student, brought together for educational purposes, can be thought of within and beyond power/power relations.Keywords: power, education, space, school, student, discipline
Procedia PDF Downloads 587888 Comparison of Corneal Curvature Measurements Conducted with Tomey AO-2000® and the Current Standard Biometer IOL Master®
Authors: Mohd Radzi Hilmi, Khairidzan Mohd Kamal, Che Azemin Mohd Zulfaezal, Ariffin Azrin Esmady
Abstract:
Purpose: Corneal curvature (CC) is an important anterior segment parameter. This study compared CC measurements conducted with two optical devices in phakic eyes. Methods: Sixty phakic eyes of 30 patients were enrolled in this study. CC was measured three times with the optical biometer and topography-keratometer Tomey AO-2000 (Tomey Corporation, Nagoya, Japan), then with the standard partial optical coherence interferometry (PCI) IOL Master (Carl Zeiss Meditec, Dublin, CA) and data were statistically analysed. Results: The measurements resulted in a mean CC of 43.86 ± 1.57 D with Tomey AO-2000 and 43.84 ± 1.55 D with IOL Master. Distribution of data is normal, and no significance difference in CC values was detected (P = 0.952) between the two devices. Correlation between CC measurements was highly significant (r = 0. 99; P < 0.0001). The mean difference of CC values between devices was 0.017 D and 95% limit of agreement was -0.088 to 0.12. Duration taken for measurements with the standard biometer IOL Master was longer (55.17 ± 2.24 seconds) than with Tomey AO-2000 (39.88 ± 2.38 seconds) in automatic mode. Duration of manual measurement with Tomey AO-2000 in manual mode was the shortest (28.57 ± 2.71 seconds). Conclusion: In phakic eyes, CC measured with Tomey AO-2000 and IOL Master showed similar values, and high correlation was observed between these two devices. This shows that both devices can be used interchangeably. Tomey AO-2000 is better in terms of faster to operate and has its own topography systems.Keywords: corneal topography, corneal curvature, IOL Master, Tomey AO2000
Procedia PDF Downloads 3877887 Acid Fuchsin Dye Based PMMA Film for Holographic Investigations
Authors: G. Vinitha, A. Ramalingam
Abstract:
In view of a possible application in optical data storage devices, diffraction grating efficiency of an organic dye, Acid Fuchsin doped in PMMA matrix was studied under excitation with CW diode pumped Nd: YAG laser at 532 nm. The open aperture Z-scan of dye doped polymer displayed saturable absorption and the closed aperture Z-scan of the samples exhibited negative nonlinearity. The diffraction efficiency of the grating is the ratio of the intensity of the first order diffracted power to the incident read beam power. The dye doped polymer films were found to be good media for recording. It is observed that the formation of gratings strongly depend on the concentration of dye in the polymer film, the intensity ratios of the writing beams and the angle between the writing beams. It has been found that efficient writing can be made at an angle of 20° and when the intensity ratio of the writing beams is unity.Keywords: diffraction efficiency, nonlinear optical material, saturable absorption, surface-relief-gratings
Procedia PDF Downloads 2997886 Shape Optimization of Header Pipes in Power Plants for Enhanced Efficiency and Environmental Sustainability
Authors: Ahmed Cherif Megri, HossamEldin ElSherif
Abstract:
In a power plant, the header pipe plays a pivotal role in optimizing the performance of diverse systems by serving as a central conduit for the collection and distribution of steam within the plant. This paper investigates the significance of header pipes within power plant setups, highlighting their critical influence on reliability, efficiency, and the performance of the power plant as a whole. The concept of shape optimization emerges as a crucial factor in power plant design and operation, with the potential to maximize performance while minimizing the use of materials. Shape optimization not only enhances efficiency but also contributes to reducing the environmental footprint of power plant installations. In this paper, we initially developed a methodology designed for optimizing header shapes with the primary goal of reducing the usage of costly new alloy materials and lowering the overall maintenance operation expenses. Secondly, we conducted a case study based on an authentic header sourced from an operational power plant.Keywords: shape optimization, header, power plant, inconel alloy, CFD, structural optimization
Procedia PDF Downloads 737885 Application of Molecular Materials in the Manufacture of Flexible and Organic Devices for Photovoltaic Applications
Authors: Mariana Gomez Gomez, Maria Elena Sanchez Vergara
Abstract:
Many sustainable approaches to generate electric energy have emerged in the last few decades; one of them is through solar cells. Yet, this also has the disadvantage of highly polluting inorganic semiconductor manufacturing processes. Therefore, the use of molecular semiconductors must be considered. In this work, allene compounds C24H26O4 and C24H26O5 were used as dopants to manufacture semiconductors films based on PbPc by high-vacuum evaporation technique. IR spectroscopy was carried out to determine the phase and any significant chemical changes which may occur during the thermal evaporation. According to UV-visible spectroscopy and Tauc’s model, the deposition process generated thin films with an activation energy range of 1.47 to 1.55 eV for direct transitions and 1.29 to 1.33 eV for indirect transitions. These values place the manufactured films within the range of low bandgap semiconductors. The flexible devices were manufactured: polyethylene terephthalate (PET), Indium tin oxide (ITO)/organic semiconductor/ Cubic Close Packed (CCP). The characterization of the devices was carried out by evaluating electrical conductivity using the four-probe collinear method. I-V curves were obtained under different lighting conditions at room temperature. OS1 (PbPc/C24H26O4) showed an Ohmic behavior, while OS2 (PbPc/C24H26O5) reached higher current values at lower voltages. The results obtained show that the semiconductors devices doped with allene compounds can be used in the manufacture of optoelectronic devices.Keywords: electrical properties, optical gap, phthalocyanine, thin film.
Procedia PDF Downloads 2497884 Analysis of Transformer by Gas and Moisture Sensor during Laboratory Time Monitoring
Authors: Miroslav Gutten, Daniel Korenciak, Milan Simko, Milan Chupac
Abstract:
Ensure the reliable and correct function of transformers is the main essence of on-line non-destructive diagnostic tool, which allows the accurately track of the status parameters. Devices for on-line diagnostics are very costly. However, there are devices, whose price is relatively low and when used correctly, they can be executed a complex diagnostics. One of these devices is sensor HYDRAN M2, which is used to detect the moisture and gas content in the insulation oil. Using the sensor HYDRAN M2 in combination with temperature, load measurement, and physicochemical analysis can be made the economically inexpensive diagnostic system, which use is not restricted to distribution transformers. This system was tested in educational laboratory environment at measured oil transformer 22/0.4 kV. From the conclusions referred in article is possible to determine, which kind of fault was occurred in the transformer and how was an impact on the temperature, evolution of gases and water content.Keywords: transformer, diagnostics, gas and moisture sensor, monitoring
Procedia PDF Downloads 3857883 Improving Fingerprinting-Based Localization System Using Generative AI
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 427882 Low-Power Digital Filters Design Using a Bypassing Technique
Authors: Thiago Brito Bezerra
Abstract:
This paper presents a novel approach to reduce power consumption of digital filters based on dynamic bypassing of partial products in their multipliers. The bypassing elements incorporated into the multiplier hardware eliminate redundant signal transitions, which appear within the carry-save adders when the partial product is zero. This technique reduces the power consumption by around 20%. The circuit implementation was made using the AMS 0.18 um technology. The bypassing technique applied to the circuits is outlined.Keywords: digital filter, low-power, bypassing technique, low-pass filter
Procedia PDF Downloads 3827881 Design of Incident Information System in IoT Virtualization Platform
Authors: Amon Olimov, Umarov Jamshid, Dae-Ho Kim, Chol-U Lee, Ryum-Duck Oh
Abstract:
This paper proposes IoT virtualization platform based incident information system. IoT information based environment is the platform that was developed for the purpose of collecting a variety of data by managing regionally scattered IoT devices easily and conveniently in addition to analyzing data collected from roads. Moreover, this paper configured the platform for the purpose of providing incident information based on sensed data. It also provides the same input/output interface as UNIX and Linux by means of matching IoT devices with the directory of file system and also the files. In addition, it has a variety of approaches as to the devices. Thus, it can be applied to not only incident information but also other platforms. This paper proposes the incident information system that identifies and provides various data in real time as to urgent matters on roads based on the existing USN/M2M and IoT visualization platform.Keywords: incident information system, IoT, virtualization platform, USN, M2M
Procedia PDF Downloads 3517880 The Study of Climate Change Effects on the Performance of Thermal Power Plants in Iran
Authors: Masoud Soltani Hosseini, Fereshteh Rahmani, Mohammad Tajik Mansouri, Ali Zolghadr
Abstract:
Climate change is accompanied with ambient temperature increase and water accessibility limitation. The main objective of this paper is to investigate the effects of climate change on thermal power plants including gas turbines, steam and combined cycle power plants in Iran. For this purpose, the ambient temperature increase and water accessibility will be analyzed and their effects on power output and efficiency of thermal power plants will be determined. According to the results, the ambient temperature has high effect on steam power plants with indirect cooling system (Heller). The efficiency of this type of power plants decreases by 0.55 percent per 1oC ambient temperature increase. This amount is 0.52 and 0.2 percent for once-through and wet cooling systems, respectively. The decrease in power output covers a range of 0.2% to 0.65% for steam power plant with wet cooling system and gas turbines per 1oC air temperature increase. Based on the thermal power plants distribution in Iran and different scenarios of climate change, the total amount of power output decrease falls between 413 and 1661 MW due to ambient temperature increase. Another limitation incurred by climate change is water accessibility. In optimistic scenario, the power output of steam plants decreases by 1450 MW in dry and hot climate areas throughout next decades. The remaining scenarios indicate that the amount of decrease in power output would be by 4152 MW in highlands and cold climate. Therefore, it is necessary to consider appropriate solutions to overcome these limitations. Considering all the climate change effects together, the actual power output falls in range of 2465 and 7294 MW and efficiency loss covers the range of 0.12 to .56 % in different scenarios.Keywords: climate, change, thermal, power plants
Procedia PDF Downloads 827879 Solar Power Generation in a Mining Town: A Case Study for Australia
Authors: Ryan Chalk, G. M. Shafiullah
Abstract:
Climate change is a pertinent issue facing governments and societies around the world. The industrial revolution has resulted in a steady increase in the average global temperature. The mining and energy production industries have been significant contributors to this change prompting government to intervene by promoting low emission technology within these sectors. This paper initially reviews the energy problem in Australia and the mining sector with a focus on the energy requirements and production methods utilised in Western Australia (WA). Renewable energy in the form of utility-scale solar photovoltaics (PV) provides a solution to these problems by providing emission-free energy which can be used to supplement the existing natural gas turbines in operation at the proposed site. This research presents a custom renewable solution for the mining site considering the specific township network, local weather conditions, and seasonal load profiles. A summary of the required PV output is presented to supply slightly over 50% of the towns power requirements during the peak (summer) period, resulting in close to full coverage in the trench (winter) period. Dig Silent Power Factory Software has been used to simulate the characteristics of the existing infrastructure and produces results of integrating PV. Large scale PV penetration in the network introduce technical challenges, that includes; voltage deviation, increased harmonic distortion, increased available fault current and power factor. Results also show that cloud cover has a dramatic and unpredictable effect on the output of a PV system. The preliminary analyses conclude that mitigation strategies are needed to overcome voltage deviations, unacceptable levels of harmonics, excessive fault current and low power factor. Mitigation strategies are proposed to control these issues predominantly through the use of high quality, made for purpose inverters. Results show that use of inverters with harmonic filtering reduces the level of harmonic injections to an acceptable level according to Australian standards. Furthermore, the configuration of inverters to supply active and reactive power assist in mitigating low power factor problems. Use of FACTS devices; SVC and STATCOM also reduces the harmonics and improve the power factor of the network, and finally, energy storage helps to smooth the power supply.Keywords: climate change, mitigation strategies, photovoltaic (PV), power quality
Procedia PDF Downloads 1667878 Fault Tolerant (n,k)-star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems
Authors: Ning Gong, Michael Korostelev, Qiangguo Ren, Li Bai, Saroj K. Biswas, Frank Ferrese
Abstract:
This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery.Keywords: (n, k)-star topology, fault tolerance, conditional diagnosability, multi-agent system, automated power system
Procedia PDF Downloads 5127877 Fault Tolerant (n, k)-Star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems
Authors: Ning Gong, Michael Korostelev, Qiangguo Ren, Li Bai, Saroj Biswas, Frank Ferrese
Abstract:
This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery.Keywords: (n, k)-star topology, fault tolerance, conditional diagnosability, multi-agent system, automated power system
Procedia PDF Downloads 4657876 Seismic Response of Viscoelastic Dampers for Steel Structures
Authors: Ali Khoshraftar, S. A. Hashemi
Abstract:
This paper is focused on the advantages of Viscoelastic Dampers (VED) to be used as energy-absorbing devices in buildings. The properties of VED are briefly described. The analytical studies of the model structures exhibiting the structural response reduction due to these viscoelastic devices are presented. Computer simulation of the damped response of a multi-storey steel frame structure shows significant reduction in floor displacement levels.Keywords: dampers, seismic evaluation, steel frames, viscoelastic
Procedia PDF Downloads 4847875 Power Control in Solar Battery Charging Station Using Fuzzy Decision Support System
Authors: Krishnan Manickavasagam, Manikandan Shanmugam
Abstract:
Clean and abundant renewable energy sources (RES) such as solar energy is seen as the best solution to replace conventional energy source. Unpredictable power generation is a major issue in the penetration of solar energy, as power generated is governed by the irradiance received. Controlling the power generated from solar PV (SPV) panels to battery and load is a challenging task. In this paper, power flow control from SPV to load and energy storage device (ESD) is controlled by a fuzzy decision support system (FDSS) on the availability of solar irradiation. The results show that FDSS implemented with the energy management system (EMS) is capable of managing power within the area, and if excess power is available, then shared with the neighboring area.Keywords: renewable energy sources, fuzzy decision support system, solar photovoltaic, energy storage device, energy management system
Procedia PDF Downloads 1007874 Design and Control Algorithms for Power Electronic Converters for EV Applications
Authors: Ilya Kavalchuk, Mehdi Seyedmahmoudian, Ben Horan, Aman Than Oo, Alex Stojcevski
Abstract:
The power electronic components within Electric Vehicles (EV) need to operate in several important modes. Some modes directly influence safety, while others influence vehicle performance. Given the variety of functions and operational modes required of the power electronics, it needs to meet efficiency requirements to minimize power losses. Another challenge in the control and construction of such systems is the ability to support bidirectional power flow. This paper considers the construction, operation, and feasibility of available converters for electric vehicles with feasible configurations of electrical buses and loads. This paper describes logic and control signals for the converters for different operations conditions based on the efficiency and energy usage bases.Keywords: electric vehicles, electrical machines control, power electronics, powerflow regulations
Procedia PDF Downloads 5607873 Study of Mechanical Properties of Large Scale Flexible Silicon Solar Modules on the Various Substrates
Authors: M. Maleczek, Leszek Bogdan, Kazimierz Drabczyk, Agnieszka Iwan
Abstract:
Crystalline silicon (Si) solar cells are the main product in the market among the various photovoltaic technologies concerning such advantages as: material richness, high carrier mobilities, broad spectral absorption range and established technology. However, photovoltaic technology on the stiff substrates are heavier, more fragile and less cost-effective than devices on the flexible substrates to be applied in special applications. The main goal of our work was to incorporate silicon solar cells into various fabric, without any change of the electrical and mechanical parameters of devices. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management. In our work, the polyamide or polyester fabrics were used as a flexible substrate in the created devices. Applied fabrics differ in tensile and tear strength. All investigated polyamide fabrics are resistant to weathering and UV, while polyester ones is resistant to ozone, water and ageing. The examined fabrics are tight at 100 cm water per 2 hours. In our work, commercial silicon solar cells with the size 156 × 156 mm were cut into nine parts (called single solar cells) by diamond saw and laser. Gap and edge after cutting of solar cells were checked by transmission electron microscope (TEM) to study morphology and quality of the prepared single solar cells. Modules with the size of 160 × 70 cm (containing about 80 single solar cells) were created and investigated by electrical and mechanical methods. Weight of constructed module is about 1.9 kg. Three types of solar cell architectures such as: -fabric/EVA/Si solar cell/EVA/film for lamination, -backsheet PET/EVA/Si solar cell/EVA/film for lamination, -fabric/EVA/Si solar cell/EVA/tempered glass, were investigated taking into consideration type of fabric and lamination process together with the size of solar cells. In investigated devices EVA, it is ethylene-vinyl acetate, while PET - polyethylene terephthalate. Depend on the lamination process and compatibility of textile with solar cell an efficiency of investigated flexible silicon solar cells was in the range of 9.44-16.64 %. Multi folding and unfolding of flexible module has no impact on its efficiency as was detected by Instron equipment. Power (P) of constructed solar module is 30 W, while voltage about 36 V. Finally, solar panel contains five modules with the polyamide fabric and tempered glass will be produced commercially for different applications (dual use).Keywords: flexible devices, mechanical properties, silicon solar cells, textiles
Procedia PDF Downloads 1737872 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 477871 A Low Phase Noise CMOS LC Oscillator with Tail Current-Shaping
Authors: Amir Mahdavi
Abstract:
In this paper, a circuit topology of voltage-controlled oscillators (VCO) which is suitable for ultra-low-phase noise operations is introduced. To do so, a new low phase noise cross-coupled oscillator by using the general topology of cross-coupled oscillator and adding a differential stage for tail current shaping is designed. In addition, a tail current shaping technique to improve phase noise in differential LC VCOs is presented. The tail current becomes large when the oscillator output voltage arrives at the maximum or minimum value and when the sensitivity of the output phase to the noise is the smallest. Also, the tail current becomes small when the phase noise sensitivity is large. The proposed circuit does not use extra power and extra noisy active devices. Furthermore, this topology occupies small area. Simulation results show the improvement in phase noise by 2.5dB under the same conditions and at the carrier frequency of 1 GHz for GSM applications. The power consumption of the proposed circuit is 2.44 mW and the figure of merit (FOM) with -192.2 dBc/Hz is achieved for the new oscillator.Keywords: LC oscillator, low phase noise, current shaping, diff mode
Procedia PDF Downloads 600