Search results for: information centric network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14692

Search results for: information centric network

10882 Remote Sensing and GIS Integration for Paddy Production Estimation in Bali Province, Indonesia

Authors: Sarono, Hamim Zaky Hadibasyir, dan Ridho Kurniawan

Abstract:

Estimation of paddy production is one of the areas that can be examined using the techniques of remote sensing and geographic information systems (GIS) in the field of agriculture. The purpose of this research is to know the amount of the paddy production estimation and how remote sensing and geographic information systems (GIS) are able to perform analysis of paddy production estimation in Tegalallang and Payangan Sub district, Bali Province, Indonesia. The method used is the method of land suitability. This method associates a physical parameters which are to be embodied in the smallest unit of a mapping that represents a mapping unit in a particular field and connecting with its field productivity. Analysis of estimated production using standard land suitability from FAO using matching technique. The parameters used to create the land unit is slope (FAO), climate classification (Oldeman), landform (Prapto Suharsono), and soil type. Land use map consist of paddy and non paddy field information obtained from Geo-eye 1 imagery using visual interpretation technique. Landsat image of the Data used for the interpretation of the landform, the classification of the slopes obtained from high point identification with method of interpolation spline, whereas climate data, soil, use secondary data originating from institutions-related institutions. The results of this research indicate Tegallalang and Payangan Districts in known wetland suitability consists of S1 (very suitable) covering an area of 2884,7 ha with the productivity of 5 tons/ha and S2 (suitable) covering an area of 482,9 ha with the productivity of 3 tons/ha. The sum of paddy production estimation as a results in both districts are 31.744, 3 tons in one year.

Keywords: production estimation, paddy, remote sensing, geography information system, land suitability

Procedia PDF Downloads 342
10881 Use of Machine Learning in Data Quality Assessment

Authors: Bruno Pinto Vieira, Marco Antonio Calijorne Soares, Armando Sérgio de Aguiar Filho

Abstract:

Nowadays, a massive amount of information has been produced by different data sources, including mobile devices and transactional systems. In this scenario, concerns arise on how to maintain or establish data quality, which is now treated as a product to be defined, measured, analyzed, and improved to meet consumers' needs, which is the one who uses these data in decision making and companies strategies. Information that reaches low levels of quality can lead to issues that can consume time and money, such as missed business opportunities, inadequate decisions, and bad risk management actions. The step of selecting, identifying, evaluating, and selecting data sources with significant quality according to the need has become a costly task for users since the sources do not provide information about their quality. Traditional data quality control methods are based on user experience or business rules limiting performance and slowing down the process with less than desirable accuracy. Using advanced machine learning algorithms, it is possible to take advantage of computational resources to overcome challenges and add value to companies and users. In this study, machine learning is applied to data quality analysis on different datasets, seeking to compare the performance of the techniques according to the dimensions of quality assessment. As a result, we could create a ranking of approaches used, besides a system that is able to carry out automatically, data quality assessment.

Keywords: machine learning, data quality, quality dimension, quality assessment

Procedia PDF Downloads 148
10880 Space Telemetry Anomaly Detection Based On Statistical PCA Algorithm

Authors: Bassem Nassar, Wessam Hussein, Medhat Mokhtar

Abstract:

The crucial concern of satellite operations is to ensure the health and safety of satellites. The worst case in this perspective is probably the loss of a mission but the more common interruption of satellite functionality can result in compromised mission objectives. All the data acquiring from the spacecraft are known as Telemetry (TM), which contains the wealth information related to the health of all its subsystems. Each single item of information is contained in a telemetry parameter, which represents a time-variant property (i.e. a status or a measurement) to be checked. As a consequence, there is a continuous improvement of TM monitoring systems in order to reduce the time required to respond to changes in a satellite's state of health. A fast conception of the current state of the satellite is thus very important in order to respond to occurring failures. Statistical multivariate latent techniques are one of the vital learning tools that are used to tackle the aforementioned problem coherently. Information extraction from such rich data sources using advanced statistical methodologies is a challenging task due to the massive volume of data. To solve this problem, in this paper, we present a proposed unsupervised learning algorithm based on Principle Component Analysis (PCA) technique. The algorithm is particularly applied on an actual remote sensing spacecraft. Data from the Attitude Determination and Control System (ADCS) was acquired under two operation conditions: normal and faulty states. The models were built and tested under these conditions and the results shows that the algorithm could successfully differentiate between these operations conditions. Furthermore, the algorithm provides competent information in prediction as well as adding more insight and physical interpretation to the ADCS operation.

Keywords: space telemetry monitoring, multivariate analysis, PCA algorithm, space operations

Procedia PDF Downloads 415
10879 Exploring the Dark Side of IT Security: Delphi Study on Business’ Influencing Factors

Authors: Tizian Matschak, Ilja Nastjuk, Stephan Kühnel, Simon Trang

Abstract:

We argue that besides well-known primary effects of information security controls (ISCs), namely confidentiality, integrity, and availability, ISCs can also have secondary effects. For example, while IT can add business value through impacts on business processes, ISCs can be a barrier and distort the relationship between IT and organizational value through the impact on business processes. By applying the Delphi method with 28 experts, we derived 27 business process influence dimensions of ISCs. Defining and understanding these mechanisms can change the common understanding of the cost-benefit valuation of IT security investments and support managers' effective and efficient decision-making.

Keywords: business process dimensions, dark side of information security, Delphi study, IT security controls

Procedia PDF Downloads 112
10878 The Interleaving Effect of Subject Matter and Perceptual Modality on Students’ Attention and Learning: A Portable EEG Study

Authors: Wen Chen

Abstract:

To investigate the interleaving effect of subject matter (mathematics vs. history) and perceptual modality (visual vs. auditory materials) on student’s attention and learning outcomes, the present study collected self-reported data on subjective cognitive load (SCL) and attention level, EEG data, and learning outcomes from micro-lectures. Eighty-one 7th grade students were randomly assigned to four learning conditions: blocked (by subject matter) micro-lectures with auditory textual information (B-A condition), blocked (by subject matter) micro-lectures with visual textual information (B-V condition), interleaved (by subject matter) micro-lectures with auditory textual information (I-A condition), and interleaved micro-lectures by both perceptual modality and subject matter (I-all condition). The results showed that although interleaved conditions may show advantages in certain indices, the I-all condition showed the best overall outcomes (best performance, low SCL, and high attention). This study suggests that interleaving by both subject matter and perceptual modality should be preferred in scheduling and planning classes.

Keywords: cognitive load, interleaving effect, micro-lectures, sustained attention

Procedia PDF Downloads 137
10877 Artificial Neural Networks in Environmental Psychology: Application in Architectural Projects

Authors: Diego De Almeida Pereira, Diana Borchenko

Abstract:

Artificial neural networks are used for many applications as they are able to learn complex nonlinear relationships between input and output data. As the number of neurons and layers in a neural network increases, it is possible to represent more complex behaviors. The present study proposes that artificial neural networks are a valuable tool for architecture and engineering professionals concerned with understanding how buildings influence human and social well-being based on theories of environmental psychology.

Keywords: environmental psychology, architecture, neural networks, human and social well-being

Procedia PDF Downloads 496
10876 Determinants of Successful Accounting Information System Outsourcing for the Egyptian Small and Medium Enterprises: An Empirical Study

Authors: Maram Elkady

Abstract:

Purpose: The purpose behind this study is to determine the impact of some factors on achieving successful accounting information systems (AIS) outsourcing in Egypt, taking into account two factors: the selection of an effective accounting service provider and the quality relationships between the client firm and the accounting service provider. The researcher measured outsourcing success through the perceived benefits, including (strategic, technological, and economic benefits). Design/Methodology/Approach: A survey was carried out by means of questionnaires answered by 152 small and medium Egyptian firms outsourcing their accounting activities. The researcher targeted the personnel in the client firms who were in direct contact with the accounting outsourcer. The hypotheses were tested through multiple regression analysis using SPSS 24 and AMOS 22. Findings: Building a quality relationship with the provider is found to have more impact than the effective selection of the AIS provider on the success of the AIS outsourcing process. Originality/Value: The researcher found that some proxies of each success determinant can be more influential than others based on type of benefits perceived from AIS outsourcing (strategic, technological, and economic).

Keywords: accounting information system, AIS, outsourcing, successful outsourcing, AIS service provider selection, relationship with the accounting service provider

Procedia PDF Downloads 159
10875 Impact of Customer Experience Quality on Loyalty of Mobile and Fixed Broadband Services: Case Study of Telecom Egypt Group

Authors: Nawal Alawad, Passent Ibrahim Tantawi, Mohamed Abdel Salam Ragheb

Abstract:

Providing customers with quality experiences has been confirmed to be a sustainable, competitive advantage with a distinct financial impact for companies. The success of service providers now relies on their ability to provide customer-centric services. The importance of perceived service quality and customer experience is widely recognized. The focus of this research is in the area of mobile and fixed broadband services. This study is of dual importance both academically and practically. Academically, this research applies a new model investigating the impact of customer experience quality on loyalty based on modifying the multiple-item scale for measuring customers’ service experience in a new area and did not depend on the traditional models. The integrated scale embraces four dimensions: service experience, outcome focus, moments of truth and peace of mind. In addition, it gives a scientific explanation for this relationship so this research fill the gap in such relations in which no one correlate or give explanations for these relations before using such integrated model and this is the first time to apply such modified and integrated new model in telecom field. Practically, this research gives insights to marketers and practitioners to improve customer loyalty through evolving the experience quality of broadband customers which is interpreted to suggested outcomes: purchase, commitment, repeat purchase and word-of-mouth, this approach is one of the emerging topics in service marketing. Data were collected through 412 questionnaires and analyzed by using structural equation modeling.Findings revealed that both outcome focus and moments of truth have a significant impact on loyalty while both service experience and peace of mind have insignificant impact on loyalty.In addition, it was found that 72% of the variation occurring in loyalty is explained by the model. The researcher also measured the net prompters score and gave explanation for the results. Furthermore, assessed customer’s priorities of broadband services. The researcher recommends that the findings of this research will extend to be considered in the future plans of Telecom Egypt Group. In addition, to be applied in the same industry especially in the developing countries that have the same circumstances with similar service settings. This research is a positive contribution in service marketing, particularly in telecom industry for making marketing more reliable as managers can relate investments in service experience directly with the performance closest to income for instance, repurchasing behavior, positive word of mouth and, commitment. Finally, the researcher recommends that future studies should consider this model to explain significant marketing outcomes such as share of wallet and ultimately profitability.

Keywords: broadband services, customer experience quality, loyalty, net promoters score

Procedia PDF Downloads 267
10874 Challenges for Interface Designers in Designing Sensor Dashboards in the Context of Industry 4.0

Authors: Naveen Kumar, Shyambihari Prajapati

Abstract:

Industry 4.0 is the fourth industrial revolution that focuses on interconnectivity of machine to machine, human to machine and human to human via Internet of Things (IoT). Technologies of industry 4.0 facilitate communication between human and machine through IoT and forms Cyber-Physical Production System (CPPS). In CPPS, multiple shop floors sensor data are connected through IoT and displayed through sensor dashboard to the operator. These sensor dashboards have enormous amount of information to be presented which becomes complex for operators to perform monitoring, controlling and interpretation tasks. Designing handheld sensor dashboards for supervision task will become a challenge for the interface designers. This paper reports emerging technologies of industry 4.0, changing context of increasing information complexity in consecutive industrial revolutions and upcoming design challenges for interface designers in context of Industry 4.0. Authors conclude that information complexity of sensor dashboards design has increased with consecutive industrial revolutions and designs of sensor dashboard causes cognitive load on users. Designing such complex dashboards interfaces in Industry 4.0 context will become main challenges for the interface designers.

Keywords: Industry4.0, sensor dashboard design, cyber-physical production system, Interface designer

Procedia PDF Downloads 129
10873 The Layout Analysis of Handwriting Characters and the Fusion of Multi-style Ancient Books’ Background

Authors: Yaolin Tian, Shanxiong Chen, Fujia Zhao, Xiaoyu Lin, Hailing Xiong

Abstract:

Ancient books are significant culture inheritors and their background textures convey the potential history information. However, multi-style texture recovery of ancient books has received little attention. Restricted by insufficient ancient textures and complex handling process, the generation of ancient textures confronts with new challenges. For instance, training without sufficient data usually brings about overfitting or mode collapse, so some of the outputs are prone to be fake. Recently, image generation and style transfer based on deep learning are widely applied in computer vision. Breakthroughs within the field make it possible to conduct research upon multi-style texture recovery of ancient books. Under the circumstances, we proposed a network of layout analysis and image fusion system. Firstly, we trained models by using Deep Convolution Generative against Networks (DCGAN) to synthesize multi-style ancient textures; then, we analyzed layouts based on the Position Rearrangement (PR) algorithm that we proposed to adjust the layout structure of foreground content; at last, we realized our goal by fusing rearranged foreground texts and generated background. In experiments, diversified samples such as ancient Yi, Jurchen, Seal were selected as our training sets. Then, the performances of different fine-turning models were gradually improved by adjusting DCGAN model in parameters as well as structures. In order to evaluate the results scientifically, cross entropy loss function and Fréchet Inception Distance (FID) are selected to be our assessment criteria. Eventually, we got model M8 with lowest FID score. Compared with DCGAN model proposed by Radford at el., the FID score of M8 improved by 19.26%, enhancing the quality of the synthetic images profoundly.

Keywords: deep learning, image fusion, image generation, layout analysis

Procedia PDF Downloads 157
10872 Diversity in the Community - The Disability Perspective

Authors: Sarah Reker, Christiane H. Kellner

Abstract:

From the perspective of people with disabilities, inequalities can also emerge from spatial segregation, the lack of social contacts or limited economic resources. In order to reduce or even eliminate these disadvantages and increase general well-being, community-based participation as well as decentralisation efforts within exclusively residential homes is essential. Therefore, the new research project “Index for participation development and quality of life for persons with disabilities”(TeLe-Index, 2014-2016), which is anchored at the Technische Universität München in Munich and at a large residential complex and service provider for persons with disabilities in the outskirts of Munich aims to assist the development of community-based living environments. People with disabilities should be able to participate in social life beyond the confines of the institution. Since a diverse society is a society in which different individual needs and wishes can emerge and be catered to, the ultimate goal of the project is to create an environment for all citizens–regardless of disability, age or ethnic background–that accommodates their daily activities and requirements. The UN-Convention on the Rights of Persons with Disabilities, which Germany also ratified, postulates the necessity of user-centered design, especially when it comes to evaluating the individual needs and wishes of all citizens. Therefore, a multidimensional approach is required. Based on this insight, the structure of the town-like center will be remodeled to open up the community to all people. This strategy should lead to more equal opportunities and open the way for a much more diverse community. Therefore, macro-level research questions were inspired by quality of life theory and were formulated as follows for different dimensions: •The user dimension: what needs and necessities can we identify? Are needs person-related? Are there any options to choose from? What type of quality of life can we identify? The economic dimension: what resources (both material and staff-related) are available in the region? (How) are they used? What costs (can) arise and what effects do they entail? •The environment dimension: what “environmental factors” such as access (mobility and absence of barriers) prove beneficial or impedimental? In this context, we have provided academic supervision and support for three projects (the construction of a new school, inclusive housing for children and teenagers with disabilities and the professionalization of employees with person-centered thinking). Since we cannot present all the issues of the umbrella-project within the conference framework, we will be focusing on one project more in-depth, namely “Outpatient Housing Options for Children and Teenagers with Disabilities”. The insights we have obtained until now will enable us to present the intermediary results of our evaluation. The most central questions pertaining to this part of the research were the following: •How have the existing network relations been designed? •What meaning (or significance) does the existing service offers and structures have for the everyday life of an external residential group? These issues underpinned the environmental analyses as well as the qualitative guided interviews and qualitative network analyses we carried out.

Keywords: decentralisation, environmental analyses, outpatient housing options for children and teenagers with disabilities, qualitative network analyses

Procedia PDF Downloads 365
10871 Integrated Safety Net Program for High-Risk Families in New Taipei City

Authors: Peifang Hsieh

Abstract:

New Taipei city faces increasing number of migrant families, in which the needs of children are sometimes neglected due to insufficient support from communities. Moreover, the traditional mindset of disengagement discourages citizens from preemptively identifying families in need in their communities, resulting in delay of prompt intervention from authorities concerned. To safeguard these vulnerable families, New Taipei city develops the 'Integrated Safety-Net Program for High-Risk Families' from 2011 by implementing the following measures: (A) New attitude and action: Instead of passively receiving reported case of high-risk families, the program takes proactive and preemptive approach to detect and respond at early stage, so the cases are prevented from worsening. In addition, cross-departmental integration mechanism is established to meet multiple needs of high-risk families. The children number added to the government care network is greatly increased to over 10,000, which is around 4.4 times the original number before the program. (B) New service points: 2000 city-wide convenience stores are added as service stations so that children in less privileged families can go to any of 24-hour convenience stores across the city to pick up free meals. This greatly increases the approachability to high-risk families. Moreover, the social welfare institutes will be notified with information left in convenience stores by children and follow up with further assistance, greatly enhancing chances of less privileged families being identified. (C) New Key Figures: Mobilize community officers and volunteers to detect and offer on-site assistance. Volunteer organizations within communities are connected to report and offer follow-up services in a more active manner. In total, from 2011 to 2015, 54,789 cases are identified through active care, benefiting 82,124 children. In addition, 87.49% family-cases in the program receiving comprehensive social assistance are no longer at high risk.

Keywords: cross department, high-risk families, public-private partnership, integrated safety net

Procedia PDF Downloads 299
10870 The Novelty of Mobile Money Solution to Ghana’S Cashless Future: Opportunities, Challenges and Way Forward

Authors: Julius Y Asamoah

Abstract:

Mobile money has seen faster adoption in the decade. Its emergence serves as an essential driver of financial inclusion and an innovative financial service delivery channel, especially to the unbanked population. The rising importance of mobile money services has caught policymakers and regulators' attention, seeking to understand the many issues emerging from this context. At the same time, it is unlocking the potential of knowledge of this new technology. Regulatory responses and support are essential, requiring significant changes to current regulatory practices in Ghana. The article aims to answer the following research questions: "What risk does an unregulated mobile money service pose to consumers and the financial system? "What factors stimulate and hinder the introduction of mobile payments in developing countries? The sample size used was 250 respondents selected from the study area. The study has adopted an analytical approach comprising a combination of qualitative and quantitative data collection methods. Actor-network theory (ANT) is used as an interpretive lens to analyse this process. ANT helps analyse how actors form alliances and enrol other actors, including non-human actors (i.e. technology), to secure their interests. The study revealed that government regulatory policies impact mobile money as critical to mobile money services in developing countries. Regulatory environment should balance the needs of advancing access to finance with the financial system's stability and draw extensively from Kenya's work as the best strategies for the system's players. Thus, regulators need to address issues related to the enhancement of supportive regulatory frameworks. It recommended that the government involve various stakeholders, such as mobile phone operators. Moreover, the national regulatory authority creates a regulatory environment that promotes fair practices and competition to raise revenues to support a business-enabling environment's key pillars as infrastructure.

Keywords: actor-network theory (ANT), cashless future, Developing countries, Ghana, Mobile Money

Procedia PDF Downloads 138
10869 Virtual Science Hub: An Open Source Platform to Enrich Science Teaching

Authors: Enrique Barra, Aldo Gordillo, Juan Quemada

Abstract:

This paper presents the Virtual Science Hub platform. It is an open source platform that combines a social network, an e-learning authoring tool, a video conference service and a learning object repository for science teaching enrichment. These four main functionalities fit very well together. The platform was released in April 2012 and since then it has not stopped growing. Finally we present the results of the surveys conducted and the statistics gathered to validate this approach.

Keywords: e-learning, platform, authoring tool, science teaching, educational sciences

Procedia PDF Downloads 397
10868 COVID-19 Case: A Definition of Infodemia through Online Italian Journalism

Authors: Concetta Papapicco

Abstract:

The spreading of new Coronavirus (COVID-19) in addition to becoming a global phenomenon, following the declaration of a pandemic state, has generated excessive access to information, sometimes not thoroughly screened, which makes it difficult to navigate a given topic because of the difficulty of finding reliable sources. As a result, there is a high level of contagion, understood as the spread of the virus, but also as the spread of information in a viral and harmful way, which prompted the World Health Organization to coin the term Infodemia to give 'a name' the phenomenon of excessive information. With neologism 'Infodemia', the World Health Organization (OMS) wanted, in these days when fear of the coronavirus is raging, point out that perhaps the greatest danger of global society in the age of social media. This phenomenon is the distortion of reality in the rumble of echoes and comments of the global community on real or often invented facts. The general purpose of the exploratory study is to investigate how the coronavirus situation is described from journalistic communication. Starting from La Repubblica online, as a reference journalistic magazine, as a specific objective, the research aims to understand the way in which journalistic communication describes the phenomenon of the COVID-19 virus spread, the spread of contagion and restrictive measures of social distancing in the Italian context. The study starts from the hypothesis that if the circulation of information helps to create a social representation of the phenomenon, the excessive accessibility to sources of information (Infodemia) can be modulated by the 'how' the phenomenon is described by the journalists. The methodology proposed, in fact, in the exploratory study is a quanti-qualitative (mixed) method. A Content Analysis with the SketchEngine software is carried out first. In support of the Content Analysis, a Diatextual Analysis was carried out. The Diatextual Analysis is a qualitative analysis useful to detect in the analyzed texts, that is the online articles of La Repubblica on the topic of coronavirus, Subjectivity, Argomentativity, and Mode. The research focuses mainly on 'Mode' or 'How' are the events related to coronavirus in the online articles of La Repubblica about COVID-19 phenomenon. The results show the presence of the contrast vision about COVID-19 situation in Italy.

Keywords: coronavirus, Italian infodemia, La Republica online, mix method

Procedia PDF Downloads 122
10867 Identification of Groundwater Potential Zones Using Geographic Information System and Multi-Criteria Decision Analysis: A Case Study in Bagmati River Basin

Authors: Hritik Bhattarai, Vivek Dumre, Ananya Neupane, Poonam Koirala, Anjali Singh

Abstract:

The availability of clean and reliable groundwater is essential for the sustainment of human and environmental health. Groundwater is a crucial resource that contributes significantly to the total annual supply. However, over-exploitation has depleted groundwater availability considerably and led to some land subsidence. Determining the potential zone of groundwater is vital for protecting water quality and managing groundwater systems. Groundwater potential zones are marked with the assistance of Geographic Information System techniques. During the study, a standard methodology was proposed to determine groundwater potential using an integration of GIS and AHP techniques. When choosing the prospective groundwater zone, accurate information was generated to get parameters such as geology, slope, soil, temperature, rainfall, drainage density, and lineament density. However, identifying and mapping potential groundwater zones remains challenging due to aquifer systems' complex and dynamic nature. Then, ArcGIS was incorporated with a weighted overlay, and appropriate ranks were assigned to each parameter group. Through data analysis, MCDA was applied to weigh and prioritize the different parameters based on their relative impact on groundwater potential. There were three probable groundwater zones: low potential, moderate potential, and high potential. Our analysis showed that the central and lower parts of the Bagmati River Basin have the highest potential, i.e., 7.20% of the total area. In contrast, the northern and eastern parts have lower potential. The identified potential zones can be used to guide future groundwater exploration and management strategies in the region.

Keywords: groundwater, geographic information system, analytic hierarchy processes, multi-criteria decision analysis, Bagmati

Procedia PDF Downloads 105
10866 The Dilemma of Translanguaging Pedagogy in a Multilingual University in South Africa

Authors: Zakhile Somlata

Abstract:

In the context of international linguistic and cultural diversity, all languages can be used for all purposes. Africa in general and South Africa, in particular, is not an exception to multilingual and multicultural society. The multilingual and multicultural nature of South African society has a direct bearing to the heterogeneity of South African Universities in general. Universities as the centers of research, innovation, and transformation of the entire society should be at the forefront in leading multilingualism. The universities in South Africa had been using English and to a certain extent Afrikaans as the only academic languages during colonialism and apartheid regime. The democratic breakthrough of 1994 brought linguistic relief in South Africa. The Constitution of the Republic of South Africa recognizes 11 official languages that should enjoy parity of esteem for the realization of multilingualism. The elevation of the nine previously marginalized indigenous African languages as academic languages in higher education is central to multilingualism. It is high time that Afrocentric model instead of Eurocentric model should be the one which underpins education system in South Africa at all levels. Almost all South African universities have their language policies that seek to promote access and success of students through multilingualism, but the main dilemma is the implementation of language policies. This study is significant to respond to two objectives: (i) To evaluate how selected institutions use language policies for accessibility and success of students. (ii) To study how selected universities integrate African languages for both academic and administrative purposes. This paper reflects the language policy practices in one selected University of Technology (UoT) in South Africa. The UoT has its own language policy which depicts linguistic diversity of the institution and its commitment to promote multilingualism. Translanguaging pedagogy which accommodates minority languages' usage in the teaching and learning process plays a pivotal role in promoting multilingualism. This research paper employs mixed methods (quantitative and qualitative research) approach. Qualitative data has been collected from the key informants (insiders and experts), while quantitative data has been collected from a cohort of third-year students. A mixed methods approach with its convergent parallel design allows the data to be collected separately, analysed separately but with the comparison of the results. Language development initiatives have been discussed within the framework of language policy and policy implementation strategies. Theoretically, this paper is rooted in language as a problem, language as a right and language as a resource. The findings demonstrate that despite being a multilingual institution, there is a perpetuation of marginalization of African languages to be used as academic languages. Findings further display the hegemony of English. The promotion of status quo compromises the promotion of multilingualism, Africanization of Higher Education and intellectualization of indigenous African languages in South Africa under a democratic dispensation.

Keywords: afro-centric model, hegemony of English, language as a resource, translanguaging pedagogy

Procedia PDF Downloads 193
10865 Academic Staff’s Perception and Willingness to Participate in Collaborative Research: Implication for Development in Sub-Saharan Africa

Authors: Ademola Ibukunolu Atanda

Abstract:

Research undertakings are meant to proffer solutions to issues and challenges in society. This justifies the need for research in ivory towers. Multinational and non-governmental organisations, as well as foundations, commit financial resources to support research endeavours. In recent times, the direction and dimension of research undertaking encourage collaborations, whereby experts from different disciplines or specializations would bring their expertise in addressing any identified problem, whether in humanities or sciences. However, the extent to which collaborative research undertakings are perceived and embraced by academic staff would determine the impact collaborative research would have on society. To this end, this study investigated academic staff’s perception and willingness to be involved in collaborative research for the purpose of proffering solutions to societal problems. The study adopted a descriptive research design. The population comprised academic staff in southern Nigeria. The sample was drawn through a convenient sampling technique. The data were collected using a questionnaire titled “Perception and Willingness to Participate in Collaborative Research Questionnaire (PWPCRQ)’ using Google Forms. Data collected were analyzed using descriptive statistics of simple percentages, mean and charts. The findings showed that Academic Staff’s readiness to participate in collaborative research is to a great extent (89%) and they participate in collaborative research very often (51%). The Academic Staff was involved more in collaboration research among their colleagues within their universities (1.98) than participation in inter-disciplines collaboration (1.47) with their colleagues outside Nigeria. Collaborative research was perceived to impact on development (2.5). Collaborative research offers the following benefits to members’ aggregation of views, the building of an extensive network of contacts, enhancement of sharing of skills, facilitation of tackling complex problems, increased visibility of research network and citations and promotion of funding opportunities. The study concluded that Academic staff in universities in the South-West of Nigeria participate in collaborative research but with their colleagues within Nigeria rather than outside the country. Based on the findings, it was recommended that the management of universities in South-West Nigeria should encourage collaborative research with some incentives.

Keywords: collaboration, research, development, participation

Procedia PDF Downloads 63
10864 The Nuclear Power Plant Environment Monitoring System through Mobile Units

Authors: P. Tanuska, A. Elias, P. Vazan, B. Zahradnikova

Abstract:

This article describes the information system for measuring and evaluating the dose rate in the environment of nuclear power plants Mochovce and Bohunice in Slovakia. The article presents the results achieved in the implementation of the EU project–Research of monitoring and evaluation of non-standard conditions in the area of nuclear power plants. The objectives included improving the system of acquisition, measuring and evaluating data with mobile and autonomous units applying new knowledge from research. The article provides basic and specific features of the system and compared to the previous version of the system, also new functions.

Keywords: information system, dose rate, mobile devices, nuclear power plant

Procedia PDF Downloads 376
10863 Going Viral: Expanding a Student-Run COVID-19 Journal Club to Social Media

Authors: Joseph Dodson, Robert Roth, Alexander Hodakowski, Leah Greenfield, Melissa Porterhouse, Natalie Maltby, Rachel Sadowsky

Abstract:

Introduction: Throughout the COVID-19 pandemic, countless research publications were released regarding SARS-CoV-2 and its variants, suggested treatments, and vaccine safety and efficacy. Daily publication of research became overwhelming for health professionals and the general public to stay informed. To address this problem, a group of 70 students across the four colleges at Rush University created the “Rush University COVID-19 Journal Club.” To broaden the available audience, the journal club then expanded to social media. Methods: Easily accessible and understandable summaries of the research were written by students and sent to faculty sponsors for feedback. Following the revision, summaries were published weekly on the Rush University COVID-19 Journal Club website for clinicians and students to use for reference. An Instagram page was then created, and information was further condensed into succinct posts to address COVID-19 “FAQs.” Next, a survey was distributed to followers of the Instagram page with questions meant to assess the effectiveness of the platform and gain feedback. A 5-point Likert scale was used as the primary question format. Results: The Instagram page accrued 749 followers and posted 52 unique posts over a 2 year period. Preliminary results from the surveys demonstrate that over 80% of respondents strongly agree that the Instagram posts 1) are an effective platform for the public presentation of factual COVID-19-related information; 2) provide relevant and valuable information; 3) provide information that is clear, concise, and can be easily understood. Conclusion: These results suggest that the Rush COVID-19 Journal Club was able to successfully create a social media presence and convey information without sacrificing scholarly integrity. Other academic institutions may benefit from the application of this model to help students and clinicians with the interpretation and evaluation of research topics with large bodies of evidence.

Keywords: SARS-CoV-2, COVID-19, public health, social media, SARS-CoV-2 vaccine, SARS-CoV-2 variants

Procedia PDF Downloads 128
10862 A Graph Theoretic Algorithm for Bandwidth Improvement in Computer Networks

Authors: Mehmet Karaata

Abstract:

Given two distinct vertices (nodes) source s and target t of a graph G = (V, E), the two node-disjoint paths problem is to identify two node-disjoint paths between s ∈ V and t ∈ V . Two paths are node-disjoint if they have no common intermediate vertices. In this paper, we present an algorithm with O(m)-time complexity for finding two node-disjoint paths between s and t in arbitrary graphs where m is the number of edges. The proposed algorithm has a wide range of applications in ensuring reliability and security of sensor, mobile and fixed communication networks.

Keywords: disjoint paths, distributed systems, fault-tolerance, network routing, security

Procedia PDF Downloads 442
10861 Comparison of Sourcing Process in Supply Chain Operation References Model and Business Information Systems

Authors: Batuhan Kocaoglu

Abstract:

Although using powerful systems like ERP (Enterprise Resource Planning), companies still cannot benchmark their processes and measure their process performance easily based on predefined SCOR (Supply Chain Operation References) terms. The purpose of this research is to identify common and corresponding processes to present a conceptual model to model and measure the purchasing process of an organization. The main steps for the research study are: Literature review related to 'procure to pay' process in ERP system; Literature review related to 'sourcing' process in SCOR model; To develop a conceptual model integrating 'sourcing' of SCOR model and 'procure to pay' of ERP model. In this study, we examined the similarities and differences between these two models. The proposed framework is based on the assumptions that are drawn from (1) the body of literature, (2) the authors’ experience by working in the field of enterprise and logistics information systems. The modeling framework provides a structured and systematic way to model and decompose necessary information from conceptual representation to process element specification. This conceptual model will help the organizations to make quality purchasing system measurement instruments and tools. And offered adaptation issues for ERP systems and SCOR model will provide a more benchmarkable and worldwide standard business process.

Keywords: SCOR, ERP, procure to pay, sourcing, reference model

Procedia PDF Downloads 362
10860 Computational Team Dynamics in Student New Product Development Teams

Authors: Shankaran Sitarama

Abstract:

Teamwork is an extremely effective pedagogical tool in engineering education. New Product Development (NPD) has been an effective strategy of companies to streamline and bring innovative products and solutions to customers. Thus, Engineering curriculum in many schools, some collaboratively with business schools, have brought NPD into the curriculum at the graduate level. Teamwork is invariably used during instruction, where students work in teams to come up with new products and solutions. There is a significant emphasis of grade on the semester long teamwork for it to be taken seriously by students. As the students work in teams and go through this process to develop the new product prototypes, their effectiveness and learning to a great extent depends on how they function as a team and go through the creative process, come together, and work towards the common goal. A core attribute of a successful NPD team is their creativity and innovation. The team needs to be creative as a group, generating a breadth of ideas and innovative solutions that solve or address the problem they are targeting and meet the user’s needs. They also need to be very efficient in their teamwork as they work through the various stages of the development of these ideas resulting in a POC (proof-of-concept) implementation or a prototype of the product. The simultaneous requirement of teams to be creative and at the same time also converge and work together imposes different types of tensions in their team interactions. These ideational tensions / conflicts and sometimes relational tensions / conflicts are inevitable. Effective teams will have to deal with the Team dynamics and manage it to be resilient enough and yet be creative. This research paper provides a computational analysis of the teams’ communication that is reflective of the team dynamics, and through a superimposition of latent semantic analysis with social network analysis, provides a computational methodology of arriving at patterns of visual interaction. These team interaction patterns have clear correlations to the team dynamics and provide insights into the functioning and thus the effectiveness of the teams. 23 student NPD teams over 2 years of a course on Managing NPD that has a blend of engineering and business school students is considered, and the results are presented. It is also correlated with the teams’ detailed and tailored individual and group feedback and self-reflection and evaluation questionnaire.

Keywords: team dynamics, social network analysis, team interaction patterns, new product development teamwork, NPD teams

Procedia PDF Downloads 116
10859 The Canaanite Trade Network between the Shores of the Mediterranean Sea

Authors: Doaa El-Shereef

Abstract:

The Canaanite civilization was one of the early great civilizations of the Near East, they influenced and been influenced from the civilizations of the ancient world especially the Egyptian and Mesopotamia civilizations. The development of the Canaanite trade started from the Chalcolithic Age to the Iron Age through the oldest trade route in the Middle East. This paper will focus on defining the Canaanites and from where did they come from and the meaning of the term Canaan and how the Ancient Manuscripts define the borders of the land of Canaan and this essay will describe the Canaanite trade route and their exported goods such as cedar wood, and pottery.

Keywords: archaeology, bronze age, Canaanite, colonies, Massilia, pottery, shipwreck, vineyards

Procedia PDF Downloads 201
10858 Effects of Age and Energy Expenditure on Obesity Among Adults in Abeokuta, Nigeria

Authors: Adeniyi Samuel Adekoya

Abstract:

The study assessed the independent effects of age and energy expenditure on the risks of obesity among adults (20-64 years). A cross-sectional study with changes in age, changes in work and leisure-time, and physical activities information played roles, with cut-off for energy expenditure and BMI in rural and urban localities. Physical activity information determined the energy expenditure, while the BMI determined the risk of obesity among the subjects. Statistically, age has a strong and direct association with obesity in both rural and urban settings, while energy expenditure was inverse in its association. Findings from the this study showed that in developing societies, age tends to be a risk factor for obesity, whereas energy expenditure is to be protective. Level of education and economic development are also relevant modifiers of the influences exerted by these variables.

Keywords: age, energy expenditure, BMI, rural/urban

Procedia PDF Downloads 431
10857 Empirical Investigation of Gender Differences in Information Processing Style, Tinkering, and Self-Efficacy for Robot Tele-Operation

Authors: Dilruba Showkat, Cindy Grimm

Abstract:

As robots become more ubiquitous, it is significant for us to understand how different groups of people respond to possible ways of interacting with the robot. In this study, we focused on gender differences while users were tele-operating a humanoid robot that was physically co-located with them. We investigated three factors during the human-robot interaction (1) information processing strategy (2) self-efficacy and (3) tinkering or exploratory behavior. The experimental results show that the information on how to use the robot was processed comprehensively by the female participants whereas males processed them selectively (p < 0.001). Males were more confident when using the robot than females (p = 0.0002). Males tinkered more with the robot than females (p = 0.0021). We found that tinkering was positively correlated (p = 0.0068) with task success and negatively correlated (p = 0.0032) with task completion time. Tinkering might have resulted in greater task success and lower task completion time for males. Findings from this research can be used for making design decisions for robots and open new research directions. Our results show the importance of accounting for gender differences when developing interfaces for interacting with robots and open new research directions.

Keywords: humanoid robots, tele-operation, gender differences, human-robot interaction

Procedia PDF Downloads 167
10856 Predictive Analysis of the Stock Price Market Trends with Deep Learning

Authors: Suraj Mehrotra

Abstract:

The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.

Keywords: machine learning, testing set, artificial intelligence, stock analysis

Procedia PDF Downloads 95
10855 Prediction of Wind Speed by Artificial Neural Networks for Energy Application

Authors: S. Adjiri-Bailiche, S. M. Boudia, H. Daaou, S. Hadouche, A. Benzaoui

Abstract:

In this work the study of changes in the wind speed depending on the altitude is calculated and described by the model of the neural networks, the use of measured data, the speed and direction of wind, temperature and the humidity at 10 m are used as input data and as data targets at 50m above sea level. Comparing predict wind speeds and extrapolated at 50 m above sea level is performed. The results show that the prediction by the method of artificial neural networks is very accurate.

Keywords: MATLAB, neural network, power low, vertical extrapolation, wind energy, wind speed

Procedia PDF Downloads 693
10854 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text

Authors: Duncan Wallace, M-Tahar Kechadi

Abstract:

In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.

Keywords: artificial neural networks, data-mining, machine learning, medical informatics

Procedia PDF Downloads 131
10853 An Information Matrix Goodness-of-Fit Test of the Conditional Logistic Model for Matched Case-Control Studies

Authors: Li-Ching Chen

Abstract:

The case-control design has been widely applied in clinical and epidemiological studies to investigate the association between risk factors and a given disease. The retrospective design can be easily implemented and is more economical over prospective studies. To adjust effects for confounding factors, methods such as stratification at the design stage and may be adopted. When some major confounding factors are difficult to be quantified, a matching design provides an opportunity for researchers to control the confounding effects. The matching effects can be parameterized by the intercepts of logistic models and the conditional logistic regression analysis is then adopted. This study demonstrates an information-matrix-based goodness-of-fit statistic to test the validity of the logistic regression model for matched case-control data. The asymptotic null distribution of this proposed test statistic is inferred. It needs neither to employ a simulation to evaluate its critical values nor to partition covariate space. The asymptotic power of this test statistic is also derived. The performance of the proposed method is assessed through simulation studies. An example of the real data set is applied to illustrate the implementation of the proposed method as well.

Keywords: conditional logistic model, goodness-of-fit, information matrix, matched case-control studies

Procedia PDF Downloads 292