Search results for: fundamental models
4555 Revisiting Ryan v Lennon to Make the Case against Judicial Supremacy
Authors: Tom Hickey
Abstract:
It is difficult to conceive of a case that might more starkly bring the arguments concerning judicial review to the fore than State (Ryan) v Lennon. Small wonder that it has attracted so much scholarly attention, although the fact that almost all of it has been in an Irish setting is perhaps surprising, given the illustrative value of the case in respect of a philosophical quandary that continues to command attention in all developed constitutional democracies. Should judges have power to invalidate legislation? This article revisits Ryan v Lennon with an eye on the importance of the idea of “democracy” in the case. It assesses the meaning of democracy: what its purpose might be and what practical implications might follow, specifically in respect of judicial review. Based on this assessment, it argues for a particular institutional model for the vindication of constitutional rights. In the context of calls for the drafting of a new constitution for Ireland, however forlorn these calls might be for the moment, it makes a broad and general case for the abandonment of judicial supremacy and for the taking up of a model in which judges have a constrained rights reviewing role that informs a more robust role that legislators would play, thereby enhancing the quality of the control that citizens have over their own laws. The article is in three parts. Part I assesses the exercise of judicial power over legislation in Ireland, with the primary emphasis on Ryan v Lennon. It considers the role played by the idea of democracy in that case and relates it to certain apparently intractable dilemmas that emerged in later Irish constitutional jurisprudence. Part II considers the concept of democracy more generally, with an eye on overall implications for judicial power. It argues for an account of democracy based on the idea of equally shared popular control over government. Part III assesses how this understanding might inform a new constitutional arrangement in the Irish setting for the vindication of fundamental rights.Keywords: constitutional rights, democracy as popular control, Ireland, judicial power, republican theory, Ryan v Lennon
Procedia PDF Downloads 5564554 Tumor Detection Using Convolutional Neural Networks (CNN) Based Neural Network
Authors: Vinai K. Singh
Abstract:
In Neural Network-based Learning techniques, there are several models of Convolutional Networks. Whenever the methods are deployed with large datasets, only then can their applicability and appropriateness be determined. Clinical and pathological pictures of lobular carcinoma are thought to exhibit a large number of random formations and textures. Working with such pictures is a difficult problem in machine learning. Focusing on wet laboratories and following the outcomes, numerous studies have been published with fresh commentaries in the investigation. In this research, we provide a framework that can operate effectively on raw photos of various resolutions while easing the issues caused by the existence of patterns and texturing. The suggested approach produces very good findings that may be used to make decisions in the diagnosis of cancer.Keywords: lobular carcinoma, convolutional neural networks (CNN), deep learning, histopathological imagery scans
Procedia PDF Downloads 1364553 Artificial Intelligence Based Comparative Analysis for Supplier Selection in Multi-Echelon Automotive Supply Chains via GEP and ANN Models
Authors: Seyed Esmail Seyedi Bariran, Laysheng Ewe, Amy Ling
Abstract:
Since supplier selection appears as a vital decision, selecting supplier based on the best and most accurate ways has a lot of importance for enterprises. In this study, a new Artificial Intelligence approach is exerted to remove weaknesses of supplier selection. The paper has three parts. First part is choosing the appropriate criteria for assessing the suppliers’ performance. Next one is collecting the data set based on experts. Afterwards, the data set is divided into two parts, the training data set and the testing data set. By the training data set the best structure of GEP and ANN are selected and to evaluate the power of the mentioned methods the testing data set is used. The result obtained shows that the accuracy of GEP is more than ANN. Moreover, unlike ANN, a mathematical equation is presented by GEP for the supplier selection.Keywords: supplier selection, automotive supply chains, ANN, GEP
Procedia PDF Downloads 6314552 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors
Authors: Anwar Jarndal
Abstract:
In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.Keywords: GaN HEMT, computer-aided design and modeling, neural networks, genetic optimization
Procedia PDF Downloads 3824551 A Blind Three-Dimensional Meshes Watermarking Using the Interquartile Range
Authors: Emad E. Abdallah, Alaa E. Abdallah, Bajes Y. Alskarnah
Abstract:
We introduce a robust three-dimensional watermarking algorithm for copyright protection and indexing. The basic idea behind our technique is to measure the interquartile range or the spread of the 3D model vertices. The algorithm starts by converting all the vertices to spherical coordinate followed by partitioning them into small groups. The proposed algorithm is slightly altering the interquartile range distribution of the small groups based on predefined watermark. The experimental results on several 3D meshes prove perceptual invisibility and the robustness of the proposed technique against the most common attacks including compression, noise, smoothing, scaling, rotation as well as combinations of these attacks.Keywords: watermarking, three-dimensional models, perceptual invisibility, interquartile range, 3D attacks
Procedia PDF Downloads 4744550 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest
Procedia PDF Downloads 2314549 Enhancing Large Language Models' Data Analysis Capability with Planning-and-Execution and Code Generation Agents: A Use Case for Southeast Asia Real Estate Market Analytics
Authors: Kien Vu, Jien Min Soh, Mohamed Jahangir Abubacker, Piyawut Pattamanon, Soojin Lee, Suvro Banerjee
Abstract:
Recent advances in Generative Artificial Intelligence (GenAI), in particular Large Language Models (LLMs) have shown promise to disrupt multiple industries at scale. However, LLMs also present unique challenges, notably, these so-called "hallucination" which is the generation of outputs that are not grounded in the input data that hinders its adoption into production. Common practice to mitigate hallucination problem is utilizing Retrieval Agmented Generation (RAG) system to ground LLMs'response to ground truth. RAG converts the grounding documents into embeddings, retrieve the relevant parts with vector similarity between user's query and documents, then generates a response that is not only based on its pre-trained knowledge but also on the specific information from the retrieved documents. However, the RAG system is not suitable for tabular data and subsequent data analysis tasks due to multiple reasons such as information loss, data format, and retrieval mechanism. In this study, we have explored a novel methodology that combines planning-and-execution and code generation agents to enhance LLMs' data analysis capabilities. The approach enables LLMs to autonomously dissect a complex analytical task into simpler sub-tasks and requirements, then convert them into executable segments of code. In the final step, it generates the complete response from output of the executed code. When deployed beta version on DataSense, the property insight tool of PropertyGuru, the approach yielded promising results, as it was able to provide market insights and data visualization needs with high accuracy and extensive coverage by abstracting the complexities for real-estate agents and developers from non-programming background. In essence, the methodology not only refines the analytical process but also serves as a strategic tool for real estate professionals, aiding in market understanding and enhancement without the need for programming skills. The implication extends beyond immediate analytics, paving the way for a new era in the real estate industry characterized by efficiency and advanced data utilization.Keywords: large language model, reasoning, planning and execution, code generation, natural language processing, prompt engineering, data analysis, real estate, data sense, PropertyGuru
Procedia PDF Downloads 874548 Optimization of Electric Vehicle (EV) Charging Station Allocation Based on Multiple Data - Taking Nanjing (China) as an Example
Authors: Yue Huang, Yiheng Feng
Abstract:
Due to the global pressure on climate and energy, many countries are vigorously promoting electric vehicles and building charging (public) charging facilities. Faced with the supply-demand gap of existing electric vehicle charging stations and unreasonable space usage in China, this paper takes the central city of Nanjing as an example, establishes a site selection model through multivariate data integration, conducts multiple linear regression SPSS analysis, gives quantitative site selection results, and provides optimization models and suggestions for charging station layout planning.Keywords: electric vehicle, charging station, allocation optimization, urban mobility, urban infrastructure, nanjing
Procedia PDF Downloads 924547 Geostatistical Analysis of Contamination of Soils in an Urban Area in Ghana
Authors: S. K. Appiah, E. N. Aidoo, D. Asamoah Owusu, M. W. Nuonabuor
Abstract:
Urbanization remains one of the unique predominant factors which is linked to the destruction of urban environment and its associated cases of soil contamination by heavy metals through the natural and anthropogenic activities. These activities are important sources of toxic heavy metals such as arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), and lead (Pb), nickel (Ni) and zinc (Zn). Often, these heavy metals lead to increased levels in some areas due to the impact of atmospheric deposition caused by their proximity to industrial plants or the indiscriminately burning of substances. Information gathered on potentially hazardous levels of these heavy metals in soils leads to establish serious health and urban agriculture implications. However, characterization of spatial variations of soil contamination by heavy metals in Ghana is limited. Kumasi is a Metropolitan city in Ghana, West Africa and is challenged with the recent spate of deteriorating soil quality due to rapid economic development and other human activities such as “Galamsey”, illegal mining operations within the metropolis. The paper seeks to use both univariate and multivariate geostatistical techniques to assess the spatial distribution of heavy metals in soils and the potential risk associated with ingestion of sources of soil contamination in the Metropolis. Geostatistical tools have the ability to detect changes in correlation structure and how a good knowledge of the study area can help to explain the different scales of variation detected. To achieve this task, point referenced data on heavy metals measured from topsoil samples in a previous study, were collected at various locations. Linear models of regionalisation and coregionalisation were fitted to all experimental semivariograms to describe the spatial dependence between the topsoil heavy metals at different spatial scales, which led to ordinary kriging and cokriging at unsampled locations and production of risk maps of soil contamination by these heavy metals. Results obtained from both the univariate and multivariate semivariogram models showed strong spatial dependence with range of autocorrelations ranging from 100 to 300 meters. The risk maps produced show strong spatial heterogeneity for almost all the soil heavy metals with extremely risk of contamination found close to areas with commercial and industrial activities. Hence, ongoing pollution interventions should be geared towards these highly risk areas for efficient management of soil contamination to avert further pollution in the metropolis.Keywords: coregionalization, heavy metals, multivariate geostatistical analysis, soil contamination, spatial distribution
Procedia PDF Downloads 3004546 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine
Procedia PDF Downloads 94545 Balanced Scorecard (BSC) Project : A Methodological Proposal for Decision Support in a Corporate Scenario
Authors: David de Oliveira Costa, Miguel Ângelo Lellis Moreira, Carlos Francisco Simões Gomes, Daniel Augusto de Moura Pereira, Marcos dos Santos
Abstract:
Strategic management is a fundamental process for global companies that intend to remain competitive in an increasingly dynamic and complex market. To do so, it is necessary to maintain alignment with their principles and values. The Balanced Scorecard (BSC) proposes to ensure that the overall business performance is based on different perspectives (financial, customer, internal processes, and learning and growth). However, relying solely on the BSC may not be enough to ensure the success of strategic management. It is essential that companies also evaluate and prioritize strategic projects that need to be implemented to ensure they are aligned with the business vision and contribute to achieving established goals and objectives. In this context, the proposition involves the incorporation of the SAPEVO-M multicriteria method to indicate the degree of relevance between different perspectives. Thus, the strategic objectives linked to these perspectives have greater weight in the classification of structural projects. Additionally, it is proposed to apply the concept of the Impact & Probability Matrix (I&PM) to structure and ensure that strategic projects are evaluated according to their relevance and impact on the business. By structuring the business's strategic management in this way, alignment and prioritization of projects and actions related to strategic planning are ensured. This ensures that resources are directed towards the most relevant and impactful initiatives. Therefore, the objective of this article is to present the proposal for integrating the BSC methodology, the SAPEVO-M multicriteria method, and the prioritization matrix to establish a concrete weighting of strategic planning and obtain coherence in defining strategic projects aligned with the business vision. This ensures a robust decision-making support process.Keywords: MCDA process, prioritization problematic, corporate strategy, multicriteria method
Procedia PDF Downloads 814544 Prevalence of Over-Schooling Preschoolers as Perceived by Teachers in Kwara Central, Nigeria
Authors: Rachael Ojima Agarry, Raheemat Opeyemi Omosidi
Abstract:
Over-schooling children is an abuse of the fundamental provisions of the National Policy on Education in Nigeria. The practice overburdens or places unwarranted academic demands on children, particularly preschoolers. This study was carried out to ascertain the prevalence of over-schooling preschoolers as perceived by teachers in the Kwara Central Senatorial District. One research question and two null hypotheses were formulated to guide the study. A descriptive survey design was employed. The population of the study consists of all preschool teachers in both private and public schools in Kwara Central. A validated instrument tagged “Questionnaire on Prevalence of Over-schooling of Preschoolers (QPOP)” with a reliability index of 0.76 was used for data collection. The questionnaire consists of sections A and B. Section A solicited the respondents’ demographic information, and Section B sought the prevalence of over-schooling as perceived by teachers. Data collected were analyzed using descriptive statistics of frequency and percentage. Mean and standard deviation were used to analyze the demographic information and the research question. The two research hypotheses were analyzed using a t-test and Analysis of Variance (ANCOVA) at a 0.05 level of significance. The results revealed that there is a high level of prevalence of over-schooling of preschoolers in Kwara Central. Also, there is a significant difference in teachers' perception of the prevalence of over-schooling preschoolers based on school type and school location. It was concluded that both private and public schools in Kwara Central practice over-schooling of preschoolers at a high level. Hence, it was recommended that the government, through the State and/or Federal Ministry of Education, should enact and enforce a law that would ensure children in this category spend only the stipulated time in school as well as strict adherence to the recommended curriculum contents by proprietors and teachers.Keywords: over-schooling, preschoolers, school type, school location
Procedia PDF Downloads 564543 Wildfire-Related Debris-Flow and Flooding Using 2-D Hydrologic Model
Authors: Cheong Hyeon Oh, Dongho Nam, Byungsik Kim
Abstract:
Due to the recent climate change, flood damage caused by local floods and typhoons has frequently occurred, the incidence rate and intensity of wildfires are greatly increased due to increased temperatures and changes in precipitation patterns. Wildfires cause primary damage, such as loss of forest resources, as well as secondary disasters, such as landslides, floods, and debris flow. In many countries around the world, damage and economic losses from secondary damage are occurring as well as the direct effects of forest fires. Therefore, in this study, the Rainfall-Runoff model(S-RAT) was used for the wildfire affected areas in Gangneung and Goseong, which occurred on April 2019, when the stability of vegetation and soil were destroyed by wildfires. Rainfall data from Typhoon Rusa were used in the S-RAT model, and flood discharge was calculated according to changes in land cover before and after wildfire damage. The results of the calculation showed that flood discharge increased significantly due to changes in land cover, as the increase in flood discharge increases the possibility of the occurrence of the debris flow and the extent of the damage, the debris flow height and range were calculated before and after forest fire using RAMMS. The analysis results showed that the height and extent of damage increased after wildfire, but the result value was underestimated due to the characteristics that using DEM and maximum flood discharge of the RAMMS model. This research was supported by a grant(2017-MOIS31-004) from Fundamental Technology Development Program for Extreme Disaster Response funded by Korean Ministry of Interior and Safety (MOIS). This paper work (or document) was financially supported by Ministry of the Interior and Safety as 'Human resoure development Project in Disaster management'.Keywords: wildfire, debris flow, land cover, rainfall-runoff meodel S-RAT, RAMMS, height
Procedia PDF Downloads 1224542 Modelling of Pervaporation Separation of Butanol from Aqueous Solutions Using Polydimethylsiloxane Mixed Matrix Membranes
Authors: Arian Ebneyamini, Hoda Azimi, Jules Thibaults, F. Handan Tezel
Abstract:
In this study, a modification of Hennepe model for pervaporation separation of butanol from aqueous solutions using Polydimethylsiloxane (PDMS) mixed matrix membranes has been introduced and validated by experimental data. The model was compared to the original Hennepe model and few other models which are applicable for membrane gas separation processes such as Maxwell, Lewis Nielson and Pal. Theoretical modifications for non-ideal interface morphology have been offered to predict the permeability in case of interface void, interface rigidification and pore-blockage. The model was in a good agreement with experimental data.Keywords: butanol, PDMS, modeling, pervaporation, mixed matrix membranes
Procedia PDF Downloads 2214541 On Disaggregation and Consolidation of Imperfect Quality Shipments in an Extended EPQ Model
Authors: Hung-Chi Chang
Abstract:
For an extended EPQ model with random yield, the existent study revealed that both the disaggregating and consolidating shipment policies for the imperfect quality items are independent of holding cost, and recommended a model with economic benefit by comparing the least total cost for each of the three models investigated. To better capture the real situation, we generalize the existent study to include different holding costs for perfect and imperfect quality items. Through analysis, we show that the above shipment policies are dependent on holding costs. Furthermore, we derive a simple decision rule solely based on the thresholds of problem parameters to select a superior model. The results are illustrated analytically and numerically.Keywords: consolidating shipments, disaggregating shipments, EPQ, imperfect quality, inventory
Procedia PDF Downloads 3764540 Comparative Evaluation of the Effectiveness of Different Mindfulness-Based Interventions on Medically Unexplained Symptoms: A Systematic Review
Authors: R. R. Billones, N. Lukkahatai, L. N. Saligan
Abstract:
Mindfulness based interventions (MBIs) have been used in medically unexplained symptoms (MUS). This systematic review describes the literature investigating the general effect of MBIs on MUS and identifies the effects of specific MBIs on specific MUS conditions. The preferred reporting items for systematic reviews and meta-analysis guidelines (PRISMA) and the modified Oxford quality scoring system (JADAD) were applied to the review, yielding an initial 1,556 articles. The search engines included PubMed, ScienceDirect, Web of Science, Scopus, EMBASE, and PsychINFO using the search terms: mindfulness, or mediations, or mindful or MBCT or MBSR and medically unexplained symptoms or MUS or fibromyalgia or FMS. A total of 24 articles were included in the final systematic review. MBIs showed large effects on socialization skills for chronic fatigue syndrome (d=0.65), anger in fibromyalgia (d=0.61), improvement of somatic symptoms (d=1.6) and sleep (d=1.12) for painful conditions, physical health for chronic back pain (d=0.51), and disease intensity for irritable bowel disease/syndrome (d=1.13). A manualized MBI that applies the four fundamental elements present in all types of interventions were critical to efficacy. These elements were psycho-education sessions specific to better understand the medical symptoms, the practice of awareness, the non-judgmental observance of the experience at the moment, and the compassion to ones’ self. The effectiveness of different mindfulness interventions necessitates giving attention to improve the gaps that were identified related to home-based practice monitoring, competency training of mindfulness teachers, and sound psychometric properties to measure the mindfulness practice.Keywords: mindfulness-based interventions, medically unexplained symptoms, mindfulness-based cognitive therapy, mindfulness-based stress reduction, fibromyalgia, irritable bowel syndrome
Procedia PDF Downloads 1424539 3D Model Completion Based on Similarity Search with Slim-Tree
Authors: Alexis Aldo Mendoza Villarroel, Ademir Clemente Villena Zevallos, Cristian Jose Lopez Del Alamo
Abstract:
With the advancement of technology it is now possible to scan entire objects and obtain their digital representation by using point clouds or polygon meshes. However, some objects may be broken or have missing parts; thus, several methods focused on this problem have been proposed based on Geometric Deep Learning, such as GCNN, ACNN, PointNet, among others. In this article an approach from a different paradigm is proposed, using metric data structures to index global descriptors in the spectral domain and allow the recovery of a set of similar models in polynomial time; to later use the Iterative Close Point algorithm and recover the parts of the incomplete model using the geometry and topology of the model with less Hausdorff distance.Keywords: 3D reconstruction method, point cloud completion, shape completion, similarity search
Procedia PDF Downloads 1224538 A Summary-Based Text Classification Model for Graph Attention Networks
Authors: Shuo Liu
Abstract:
In Chinese text classification tasks, redundant words and phrases can interfere with the formation of extracted and analyzed text information, leading to a decrease in the accuracy of the classification model. To reduce irrelevant elements, extract and utilize text content information more efficiently and improve the accuracy of text classification models. In this paper, the text in the corpus is first extracted using the TextRank algorithm for abstraction, the words in the abstract are used as nodes to construct a text graph, and then the graph attention network (GAT) is used to complete the task of classifying the text. Testing on a Chinese dataset from the network, the classification accuracy was improved over the direct method of generating graph structures using text.Keywords: Chinese natural language processing, text classification, abstract extraction, graph attention network
Procedia PDF Downloads 1004537 Application of Neuro-Fuzzy Technique for Optimizing the PVC Membrane Sensor
Authors: Majid Rezayi, Sh. Shahaboddin, HNM E. Mahmud, A. Yadollah, A. Saeid, A. Yatimah
Abstract:
In this study, the adaptive neuro-fuzzy inference system (ANFIS) was applied to obtain the membrane composition model affecting the potential response of our reported polymeric PVC sensor for determining the titanium (III) ions. The performance statistics of the artificial neural network (ANN) and linear regression models for potential slope prediction of membrane composition of titanium (III) ion selective electrode were compared with ANFIS technique. The results show that the ANFIS model can be used as a practical tool for obtaining the Nerntian slope of the proposed sensor in this study.Keywords: adaptive neuro fuzzy inference, PVC sensor, titanium (III) ions, Nerntian slope
Procedia PDF Downloads 2874536 An Examination of Economic Evaluation Approaches in Mental Health Promotion Initiatives Targeted at Black and Asian Minority Ethnic Communities in the UK: A Critical Discourse Analysis
Authors: Phillipa Denise Peart
Abstract:
Black Asian and Minority Ethnic (BAME) people are more at risk of developing mental health disorders because they are more exposed to unfavorable social, economic, and environmental circumstances. These include housing, education, employment, community development, stigma, and discrimination. However, the majority of BAME mental health intervention studies focus on treatment with therapeutically effective drugs and use basic economic methods to evaluate their effectiveness; as a result, little is invested in the economic assessment of psychosocial interventions in BAME mental health. The UK government’s austerity programme and reduced funds for mental health services, has increased the need for the evaluation and assessment of initiatives to focus on value for money. The No Health without Mental Health policy (2011) provides practice guidance to practitioners, but there is little or no mention of the need to provide mental health initiatives targeted at BAME communities that are effective in terms of their impact and the cost-effectiveness. This, therefore, appears to contradict with and is at odds with the wider political discourse, which suggests there should be an increasing focus on health economic evaluation. As a consequence, it could be argued that whilst such policies provide direction to organisations to provide mental health services to the BAME community, by not requesting effective governance, assurance, and evaluation processes, they are merely paying lip service to address these problems and not helping advance knowledge and practice through evidence-based approaches. As a result, BAME communities suffer due to lack of efficient resources that can aid in the recovery process. This research study explores the mental health initiatives targeted at BAME communities, and analyses the techniques used when examining the cost effectiveness of mental health initiatives for BAME mental health communities. Using critical discourse analysis as an approach and method, mental health services will be selected as case studies, and their evaluations will be examined, alongside the political drivers that frame, shape, and direct their work. In doing so, it will analyse what the mental health policies initiatives are, how the initiatives are directed and demonstrate how economic models of evaluation are used in mental health programmes and how the value for money impacts and outcomes are articulated by mental health programme staff. It is anticipated that this study will further our understanding in order to provide adequate mental health resources and will deliver creative, supportive research to ensure evaluation is effective for the government to provide and maintain high quality and efficient mental health initiatives targeted at BAME communities.Keywords: black, Asian and ethnic minority, economic models, mental health, health policy
Procedia PDF Downloads 1114535 An Integrated Intuitionistic Fuzzy Elimination Et Choix Traduisant La REalite (IFELECTRE) Model
Authors: Babak Daneshvar Rouyendegh
Abstract:
The aim of this study is to develop and describe a new methodology for the Multi-Criteria Decision-Making (MCDM) problem using Intuitionistic Fuzzy Elimination Et Choix Traduisant La REalite (IFELECTRE) model. The proposed models enable Decision-Makers (DMs) on the assessment and use Intuitionistic Fuzzy numbers (IFN). A numerical example is provided to demonstrate and clarify the proposed analysis procedure. Also, an empirical experiment is conducted to validation the effectiveness.Keywords: Decision-Makers (DMs), Multi-Criteria Decision-Making (MCDM), Intuitionistic Fuzzy Elimination Et Choix Traduisant La REalite (IFELECTRE), Intuitionistic Fuzzy Numbers (IFN)
Procedia PDF Downloads 6784534 Building a Composite Approach to Employees' Motivational Needs by Combining Cognitive Needs
Authors: Alexis Akinyemi, Laurene Houtin
Abstract:
Measures of employee motivation at work are often based on the theory of self-determined motivation, which implies that human resources departments and managers seek to motivate employees in the most self-determined way possible and use strategies to achieve this goal. In practice, they often tend to assess employee motivation and then adapt management to the most important source of motivation for their employees, for example by financially rewarding an employee who is extrinsically motivated, and by rewarding an intrinsically motivated employee with congratulations and recognition. Thus, the use of motivation measures contradicts theoretical positioning: theory does not provide for the promotion of extrinsically motivated behaviour. In addition, a corpus of social psychology linked to fundamental needs makes it possible to personally address a person’s different sources of motivation (need for cognition, need for uniqueness, need for effects and need for closure). By developing a composite measure of motivation based on these needs, we provide human resources professionals, and in particular occupational psychologists, with a tool that complements the assessment of self-determined motivation, making it possible to precisely address the objective of adapting work not to the self-determination of behaviours, but to the motivational traits of employees. To develop such a model, we gathered the French versions of the cognitive needs scales (need for cognition, need for uniqueness, need for effects, need for closure) and conducted a study with 645 employees of several French companies. On the basis of the data collected, we conducted a confirmatory factor analysis to validate the model, studied the correlations between the various needs, and highlighted the different reference groups that could be used to use these needs as a basis for interviews with employees (career, recruitment, etc.). The results showed a coherent model and the expected links between the different needs. Taken together, these results make it possible to propose a valid and theoretically adjusted tool to managers who wish to adapt their management to their employees’ current motivations, whether or not these motivations are self-determined.Keywords: motivation, personality, work commitment, cognitive needs
Procedia PDF Downloads 1234533 Mechanism Design and Dynamic Analysis of Active Independent Front Steering System
Authors: Cheng-Chi Yu, Yu-Shiue Wang, Kei-Lin Kuo
Abstract:
Active Independent Front Steering system is a steering system which can according to vehicle driving situation adjusts the relation of steering angle between inner wheel and outer wheel. In low-speed cornering, AIFS sets the steering angles of inner and outer wheel into Ackerman steering geometry to make vehicle has less cornering radius. Besides, AIFS changes the steering geometry to parallel or even anti-Ackerman steering geometry to keep vehicle stability in high-speed cornering. Therefore, based on the analysis of the vehicle steering behavior from different steering geometries, this study develops a new screw type of active independent front steering system to make vehicles best cornering performance at any speeds. The screw type of active independent front steering system keeps the pinion and separates the rack into main rack and second rack. Two racks connect by a screw. Extra screw rotated motion powered by assistant motor through coupler makes second rack move relative to main rack, which can adjust both steering ratio and steering geometry. First of all, this study distinguishes the steering geometry by using Ackerman percentage and utilizes the software of ADAMS/Car to construct diverse steering geometry models. The different steering geometries are compared at low-speed and high-speed cornering, and then control strategies of the active independent front steering systems could be formulated. Secondly, this study applies closed loop equation to analyze tire steering angles and carries out optimization calculations to make the steering geometry from traditional rack and pinion steering system near to Ackerman steering geometry. Steering characteristics of the optimum steering mechanism and motion characteristics of vehicle installed the steering mechanism are verified by ADAMS/Car models of front suspension and full vehicle respectively. By adding dual auxiliary rack and dual motor to the optimum steering mechanism, the active independent front steering system could be developed to achieve the functions of variable steering ratio and variable steering geometry. At last, this study uses ADAMS/Car and Matlab/Simulink to co-simulate the cornering motion of vehicles confirms the vehicle installed the Active Independent Front Steering (AIFS) system has better handling performance than that with Active Independent Steering (AFS) system or with Electric Power Steering (EPS) system. At low-speed cornering, the vehicles with AIFS system and with AFS system have better maneuverability, less cornering radius, than the traditional vehicle with EPS system because that AIFS and AFS systems both provide function of variable steering ratio. However, there is a slight penalty in the motor(s) power consumption. In addition, because of the capability of variable steering geometry, the vehicle with AIFS system has better high-speed cornering stability, trajectory keeping, and even less motor(s) power consumption than that with EPS system and also with AFS system.Keywords: active front steering system, active independent front steering system, steering geometry, steering ratio
Procedia PDF Downloads 1894532 Translating the Australian National Health and Medical Research Council Obesity Guidelines into Practice into a Rural/Regional Setting in Tasmania, Australia
Authors: Giuliana Murfet, Heidi Behrens
Abstract:
Chronic disease is Australia’s biggest health concern and obesity the leading risk factor for many. Obesity and chronic disease have a higher representation in rural Tasmania, where levels of socio-disadvantage are also higher. People living outside major cities have less access to health services and poorer health outcomes. To help primary healthcare professionals manage obesity, the Australian NHMRC evidence-based clinical practice guidelines for management of overweight and obesity in adults were developed. They include recommendations for practice and models for obesity management. To our knowledge there has been no research conducted that investigates translation of these guidelines into practice in rural-regional areas; where implementation can be complicated by limited financial and staffing resources. Also, the systematic review that informed the guidelines revealed a lack of evidence for chronic disease models of obesity care. The aim was to establish and evaluate a multidisciplinary model for obesity management in a group of adult people with type 2 diabetes in a dispersed rural population in Australia. Extensive stakeholder engagement was undertaken to both garner support for an obesity clinic and develop a sustainable model of care. A comprehensive nurse practitioner-led outpatient model for obesity care was designed. Multidisciplinary obesity clinics for adults with type 2 diabetes including a dietitian, psychologist, physiotherapist and nurse practitioner were set up in the north-west of Tasmania at two geographically-rural towns. Implementation was underpinned by the NHMRC guidelines and recommendations focused on: assessment approaches; promotion of health benefits of weight loss; identification of relevant programs for individualising care; medication and bariatric surgery options for obesity management; and, the importance of long-term weight management. A clinical pathway for adult weight management is delivered by the multidisciplinary team with recognition of the impact of and adjustments needed for other comorbidities. The model allowed for intensification of intervention such as bariatric surgery according to recommendations, patient desires and suitability. A randomised controlled trial is ongoing, with the aim to evaluate standard care (diabetes-focused management) compared with an obesity-related approach with additional dietetic, physiotherapy, psychology and lifestyle advice. Key barriers and enablers to guideline implementation were identified that fall under the following themes: 1) health care delivery changes and the project framework development; 2) capacity and team-building; 3) stakeholder engagement; and, 4) the research project and partnerships. Engagement of not only local hospital but also state-wide health executives and surgical services committee were paramount to the success of the project. Staff training and collective development of the framework allowed for shared understanding. Staff capacity was increased with most taking on other activities (e.g., surgery coordination). Barriers were often related to differences of opinions in focus of the project; a desire to remain evidenced based (e.g., exercise prescription) without adjusting the model to allow for consideration of comorbidities. While barriers did exist and challenges overcome; the development of critical partnerships did enable the capacity for a potential model of obesity care for rural regional areas. Importantly, the findings contribute to the evidence base for models of diabetes and obesity care that coordinate limited resources.Keywords: diabetes, interdisciplinary, model of care, obesity, rural regional
Procedia PDF Downloads 2284531 Changing MBA Identities: Using Critical Reflection inside and out in Finding a New Narrative
Authors: Keith Schofield, Leigh Morland
Abstract:
Storytelling is an established means of leadership and management development and is also considered a form of leadership of self and others in its own right. This study focuses on the utility of storytelling in the development of management narratives in an MBA programme; sources include programme participants as well as international recruiters, whose voices are often only heard in terms of economic contribution and globalisation. For many MBA candidates, the return to study requires the development of a new identity which complements their professional identity; each candidate has their own journey and expectations, the use of story can enable candidates to explore their aspirations and assumptions and give voice to previously unspoken ideas. For international recruitment, the story of market development and change must be captured if MBAs are to remain fit for purpose. If used effectively, story acts as a form of critical reflection that can inform the learning journeys of individuals, emerging identities as well as the ongoing design and development of programmes. The landscape of management education is shifting; the MBA begins to attract a different kind of candidate, some are younger than before, others are seeking validation for their existing work practices, yet more are entrepreneurial and wish to capitalise on an institutional experience to further their career. There is a shift in context, creating uncertainty and ambiguity for programme managers and recruiters, thus requiring institutions to create a new MBA narrative. This study utilises Lego SeriousPlay as the means to engaging programme participants and international agents in telling the story of their MBA. We asked MBA participants to tell the story of their leadership and management aspirations and compare these to stories of their development journeys, allowing for critical reflection of their respective development gaps. We asked international recruiters, who act as university agents and promote courses in the student’s country of origin, to explore their mental models of MBA candidates and their learning agenda. The purpose of this process was to explore the agent’s perception of the MBA programme and to articulate the student journey from a recruitment perspective. The paper’s unique contribution is in combining these stories in order to explore the assumptions that determine programme design. Data drawn from reflective statements together with images of Lego ‘builds’ created the opportunity for reflection between the mental models of these groups. Findings will inform the design of the MBA journey and experience; we review the extent to which the changing identities of learners are congruent with programme design. Data from international recruiters also determines the extent to which marketing and recruitment strategies identify with would be candidates.Keywords: critical reflection, programme management, recruitment, storytelling
Procedia PDF Downloads 2264530 A Regional Analysis on Co-movement of Sovereign Credit Risk and Interbank Risks
Authors: Mehdi Janbaz
Abstract:
The global financial crisis and the credit crunch that followed magnified the importance of credit risk management and its crucial role in the stability of all financial sectors and the whole of the system. Many believe that risks faced by the sovereign sector are highly interconnected with banking risks and most likely to trigger and reinforce each other. This study aims to examine (1) the impact of banking and interbank risk factors on the sovereign credit risk of Eurozone, and (2) how the EU Credit Default Swaps spreads dynamics are affected by the Crude Oil price fluctuations. The hypothesizes are tested by employing fitting risk measures and through a four-staged linear modeling approach. The sovereign senior 5-year Credit Default Swap spreads are used as a core measure of the credit risk. The monthly time-series data of the variables used in the study are gathered from the DataStream database for a period of 2008-2019. First, a linear model test the impact of regional macroeconomic and market-based factors (STOXX, VSTOXX, Oil, Sovereign Debt, and Slope) on the CDS spreads dynamics. Second, the bank-specific factors, including LIBOR-OIS spread (the difference between the Euro 3-month LIBOR rate and Euro 3-month overnight index swap rates) and Euribor, are added to the most significant factors of the previous model. Third, the global financial factors including EURO to USD Foreign Exchange Volatility, TED spread (the difference between 3-month T-bill and the 3-month LIBOR rate based in US dollars), and Chicago Board Options Exchange (CBOE) Crude Oil Volatility Index are added to the major significant factors of the first two models. Finally, a model is generated by a combination of the major factor of each variable set in addition to the crisis dummy. The findings show that (1) the explanatory power of LIBOR-OIS on the sovereign CDS spread of Eurozone is very significant, and (2) there is a meaningful adverse co-movement between the Crude Oil price and CDS price of Eurozone. Surprisingly, adding TED spread (the difference between the three-month Treasury bill and the three-month LIBOR based in US dollars.) to the analysis and beside the LIBOR-OIS spread (the difference between the Euro 3M LIBOR and Euro 3M OIS) in third and fourth models has been increased the predicting power of LIBOR-OIS. Based on the results, LIBOR-OIS, Stoxx, TED spread, Slope, Oil price, OVX, FX volatility, and Euribor are the determinants of CDS spreads dynamics in Eurozone. Moreover, the positive impact of the crisis period on the creditworthiness of the Eurozone is meaningful.Keywords: CDS, crude oil, interbank risk, LIBOR-OIS, OVX, sovereign credit risk, TED
Procedia PDF Downloads 1444529 Health and the Politics of Trust: Multi-Drug-Resistant Tuberculosis in Kathmandu
Authors: Mattia Testuzza
Abstract:
Public health is a social endeavour, which involves many different actors: from extremely stratified, structured health systems to unofficial networks of people and knowledge. Health and diseases are an intertwined individual and social experiences. Both patients and health workers navigate this public space through relations of trust. Trust in healthcare goes from the personal trust between a patient and her/his doctor to the trust of both the patient and the health worker in the medical knowledge and the healthcare system. Trust it is not a given, but it is continuously negotiated, given and gained. The key to understand these essential relations of trust in health is to recognise them as a social practice, which therefore implies agency and power. In these terms, health is constantly public and made public, as trust emerges as a meaningfully political phenomenon. Trust as a power relation can be observed at play in the implementation of public health policies such as the WHO’s Directly-Observed Theraphy Short-course (DOTS), and with the increasing concern for drug-resistance that tuberculosis pose, looking at the role of trust in the healthcare delivery system and implementation of public health policies becomes significantly relevant. The ethnographic fieldwork was carried out in four months through observation of the daily practices at the National Tuberculosis Center of Nepal, and semi-structured interviews with MultiDrug-Resistant Tuberculosis (MDR-TB) patients at different stages of the treatment, their relatives, MDR-TB specialised nurses, and doctors. Throughout the research, the role which trust plays in tuberculosis treatment emerged as one fundamental ax that cuts through all the different factors intertwined with drug-resistance development, unfolding a tension between the DOTS policy, which undermines trust, and the day-to-day healthcare relations and practices which cannot function without trust. Trust also stands out as a key component of the solutions to unforeseen issues which develop from the overall uncertainty of the context - for example, political instability and extreme poverty - in which tuberculosis treatment is carried out in Nepal.Keywords: trust, tuberculosis, drug-resistance, politics of health
Procedia PDF Downloads 2544528 Model-Viewer for Setting Interactive 3D Objects of Electronic Devices and Systems
Authors: Julio Brégains, Ángel Carro, José-Manuel Andión
Abstract:
Virtual 3D objects constitute invaluable tools for teaching practical engineering subjects at all -from basic to advanced- educational levels. For instance, they can be equipped with animation or informative labels, manipulated by mouse movements, and even be immersed in a real environment through augmented reality. In this paper, we present the investigation and description of a set of applications prepared for creating, editing, and making use of interactive 3D models to represent electric and electronic devices and systems. Several examples designed with the described tools are exhibited, mainly to show their capabilities as educational technological aids, applicable not only to the field of electricity and electronics but also to a much wider range of technical areas.Keywords: educational technology, Google model viewer, ICT educational tools, interactive teaching, new tools for teaching
Procedia PDF Downloads 754527 Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments
Authors: Farzad Hosseini Hossein Abadi, Cristina Prieto Sierra, Cesar Álvarez Díaz
Abstract:
Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models.Keywords: LSTMs, streamflow, hyperparameters, hydrology
Procedia PDF Downloads 704526 Reemergence of Behaviorism in Language Teaching
Authors: Hamid Gholami
Abstract:
During the years, the language teaching methods have been the offshoots of schools of thought in psychology. The methods were mainly influenced by their contemporary psychological approaches, as Audiolingualism was based on behaviorism and Communicative Language Teaching on constructivism. In 1950s, the text books were full of repetition exercises which were encouraged by Behaviorism. In 1980s they got filled with communicative exercises as suggested by constructivism. The trend went on to nowadays that sees no specific method as prevalent since none of the schools of thought seem to be illustrative of the complexity in human being learning. But some changes can be notable; some textbooks are giving more and more space to repetition exercises at least to enhance some aspects of language proficiency, namely collocations, rhythm and intonation, and conversation models. These changes may mark the reemergence of one of the once widely accepted schools of thought in psychology; behaviorism.Keywords: language teaching methods, psychology, schools of thought, Behaviorism
Procedia PDF Downloads 560