Search results for: electrical measurement
744 Towards Sustainable Concrete: Maturity Method to Evaluate the Effect of Curing Conditions on the Strength Development in Concrete Structures under Kuwait Environmental Conditions
Authors: F. Al-Fahad, J. Chakkamalayath, A. Al-Aibani
Abstract:
Conventional methods of determination of concrete strength under controlled laboratory conditions will not accurately represent the actual strength of concrete developed under site curing conditions. This difference in strength measurement will be more in the extreme environment in Kuwait as it is characterized by hot marine environment with normal temperature in summer exceeding 50°C accompanied by dry wind in desert areas and salt laden wind on marine and on shore areas. Therefore, it is required to have test methods to measure the in-place properties of concrete for quality assurance and for the development of durable concrete structures. The maturity method, which defines the strength of a given concrete mix as a function of its age and temperature history, is an approach for quality control for the production of sustainable and durable concrete structures. The unique harsh environmental conditions in Kuwait make it impractical to adopt experiences and empirical equations developed from the maturity methods in other countries. Concrete curing, especially in the early age plays an important role in developing and improving the strength of the structure. This paper investigates the use of maturity method to assess the effectiveness of three different types of curing methods on the compressive and flexural strength development of one high strength concrete mix of 60 MPa produced with silica fume. This maturity approach was used to predict accurately, the concrete compressive and flexural strength at later ages under different curing conditions. Maturity curves were developed for compressive and flexure strengths for a commonly used concrete mix in Kuwait, which was cured using three different curing conditions, including water curing, external spray coating and the use of internal curing compound during concrete mixing. It was observed that the maturity curve developed for the same mix depends on the type of curing conditions. It can be used to predict the concrete strength under different exposure and curing conditions. This study showed that concrete curing with external spray curing method cannot be recommended to use as it failed to aid concrete in reaching accepted values of strength, especially for flexural strength. Using internal curing compound lead to accepted levels of strength when compared with water cuing. Utilization of the developed maturity curves will help contactors and engineers to determine the in-place concrete strength at any time, and under different curing conditions. This will help in deciding the appropriate time to remove the formwork. The reduction in construction time and cost has positive impacts towards sustainable construction.Keywords: curing, durability, maturity, strength
Procedia PDF Downloads 301743 DFT Theoretical Investigation for Evaluating Global Scalar Properties and Validating with Quantum Chemical Based COSMO-RS Theory for Dissolution of Bituminous and Anthracite Coal in Ionic Liquid
Authors: Debanjan Dey, Tamal Banerjee, Kaustubha Mohanty
Abstract:
Global scalar properties are calculated based on higher occupied molecular orbital (HOMO) and lower unoccupied molecular orbital (LUMO) energy to study the interaction between ionic liquids with Bituminous and Anthracite coal using density function theory (DFT) method. B3LYP/6-31G* calculation predicts HOMO-LUMO energy gap, electronegativity, global hardness, global softness, chemical potential and global softness for individual compounds with their clusters. HOMO-LUMO interaction, electron delocalization, electron donating and accepting is the main source of attraction between individual compounds with their complexes. Cation used in this study: 1-butyl-1-methylpyrrolidinium [BMPYR], 1-methyl -3-propylimmidazolium [MPIM], Tributylmethylammonium [TMA] and Tributylmethylphosphonium [MTBP] with the combination of anion: bis(trifluromethylsulfonyl)imide [Tf2N], methyl carbonate [CH3CO3], dicyanamide [N(CN)2] and methylsulfate [MESO4]. Basically three-tier approach comprising HOMO/LUMO energy, Scalar quantity and infinite dilution activity coefficient (IDAC) by sigma profile generation with COSMO-RS (Conductor like screening model for real solvent) model was chosen for simultaneous interaction. [BMPYR]CH3CO3] (1-butyl-1-methylpyrrolidinium methyl carbonate) and [MPIM][CH3CO3] (1-methyl -3-propylimmidazolium methyl carbonate ) are the best effective ILs on the basis of HOMO-LUMO band gap for Anthracite and Bituminous coal respectively and the corresponding band gap is 0.10137 hartree for Anthracite coal and 0.12485 hartree for Bituminous coal. Further ionic liquids are screened quantitatively with all the scalar parameters and got the same result based on CH-π interaction which is found for HOMO-LUMO gap. To check our findings IDAC were predicted using quantum chemical based COSMO-RS methodology which gave the same trend as observed our scalar quantity calculation. Thereafter a qualitative measurement is doing by sigma profile analysis which gives complementary behavior between IL and coal that means highly miscible with each other.Keywords: coal-ionic liquids cluster, COSMO-RS, DFT method, HOMO-LUMO interaction
Procedia PDF Downloads 304742 Modeling and Characterization of Organic LED
Authors: Bouanati Sidi Mohammed, N. E. Chabane Sari, Mostefa Kara Selma
Abstract:
It is well-known that Organic light emitting diodes (OLEDs) are attracting great interest in the display technology industry due to their many advantages, such as low price of manufacturing, large-area of electroluminescent display, various colors of emission included white light. Recently, there has been much progress in understanding the device physics of OLEDs and their basic operating principles. In OLEDs, Light emitting is the result of the recombination of electron and hole in light emitting layer, which are injected from cathode and anode. For improve luminescence efficiency, it is needed that hole and electron pairs exist affluently and equally and recombine swiftly in the emitting layer. The aim of this paper is to modeling polymer LED and OLED made with small molecules for studying the electrical and optical characteristics. The first simulation structures used in this paper is a mono layer device; typically consisting of the poly (2-methoxy-5(2’-ethyl) hexoxy-phenylenevinylene) (MEH-PPV) polymer sandwiched between an anode usually an indium tin oxide (ITO) substrate, and a cathode, such as Al. In the second structure we replace MEH-PPV by tris (8-hydroxyquinolinato) aluminum (Alq3). We choose MEH-PPV because of it's solubility in common organic solvents, in conjunction with a low operating voltage for light emission and relatively high conversion efficiency and Alq3 because it is one of the most important host materials used in OLEDs. In this simulation, the Poole-Frenkel- like mobility model and the Langevin bimolecular recombination model have been used as the transport and recombination mechanism. These models are enabled in ATLAS -SILVACO software. The influence of doping and thickness on I(V) characteristics and luminescence, are reported.Keywords: organic light emitting diode, polymer lignt emitting diode, organic materials, hexoxy-phenylenevinylene
Procedia PDF Downloads 554741 Shoulder Range of Motion Measurements using Computer Vision Compared to Hand-Held Goniometric Measurements
Authors: Lakshmi Sujeesh, Aaron Ramzeen, Ricky Ziming Guo, Abhishek Agrawal
Abstract:
Introduction: Range of motion (ROM) is often measured by physiotherapists using hand-held goniometer as part of mobility assessment for diagnosis. Due to the nature of hand-held goniometer measurement procedure, readings often tend to have some variations depending on the physical therapist taking the measurements (Riddle et al.). This study aims to validate computer vision software readings against goniometric measurements for quick and consistent ROM measurements to be taken by clinicians. The use of this computer vision software hopes to improve the future of musculoskeletal space with more efficient diagnosis from recording of patient’s ROM with minimal human error across different physical therapists. Methods: Using the hand-held long arm goniometer measurements as the “gold-standard”, healthy study participants (n = 20) were made to perform 4 exercises: Front elevation, Abduction, Internal Rotation, and External Rotation, using both arms. Assessment of active ROM using computer vision software at different angles set by goniometer for each exercise was done. Interclass Correlation Coefficient (ICC) using 2-way random effects model, Box-Whisker plots, and Root Mean Square error (RMSE) were used to find the degree of correlation and absolute error measured between set and recorded angles across the repeated trials by the same rater. Results: ICC (2,1) values for all 4 exercises are above 0.9, indicating excellent reliability. Lowest overall RMSE was for external rotation (5.67°) and highest for front elevation (8.00°). Box-whisker plots showed have showed that there is a potential zero error in the measurements done by the computer vision software for abduction, where absolute error for measurements taken at 0 degree are shifted away from the ideal 0 line, with its lowest recorded error being 8°. Conclusion: Our results indicate that the use of computer vision software is valid and reliable to use in clinical settings by physiotherapists for measuring shoulder ROM. Overall, computer vision helps improve accessibility to quality care provided for individual patients, with the ability to assess ROM for their condition at home throughout a full cycle of musculoskeletal care (American Academy of Orthopaedic Surgeons) without the need for a trained therapist.Keywords: physiotherapy, frozen shoulder, joint range of motion, computer vision
Procedia PDF Downloads 107740 Optimized Dye-Sensitized Solar Cell Using Natural Dye and Counter Electrode from Robusta Coffee Beans Peel Waste
Authors: Tomi Setiawan, Wahyu Y. Subekti, Siti S. Nur'Adya, Khusnul Ilmiah
Abstract:
Dye-Sensitized Solar Cell (DSSC) is one type of solar cell, where solar cells function to convert light energy become the electrical energy. DSSC has two important parts of dye and counter electrode. Anthocyanin compounds in the coffee beans peel can be potential as natural dye and also counter electrodes as activated carbon in the DSSC system. The purpose of this research is to find out how to isolate Anthocyanin, manufacture of counter electrode, and to know the efficiency of counter electrode produced from the coffee pulp waste in DSSC prototype. In this research we used 2 x 2 cm FTO glass coated carbon paste with a thickness variation of 100 μL, 200 μL and 300 μL as counter electrode and other FTO glass coated with TiO₂ paste as work electrode, then two FTO glasses are connected to form a sandwich-liked structure and add Triiodide electrolyte solution in its gap, thus forming a DSSC prototype. The results showed that coffee pulp waste contains anthocyanin of 12.23 mL/80gr and it can produce activated carbon. The characterization performed shows that the UV-Vis Anthocyanin result is at wavelength of ultra violet area that is 219,50 nm with absorbance value equal to 1,469, and maximum wavelength at visible area is 720,00 nm with absorbance value equal to 0,013. The functional groups contained in the anthocyanin are O-H groups at wave numbers 3385.60 cm⁻¹, C = O groups at wave numbers 1618.63 cm⁻¹, and C-O-C groups at 1065.40 cm⁻¹ wave numbers. Morphological characterization using the SEM shows the activated carbon surface area becomes larger and evenly distributed. Voltage obtained on Counter Electrode 100 μL variation of 395mV, 200 μL of 334mV 100 μL of 254mV.Keywords: DSSC, anthocyanin, counter electrode, solar cell, coffee pulp
Procedia PDF Downloads 183739 Measuring Fluctuating Asymmetry in Human Faces Using High-Density 3D Surface Scans
Authors: O. Ekrami, P. Claes, S. Van Dongen
Abstract:
Fluctuating asymmetry (FA) has been studied for many years as an indicator of developmental stability or ‘genetic quality’ based on the assumption that perfect symmetry is ideally the expected outcome for a bilateral organism. Further studies have also investigated the possible link between FA and attractiveness or levels of masculinity or femininity. These hypotheses have been mostly examined using 2D images, and the structure of interest is usually presented using a limited number of landmarks. Such methods have the downside of simplifying and reducing the dimensionality of the structure, which will in return increase the error of the analysis. In an attempt to reach more conclusive and accurate results, in this study we have used high-resolution 3D scans of human faces and have developed an algorithm to measure and localize FA, taking a spatially-dense approach. A symmetric spatially dense anthropometric mask with paired vertices is non-rigidly mapped on target faces using an Iterative Closest Point (ICP) registration algorithm. A set of 19 manually indicated landmarks were used to examine the precision of our mapping step. The protocol’s accuracy in measurement and localizing FA is assessed using simulated faces with known amounts of asymmetry added to them. The results of validation of our approach show that the algorithm is perfectly capable of locating and measuring FA in 3D simulated faces. With the use of such algorithm, the additional captured information on asymmetry can be used to improve the studies of FA as an indicator of fitness or attractiveness. This algorithm can especially be of great benefit in studies of high number of subjects due to its automated and time-efficient nature. Additionally, taking a spatially dense approach provides us with information about the locality of FA, which is impossible to obtain using conventional methods. It also enables us to analyze the asymmetry of a morphological structures in a multivariate manner; This can be achieved by using methods such as Principal Components Analysis (PCA) or Factor Analysis, which can be a step towards understanding the underlying processes of asymmetry. This method can also be used in combination with genome wide association studies to help unravel the genetic bases of FA. To conclude, we introduced an algorithm to study and analyze asymmetry in human faces, with the possibility of extending the application to other morphological structures, in an automated, accurate and multi-variate framework.Keywords: developmental stability, fluctuating asymmetry, morphometrics, 3D image processing
Procedia PDF Downloads 140738 Characterizing Solid Glass in Bending, Torsion and Tension: High-Temperature Dynamic Mechanical Analysis up to 950 °C
Authors: Matthias Walluch, José Alberto Rodríguez, Christopher Giehl, Gunther Arnold, Daniela Ehgartner
Abstract:
Dynamic mechanical analysis (DMA) is a powerful method to characterize viscoelastic properties and phase transitions for a wide range of materials. It is often used to characterize polymers and their temperature-dependent behavior, including thermal transitions like the glass transition temperature Tg, via determination of storage and loss moduli in tension (Young’s modulus, E) and shear or torsion (shear modulus, G) or other testing modes. While production and application temperatures for polymers are often limited to several hundred degrees, material properties of glasses usually require characterization at temperatures exceeding 600 °C. This contribution highlights a high temperature setup for rotational and oscillatory rheometry as well as for DMA in different modes. The implemented standard convection oven enables the characterization of glass in different loading modes at temperatures up to 950 °C. Three-point bending, tension and torsional measurements on different glasses, with E and G moduli as a function of frequency and temperature, are presented. Additional tests include superimposing several frequencies in a single temperature sweep (“multiwave”). This type of test results in a considerable reduction of the experiment time and allows to evaluate structural changes of the material and their frequency dependence. Furthermore, DMA in torsion and tension was performed to determine the complex Poisson’s ratio as a function of frequency and temperature within a single test definition. Tests were performed in a frequency range from 0.1 to 10 Hz and temperatures up to the glass transition. While variations in the frequency did not reveal significant changes of the complex Poisson’s ratio of the glass, a monotonic increase of this parameter was observed when increasing the temperature. This contribution outlines the possibilities of DMA in bending, tension and torsion for an extended temperature range. It allows the precise mechanical characterization of material behavior from room temperature up to the glass transition and the softening temperature interval. Compared to other thermo-analytical methods, like Dynamic Scanning Calorimetry (DSC) where mechanical stress is neglected, the frequency-dependence links measurement results (e.g. relaxation times) to real applicationsKeywords: dynamic mechanical analysis, oscillatory rheometry, Poisson's ratio, solid glass, viscoelasticity
Procedia PDF Downloads 83737 Double Gaussian Distribution of Nonhomogeneous Barrier Height in Metal/n-type GaN Schottky Contacts
Authors: M. Mamor
Abstract:
GaN-based compounds have attracted much interest in the fabrication of high-power, high speed and high-frequency electronic devices. Other examples of GaN-based applications are blue and ultraviolet (UV) light-emitting diodes (LEDs). All these devices require high-quality ohmic and Schottky contacts. Gaining an understanding of the electrical characteristics of metal/GaN contacts is of fundamental and technological importance for developing GaN-based devices. In this work, the barrier characteristics of Pt and Pd Schottky contacts on n-type GaN were studied using temperature-dependent forward current-voltage (I-V) measurements over a wide temperature range 80–400 K. Our results show that the barrier height and ideality factor, extracted from the forward I-V characteristics based on thermionic emission (TE) model, exhibit an abnormal dependence with temperature; i.e., by increasing temperature, the barrier height increases whereas the ideality factor decreases. This abnormal behavior has been explained based on the TE model by considering the presence of double Gaussian distribution (GD) of nonhomogeneous barrier height at the metal/GaN interface. However, in the high-temperature range (160-400 K), the extracted value for the effective Richardson constant A* based on the barrier inhomogeneity (BHi) model is found in fair agreement with the theoretically predicted value of about 26.9 A.cm-2 K-2 for n-type GaN. This result indicates that in this temperature range, the conduction current transport is dominated by the thermionic emission mode. On the other hand, in the lower temperature range (80-160 K), the corresponding effective Richardson constant value according to the BHi model is lower than the theoretical value, suggesting the presence of other current transport, such as tunneling-assisted mode at lower temperatures.Keywords: Schottky diodes, inhomogeneous barrier height, GaN semiconductors, Schottky barrier heights
Procedia PDF Downloads 55736 Forensic Applications of Quantum Dots
Authors: Samaneh Nabavi, Hadi Shirzad, Somayeh Khanjani, Shirin Jalili
Abstract:
Quantum dots (QDs) are semiconductor nanocrystals that exhibit intrinsic optical and electrical properties that are size dependent due to the quantum confinement effect. Quantum confinement is brought about by the fact that in bulk semiconductor material the electronic structure consists of continuous bands, and that as the size of the semiconductor material decreases its radius becomes less than the Bohr exciton radius (the distance between the electron and electron-hole) and discrete energy levels result. As a result QDs have a broad absorption range and a narrow emission which correlates to the band gap energy (E), and hence QD size. QDs can thus be tuned to give the desired wavelength of fluorescence emission.Due to their unique properties, QDs have attracted considerable attention in different scientific areas. Also, they have been considered for forensic applications in recent years. The ability of QDs to fluoresce up to 20 times brighter than available fluorescent dyes makes them an attractive nanomaterial for enhancing the visualization of latent fingermarks, or poorly developed fingermarks. Furthermore, the potential applications of QDs in the detection of nitroaromatic explosives, such as TNT, based on directive fluorescence quenching of QDs, electron transfer quenching process or fluorescence resonance energy transfer have been paid to attention. DNA analysis is associated tightly with forensic applications in molecular diagnostics. The amount of DNA acquired at a criminal site is inherently limited. This limited amount of human DNA has to be quantified accurately after the process of DNA extraction. Accordingly, highly sensitive detection of human genomic DNA is an essential issue for forensic study. QDs have also a variety of advantages as an emission probe in forensic DNA quantification.Keywords: forensic science, quantum dots, DNA typing, explosive sensor, fingermark analysis
Procedia PDF Downloads 854735 Simulation-Based Evaluation of Indoor Air Quality and Comfort Control in Non-Residential Buildings
Authors: Torsten Schwan, Rene Unger
Abstract:
Simulation of thermal and electrical building performance more and more becomes part of an integrative planning process. Increasing requirements on energy efficiency, the integration of volatile renewable energy, smart control and storage management often cause tremendous challenges for building engineers and architects. This mainly affects commercial or non-residential buildings. Their energy consumption characteristics significantly distinguish from residential ones. This work focuses on the many-objective optimization problem indoor air quality and comfort, especially in non-residential buildings. Based on a brief description of intermediate dependencies between different requirements on indoor air treatment it extends existing Modelica-based building physics models with additional system states to adequately represent indoor air conditions. Interfaces to corresponding HVAC (heating, ventilation, and air conditioning) system and control models enable closed-loop analyzes of occupants' requirements and energy efficiency as well as profitableness aspects. A complex application scenario of a nearly-zero-energy school building shows advantages of presented evaluation process for engineers and architects. This way, clear identification of air quality requirements in individual rooms together with realistic model-based description of occupants' behavior helps to optimize HVAC system already in early design stages. Building planning processes can be highly improved and accelerated by increasing integration of advanced simulation methods. Those methods mainly provide suitable answers on engineers' and architects' questions regarding more exuberant and complex variety of suitable energy supply solutions.Keywords: indoor air quality, dynamic simulation, energy efficient control, non-residential buildings
Procedia PDF Downloads 232734 Aquatic Therapy Improving Balance Function of Individuals with Stroke: A Systematic Review with Meta-Analysis
Authors: Wei-Po Wu, Wen-Yu Liu, Wei−Ting Lin, Hen-Yu Lien
Abstract:
Introduction: Improving balance function for individuals after stroke is a crucial target in physiotherapy. Aquatic therapy which challenges individual’s postural control in an unstable fluid environment may be beneficial in enhancing balance functions. The purposes of the systematic review with meta-analyses were to validate the effects of aquatic therapy in improving balance functions for individuals with strokes in contrast to conventional physiotherapy. Method: Available studies were explored from three electronic databases: PubMed, Scopus, and Web of Science. During literature search, the published date of studies was not limited. The study design of the included studies should be randomized controlled trials (RCTs) and the studies should contain at least one outcome measurement of balance function. The PEDro scale was adopted to assess the quality of included studies, while the 'Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence' was used to evaluate the level of evidence. After the data extraction, studies with same outcome measures were pooled together for meta-analysis. Result: Ten studies with 282 participants were included in analyses. The research qualities of the studies were ranged from fair to good (4 to 8 points). Levels of evidence of the included studies were graded as level 2 and 3. Finally, scores of Berg Balance Scale (BBS), Eye closed force plate center of pressure velocity (anterior-posterior, medial-lateral axis) and Timed up and Go test were pooled and analyzed separately. The pooled results shown improvement in balance function (BBS mean difference (MD): 1.39 points; 95% confidence interval (CI): 0.05-2.29; p=0.002) (Eye closed force plate center of pressure velocity (anterior-posterior axis) MD: 1.39 mm/s; 95% confidence interval (CI): 0.93-1.86; p<0.001) (Eye closed force plate center of pressure velocity (medial-lateral) MD: 1.48 mm/s; 95% confidence interval (CI): 0.15-2.82; p=0.03) and mobility (MD: 0.9 seconds; 95% CI: 0.07-1.73; p=0.03) of stroke individuals after aquatic therapy compared to conventional therapy. Although there were significant differences between two treatment groups, the differences in improvement were relatively small. Conclusion: The aquatic therapy improved general balance function and mobility in the individuals with stroke better than conventional physiotherapy.Keywords: aquatic therapy, balance function, meta-analysis, stroke, systematic review
Procedia PDF Downloads 201733 Urban Noise and Air Quality: Correlation between Air and Noise Pollution; Sensors, Data Collection, Analysis and Mapping in Urban Planning
Authors: Massimiliano Condotta, Paolo Ruggeri, Chiara Scanagatta, Giovanni Borga
Abstract:
Architects and urban planners, when designing and renewing cities, have to face a complex set of problems, including the issues of noise and air pollution which are considered as hot topics (i.e., the Clean Air Act of London and the Soundscape definition). It is usually taken for granted that these problems go by together because the noise pollution present in cities is often linked to traffic and industries, and these produce air pollutants as well. Traffic congestion can create both noise pollution and air pollution, because NO₂ is mostly created from the oxidation of NO, and these two are notoriously produced by processes of combustion at high temperatures (i.e., car engines or thermal power stations). We can see the same process for industrial plants as well. What have to be investigated – and is the topic of this paper – is whether or not there really is a correlation between noise pollution and air pollution (taking into account NO₂) in urban areas. To evaluate if there is a correlation, some low-cost methodologies will be used. For noise measurements, the OpeNoise App will be installed on an Android phone. The smartphone will be positioned inside a waterproof box, to stay outdoor, with an external battery to allow it to collect data continuously. The box will have a small hole to install an external microphone, connected to the smartphone, which will be calibrated to collect the most accurate data. For air, pollution measurements will be used the AirMonitor device, an Arduino board to which the sensors, and all the other components, are plugged. After assembling the sensors, they will be coupled (one noise and one air sensor) and placed in different critical locations in the area of Mestre (Venice) to map the existing situation. The sensors will collect data for a fixed period of time to have an input for both week and weekend days, in this way it will be possible to see the changes of the situation during the week. The novelty is that data will be compared to check if there is a correlation between the two pollutants using graphs that should show the percentage of pollution instead of the values obtained with the sensors. To do so, the data will be converted to fit on a scale that goes up to 100% and will be shown thru a mapping of the measurement using GIS methods. Another relevant aspect is that this comparison can help to choose which are the right mitigation solutions to be applied in the area of the analysis because it will make it possible to solve both the noise and the air pollution problem making only one intervention. The mitigation solutions must consider not only the health aspect but also how to create a more livable space for citizens. The paper will describe in detail the methodology and the technical solution adopted for the realization of the sensors, the data collection, noise and pollution mapping and analysis.Keywords: air quality, data analysis, data collection, NO₂, noise mapping, noise pollution, particulate matter
Procedia PDF Downloads 212732 Effect of Different Phosphorus Levels on Vegetative Growth of Maize Variety
Authors: Tegene Nigussie
Abstract:
Introduction: Maize is the most domesticated of all the field crops. Wild maize has not been found to date and there has been much speculation on its origin. Regardless of the validity of different theories, it is generally agreed that the center of origin of maize is Central America, primarily Mexico and the Caribbean. Maize in Africa is of a recent introduction although data suggest that it was present in Nigeria even before Columbus voyages. After being taken to Europe in 1493, maize was introduced to Africa and distributed (spread through the continent by different routes. Maize is an important cereal crop in Ethiopia in general, it is the primarily stable food, and rural households show strong preference. For human food, the important constituents of grain are carbohydrates (starch and sugars), protein, fat or oil (in the embryo) and minerals. About 75 percent of the kernel is starch, a range of 60.80 percent but low protein content (8-15%). In Ethiopia, the introduction of modern farming techniques appears to be a priority. However, the adoption of modern inputs by peasant farmers is found to be very slow, for example, the adoption rate of fertilizer, an input that is relatively adopted, is very slow. The difference in socio-economic factors lay behind the low rate of technological adoption, including price & marketing input. Objective: The aim of the study is to determine the optimum application rate or level of different phosphorus fertilizers for the vegetative growth of maize and to identify the effect of different phosphorus rates on the growth and development of maize. Methods: The vegetative parameter (above ground) measurement from five plants randomly sampled from the middle rows of each plot. Results: The interaction of nitrogen and maize variety showed a significant at (p<0.01) effect on plant height, with the application of 60kg/ha and BH140 maize variety in combination and root length with the application of 60kg/ha of nitrogen and BH140 variety of maize. The highest mean (12.33) of the number of leaves per plant and mean (7.1) of the number of nodes per plant can be used as an alternative for better vegetative growth of maize. Conclusion and Recommendation: Maize is one of the popular and cultivated crops in Ethiopia. This study was conducted to investigate the best dosage of phosphorus for vegetative growth, yield, and better quality of maize variety and to recommend a level of phosphorus rate and the best variety adaptable to the specific soil condition or area.Keywords: leaf, carbohydrate protein, adoption, sugar
Procedia PDF Downloads 12731 Transmission Line Congestion Management Using Hybrid Fish-Bee Algorithm with Unified Power Flow Controller
Authors: P. Valsalal, S. Thangalakshmi
Abstract:
There is a widespread changeover in the electrical power industry universally from old-style monopolistic outline towards a horizontally distributed competitive structure to come across the demand of rising consumption. When the transmission lines of derestricted system are incapable to oblige the entire service needs, the lines are overloaded or congested. The governor between customer and power producer is nominated as Independent System Operator (ISO) to lessen the congestion without obstructing transmission line restrictions. Among the existing approaches for congestion management, the frequently used approaches are reorganizing the generation and load curbing. There is a boundary for reorganizing the generators, and further loads may not be supplemented with the prevailing resources unless more private power producers are added in the system by considerably raising the cost. Hence, congestion is relaxed by appropriate Flexible AC Transmission Systems (FACTS) devices which boost the existing transfer capacity of transmission lines. The FACTs device, namely, Unified Power Flow Controller (UPFC) is preferred, and the correct placement of UPFC is more vital and should be positioned in the highly congested line. Hence, the weak line is identified by using power flow performance index with the new objective function with proposed hybrid Fish – Bee algorithm. Further, the location of UPFC at appropriate line reduces the branch loading and minimizes the voltage deviation. The power transfer capacity of lines is determined with and without UPFC in the identified congested line of IEEE 30 bus structure and the simulated results are compared with prevailing algorithms. It is observed that the transfer capacity of existing line is increased with the presented algorithm and thus alleviating the congestion.Keywords: available line transfer capability, congestion management, FACTS device, Hybrid Fish-Bee Algorithm, ISO, UPFC
Procedia PDF Downloads 383730 Promoting Self-Esteem and Social Integration in Secondary German Schools: An Evaluation Study
Authors: Susanne Manes, Anni Glaeser, Katharina Wick, Bernhard Strauss, Uwe Berger
Abstract:
Introduction: Over the last decades growing rates of mental health concerns among children and adolescents have been observed. At the same time, physical well-being of children and adolescents becomes increasingly impaired as well. Schools play an important role in preventing mental and physical disorders and in promoting well-being. Self-esteem, as well as social integration, are vital influence factors for mental and physical well-being. The purpose of this study was to develop and evaluate the program 'VorteilJena' for secondary schools in Germany focusing on self-esteem and social integration to improve mental and physical well-being. Method: The school-based health promotion program was designed for students in 5th grade and higher. It consists of several short pedagogical exercises instructed by a teacher and were integrated into the regular class over the course of ten weeks. The exercises focused on fostering social integration using either tasks improving team spirit or exercises that increase tolerance and sense of belonging. Other exercises focused on strengthening the self-esteem of the students. Additionally, the program included a poster exhibition titled 'Belonging' which was put up in the school buildings. The exhibition comprised ten posters which addressed relevant risk factors and resources related to social integration and self-esteem. The study was a randomized controlled sequential study with a pre and post measurement conducted in ten German schools. A total of 1642 students (44% male) were recruited. Their age ranged from 9 to 21 years (M=12.93 years; SD= 2.11). The program was conducted in classes ranging from 5th to 12th grade. Results: The program improved wellbeing, self-esteem and social integration of the involved students compared to the control group. Differential effects depending on implementation rates or age of the students will be analyzed. Moreover, implications for future school-based health promotion programs targeting self-esteem and social integration will be discussed. Conclusion: Social integration considerably influences self-esteem and well-being of students and can be targeted by school-based programs including short and modest exercises. Since a sufficient implementation of health promotion programs is essential, the present program due to its practicability represents a good opportunity to install health promotion focusing on social integration in schools.Keywords: social integration, well-being, health promotion in schools, self-esteem
Procedia PDF Downloads 197729 Enhancing Wire Electric Discharge Machining Efficiency through ANOVA-Based Process Optimization
Authors: Rahul R. Gurpude, Pallvita Yadav, Amrut Mulay
Abstract:
In recent years, there has been a growing focus on advanced manufacturing processes, and one such emerging process is wire electric discharge machining (WEDM). WEDM is a precision machining process specifically designed for cutting electrically conductive materials with exceptional accuracy. It achieves material removal from the workpiece metal through spark erosion facilitated by electricity. Initially developed as a method for precision machining of hard materials, WEDM has witnessed significant advancements in recent times, with numerous studies and techniques based on electrical discharge phenomena being proposed. These research efforts and methods in the field of ED encompass a wide range of applications, including mirror-like finish machining, surface modification of mold dies, machining of insulating materials, and manufacturing of micro products. WEDM has particularly found extensive usage in the high-precision machining of complex workpieces that possess varying hardness and intricate shapes. During the cutting process, a wire with a diameter ranging from 0.18mm is employed. The evaluation of EDM performance typically revolves around two critical factors: material removal rate (MRR) and surface roughness (SR). To comprehensively assess the impact of machining parameters on the quality characteristics of EDM, an Analysis of Variance (ANOVA) was conducted. This statistical analysis aimed to determine the significance of various machining parameters and their relative contributions in controlling the response of the EDM process. By undertaking this analysis, optimal levels of machining parameters were identified to achieve desirable material removal rates and surface roughness.Keywords: WEDM, MRR, optimization, surface roughness
Procedia PDF Downloads 75728 Hot Deformability of Si-Steel Strips Containing Al
Authors: Mohamed Yousef, Magdy Samuel, Maha El-Meligy, Taher El-Bitar
Abstract:
The present work is dealing with 2% Si-steel alloy. The alloy contains 0.05% C as well as 0.85% Al. The alloy under investigation would be used for electrical transformation purposes. A heating (expansion) - cooling (contraction) dilation investigation was executed to detect the a, a+g, and g transformation temperatures at the inflection points of the dilation curve. On heating, primary a was detected at a temperature range between room temperature and 687 oC. The domain of a+g was detected in the range between 687 oC and 746 oC. g phase exists in the closed g region at the range between 746 oC and 1043 oC. The domain of a phase appears again at a temperature range between 1043 and 1105 oC, and followed by secondary a at temperature higher than 1105 oC. A physical simulation of thermo-mechanical processing on the as-cast alloy was carried out. The simulation process took into consideration the hot flat rolling pilot plant parameters. The process was executed on the thermo-mechanical simulator (Gleeble 3500). The process was designed to include seven consecutive passes. The 1st pass represents the roughing stage, while the remaining six passes represent finish rolling stage. The whole process was executed at the temperature range from 1100 oC to 900 oC. The amount of strain starts with 23.5% at the roughing pass and decreases continuously to reach 7.5 % at the last finishing pass. The flow curve of the alloy can be abstracted from the stress-strain curves representing simulated passes. It shows alloy hardening from a pass to the other up to pass no. 6, as a result of decreasing the deformation temperature and increasing of cumulative strain. After pass no. 6, the deformation process enhances the dynamic recrystallization phenomena to appear, where the z-parameter would be high.Keywords: si- steel, hot deformability, critical transformation temperature, physical simulation, thermo-mechanical processing, flow curve, dynamic softening.
Procedia PDF Downloads 245727 Space Weather and Earthquakes: A Case Study of Solar Flare X9.3 Class on September 6, 2017
Authors: Viktor Novikov, Yuri Ruzhin
Abstract:
The studies completed to-date on a relation of the Earth's seismicity and solar processes provide the fuzzy and contradictory results. For verification of an idea that solar flares can trigger earthquakes, we have analyzed a case of a powerful surge of solar flash activity early in September 2017 during approaching the minimum of 24th solar cycle was accompanied by significant disturbances of space weather. On September 6, 2017, a group of sunspots AR2673 generated a large solar flare of X9.3 class, the strongest flare over the past twelve years. Its explosion produced a coronal mass ejection partially directed towards the Earth. We carried out a statistical analysis of the catalogs of earthquakes USGS and EMSC for determination of the effect of solar flares on global seismic activity. New evidence of earthquake triggering due to the Sun-Earth interaction has been demonstrated by simple comparison of behavior of Earth's seismicity before and after the strong solar flare. The global number of earthquakes with magnitude of 2.5 to 5.5 within 11 days after the solar flare has increased by 30 to 100%. A possibility of electric/electromagnetic triggering of earthquake due to space weather disturbances is supported by results of field and laboratory studies, where the earthquakes (both natural and laboratory) were initiated by injection of electrical current into the Earth crust. For the specific case of artificial electric earthquake triggering the current density at a depth of earthquake, sources are comparable with estimations of a density of telluric currents induced by variation of space weather conditions due to solar flares. Acknowledgment: The work was supported by RFBR grant No. 18-05-00255.Keywords: solar flare, earthquake activity, earthquake triggering, solar-terrestrial relations
Procedia PDF Downloads 143726 Tip-Apex Distance as a Long-Term Risk Factor for Hospital Readmission Following Intramedullary Fixation of Intertrochanteric Fractures
Authors: Brandon Knopp, Matthew Harris
Abstract:
Purpose: Tip-apex distance (TAD) has long been discussed as a metric for determining risk of failure in the fixation of peritrochanteric fractures. TAD measurements over 25 millimeters (mm) have been associated with higher rates of screw cut out and other complications in the first several months after surgery. However, there is limited evidence for the efficacy of this measurement in predicting the long-term risk of negative outcomes following hip fixation surgery. The purpose of our study was to investigate risk factors including TAD for hospital readmission, loss of pre-injury ambulation and development of complications within 1 year after hip fixation surgery. Methods: A retrospective review of proximal hip fractures treated with single screw intramedullary devices between 2016 and 2020 was performed at a 327-bed regional medical center. Patients included had a postoperative follow-up of at least 12 months or surgery-related complications developing within that time. Results: 44 of the 67 patients in this study met the inclusion criteria with adequate follow-up post-surgery. There was a total of 10 males (22.7%) and 34 females (77.3%) meeting inclusion criteria with a mean age of 82.1 (± 12.3) at the time of surgery. The average TAD in our study population was 19.57mm and the average 1-year readmission rate was 15.9%. 3 out of 6 patients (50%) with a TAD > 25mm were readmitted within one year due to surgery-related complications. In contrast, 3 out of 38 patients (7.9%) with a TAD < 25mm were readmitted within one year due to surgery-related complications (p=0.0254). Individual TAD measurements, averaging 22.05mm in patients readmitted within 1 year of surgery and 19.18mm in patients not readmitted within 1 year of surgery, were not significantly different between the two groups (p=0.2113). Conclusions: Our data indicate a significant improvement in hospital readmission rates up to one year after hip fixation surgery in patients with a TAD < 25mm with a decrease in readmissions of over 40% (50% vs 7.9%). This result builds upon past investigations by extending the follow-up time to 1 year after surgery and utilizing hospital readmissions as a metric for surgical success. With the well-documented physical and financial costs of hospital readmission after hip surgery, our study highlights a reduction of TAD < 25mm as an effective method of improving patient outcomes and reducing financial costs to patients and medical institutions. No relationship was found between TAD measurements and secondary outcomes, including loss of pre-injury ambulation and development of complications.Keywords: hip fractures, hip reductions, readmission rates, open reduction internal fixation
Procedia PDF Downloads 145725 Performance Evaluation of the CSAN Pronto Point-of-Care Whole Blood Analyzer for Regular Hematological Monitoring During Clozapine Treatment
Authors: Farzana Esmailkassam, Usakorn Kunanuvat, Zahraa Mohammed Ali
Abstract:
Objective: The key barrier in Clozapine treatment of treatment-resistant schizophrenia (TRS) includes frequent bloods draws to monitor neutropenia, the main drug side effect. WBC and ANC monitoring must occur throughout treatment. Accurate WBC and ANC counts are necessary for clinical decisions to halt, modify or continue clozapine treatment. The CSAN Pronto point-of-care (POC) analyzer generates white blood cells (WBC) and absolute neutrophils (ANC) through image analysis of capillary blood. POC monitoring offers significant advantages over central laboratory testing. This study evaluated the performance of the CSAN Pronto against the Beckman DxH900 Hematology laboratory analyzer. Methods: Forty venous samples (EDTA whole blood) with varying concentrations of WBC and ANC as established on the DxH900 analyzer were tested in duplicates on three CSAN Pronto analyzers. Additionally, both venous and capillary samples were concomitantly collected from 20 volunteers and assessed on the CSAN Pronto and the DxH900 analyzer. The analytical performance including precision using liquid quality controls (QCs) as well as patient samples near the medical decision points, and linearity using a mix of high and low patient samples to create five concentrations was also evaluated. Results: In the precision study for QCs and whole blood, WBC and ANC showed CV inside the limits established according to manufacturer and laboratory acceptability standards. WBC and ANC were found to be linear across the measurement range with a correlation of 0.99. WBC and ANC from all analyzers correlated well in venous samples on the DxH900 across the tested sample ranges with a correlation of > 0.95. Mean bias in ANC obtained on the CSAN pronto versus the DxH900 was 0.07× 109 cells/L (95% L.O.A -0.25 to 0.49) for concentrations <4.0 × 109 cells/L, which includes decision-making cut-offs for continuing clozapine treatment. Mean bias in WBC obtained on the CSAN pronto versus the DxH900 was 0.34× 109 cells/L (95% L.O.A -0.13 to 0.72) for concentrations <5.0 × 109 cells/L. The mean bias was higher (-11% for ANC, 5% for WBC) at higher concentrations. The correlations between capillary and venous samples showed more variability with mean bias of 0.20 × 109 cells/L for the ANC. Conclusions: The CSAN pronto showed acceptable performance in WBC and ANC measurements from venous and capillary samples and was approved for clinical use. This testing will facilitate treatment decisions and improve clozapine uptake and compliance.Keywords: absolute neutrophil counts, clozapine, point of care, white blood cells
Procedia PDF Downloads 94724 Analysis of Grid Connected High Concentrated Photovoltaic Systems for Peak Load Shaving in Kuwait
Authors: Adel A. Ghoneim
Abstract:
Air conditioning devices are substantially utilized in the summer months, as a result maximum loads in Kuwait take place in these intervals. Peak energy consumption are usually more expensive to satisfy compared to other standard power sources. The primary objective of the current work is to enhance the performance of high concentrated photovoltaic (HCPV) systems in an attempt to minimize peak power usage in Kuwait using HCPV modules. High concentrated PV multi-junction solar cells provide a promising method towards accomplishing lowest pricing per kilowatt-hour. Nevertheless, these cells have various features that should be resolved to be feasible for extensive power production. A single diode equivalent circuit model is formulated to analyze multi-junction solar cells efficiency in Kuwait weather circumstances taking into account the effects of both the temperature and the concentration ratio. The diode shunt resistance that is commonly ignored in the established models is considered in the present numerical model. The current model results are successfully validated versus measurements from published data to within 1.8% accuracy. Present calculations reveal that the single diode model considering the shunt resistance provides accurate and dependable results. The electrical efficiency (η) is observed to increase with concentration to a specific concentration level after which it reduces. Implementing grid systems is noticed to increase with concentration to a certain concentration degree after which it decreases. Employing grid connected HCPV systems results in significant peak load reduction.Keywords: grid connected, high concentrated photovoltaic systems, peak load, solar cells
Procedia PDF Downloads 155723 Monolithic Integrated GaN Resonant Tunneling Diode Pair with Picosecond Switching Time for High-speed Multiple-valued Logic System
Authors: Fang Liu, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun, JunShuai Xue
Abstract:
The explosive increasing needs of data processing and information storage strongly drive the advancement of the binary logic system to multiple-valued logic system. Inherent negative differential resistance characteristic, ultra-high-speed switching time, and robust anti-irradiation capability make III-nitride resonant tunneling diode one of the most promising candidates for multi-valued logic devices. Here we report the monolithic integration of GaN resonant tunneling diodes in series to realize multiple negative differential resistance regions, obtaining at least three stable operating states. A multiply-by-three circuit is achieved by this combination, increasing the frequency of the input triangular wave from f0 to 3f0. The resonant tunneling diodes are grown by plasma-assistedmolecular beam epitaxy on free-standing c-plane GaN substrates, comprising double barriers and a single quantum well both at the atomic level. Device with a peak current density of 183kA/cm² in conjunction with a peak-to-valley current ratio (PVCR) of 2.07 is observed, which is the best result reported in nitride-based resonant tunneling diodes. Microwave oscillation event at room temperature was discovered with a fundamental frequency of 0.31GHz and an output power of 5.37μW, verifying the high repeatability and robustness of our device. The switching behavior measurement was successfully carried out, featuring rise and fall times in the order of picoseconds, which can be used in high-speed digital circuits. Limited by the measuring equipment and the layer structure, the switching time can be further improved. In general, this article presents a novel nitride device with multiple negative differential regions driven by the resonant tunneling mechanism, which can be used in high-speed multiple value logic field with reduced circuit complexity, demonstrating a new solution of nitride devices to break through the limitations of binary logic.Keywords: GaN resonant tunneling diode, negative differential resistance, multiple-valued logic system, switching time, peak-to-valley current ratio
Procedia PDF Downloads 100722 Synthesis and Characterization of Poly(2-[[4-(Dimethylamino)Benzylidene] Amino]Phenol) in Organic Medium: Investigation of Thermal Stability, Conductivity, and Antimicrobial Properties
Authors: Nuray Yilmaz Baran, Mehmet Saçak
Abstract:
Schiff base polymers are one class of conjugated polymers, also called as poly(azomethines). They have drawn the attention of researchers in recent years due to their some properties such as, optoelectronic, semiconductive, and photovoltaic, antimicrobial activities and high thermal stability. In this study, Poly(2-[[4-(dimethylamino)benzylidene]amino] phenol) P(2-DBAP), which is a Schiff base polymer, was synthesized by an oxidative polycondensation reaction of -[[4-(dimethylamino)benzylidene]amino]phenol (2-DBAP) with oxidants NaOCl, H₂O₂ and O₂ in various organic medium. At the end of the polymerizations carried out at various temperatures and time, maximum conversion of the monomer to the polymer could be obtained as around 93.7 %. The structures of the monomer and polymer were characterized by UV-Vis, FTIR and ¹HNMR techniques. Thermal analysis of the polymer was identified by TG-DTG and DTA techniques, and the thermal degradation behavior was supported by Thermo-IR spectra recorded in the temperature range of 25-800 °C. The number average molecular weight (Mn), weight average molecular weight (Mw) and polydispersity index (PDI) of the polymer were found to be 26337, 9860 g/mol 2.67, respectively. The change of electrical conductivity value of the P(2-DBAP) doped with iodine vapor at different temperatures and time was investigated its maximum was measured by increasing 10¹⁰ fold as 2 x10⁻⁴ Scm⁻¹ after doping for 48 h at 60 °C. Antibacterial and antifungal activities of P(2-DBAP) Schiff base and its polymer were also investigated against Sarcina lutea, Enterobacter aerogenes, Escherichia coli, Enterococcus Faecalis, Klebsiella pneumoniae, Bacillus subtilis, and Candida albicans, Saccharomyces cerevisiae, respectively.Keywords: conductive properties, polyazomethines, polycondensation reaction, Schiff base polymers, thermal stability
Procedia PDF Downloads 288721 The Proton Flow Battery for Storing Renewable Energy: A Theoretical Model of Electrochemical Hydrogen Storage in an Activated Carbon Electrode
Authors: Sh. Heidari, A. J. Andrews, A. Oberoi
Abstract:
Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have a roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. In this paper, a theoretical model is presented of the process of H+ ion (proton) conduction through an acid electrolyte into a highly porous activated carbon electrode where it is neutralised and absorbed on the inner surfaces of pores. A Butler-Volmer type equation relates the rate of adsorption to the potential difference between the activated carbon surface and the electrolyte. This model for the hydrogen storage electrode is then incorporated into a more general computer model based on MATLAB software of the entire electrochemical cell including the oxygen electrode. Hence a theoretical voltage-current curve is generated for given input parameters for a particular activated carbon electrode. It is shown that theoretical VI curves produced by the model can be fitted accurately to experimental data from an actual electrochemical cell with the same characteristics. By obtaining the best-fit values of input parameters, such as the exchange current density and charge transfer coefficient for the hydrogen adsorption reaction, an improved understanding of the adsorption reaction is obtained. This new model will assist in designing improved proton flow batteries for storing solar and wind energy.Keywords: electrochemical hydrogen storage, proton flow battery, butler-volmer equation, activated carbon
Procedia PDF Downloads 500720 Development of Solar Energy Resources for Land along the Transportation Infrastructure: Taking the Lan-Xin Railway in the Silk Road Economic Belt as an Example
Authors: Dan Han, Yukun Zhang, Jie Zheng, Rui Zhang
Abstract:
Making full use of space along transportation infrastructure to develop renewable energy sources, especially solar energy resources, has become a research focus in relevant fields. In recent years, relevant international researches can be classified into three stages of theoretical and technical exploration, exploratory practice as well as planning implementation. Compared with traditional solar energy development mode, the development of solar energy resources in places along the transportation infrastructure has special advantages, which can also bring forth new opportunities for the development of green transportation. 'Road Integrated Photovoltaic', a development model of combining transport and new energy, has been actively studied and applied in developed countries, but it was still in its infancy in China. 'New Silk Road Economic Belt' has great advantage to carry out the 'Road Integrated Photovoltaic' because of the rich solar energy resources in its path, the shortages of renewable energy, the constraints of agricultural land and other reasons. Especially the massive amount of construction of transportation infrastructure brought by Silk Road Economic Belt, large area of developable land along the transportation line will be generated. Abundant solar energy recourses along the Silk Road will provide extremely superb practical opportunities to the land development along transportation infrastructure. We take PVsyst, GIS and Google map software for simulation of its potential by taking Lan-Xin Railway as an example, so potential electrical energy generation can be quantified and further analyzed. Research of 'New Silk Road Economic Belt' combined with 'Road Integrated Photovoltaic' is a creative development for the along transport and energy infrastructure. It not only can make full use of solar radiation and land in its path, but also bring more long-term advantages and benefits.Keywords: land use, silk road economic belt, solar energy, transportation infrastructure
Procedia PDF Downloads 241719 Temperature Dependent Current-Voltage (I-V) Characteristics of CuO-ZnO Nanorods Based Heterojunction Solar Cells
Authors: Venkatesan Annadurai, Kannan Ethirajalu, Anu Roshini Ramakrishnan
Abstract:
Copper oxide (CuO) and zinc oxide (ZnO) based coaxial (CuO-ZnO nanorods) heterojunction has been the interest of various research communities for solar cells, light emitting diodes (LEDs) and photodetectors applications. Copper oxide (CuO) is a p-type material with the band gap of 1.5 eV and it is considered to be an attractive absorber material in solar cells applications due to its high absorption coefficient and long minority carrier diffusion length. Similarly, n-type ZnO nanorods possess many attractive advantages over thin films such as, the light trapping ability and photosensitivity owing to the presence of oxygen related hole-traps at the surface. Moreover, the abundant availability, non-toxicity, and inexpensiveness of these materials make them suitable for potentially cheap, large area, and stable photovoltaic applications. However, the efficiency of the CuO-ZnO nanorods heterojunction based devices is greatly affected by interface defects which generally lead to the poor performance. In spite of having much potential, not much work has been carried out to understand the interface quality and transport mechanism involved across the CuO-ZnO nanorods heterojunction. Therefore, a detailed investigation of CuO-ZnO heterojunction is needed to understand the interface which affects its photovoltaic performance. Herein, we have fabricated the CuO-ZnO nanorods based heterojunction by simple hydrothermal and electrodeposition technique and investigated its interface quality by carrying out temperature (300 –10 K) dependent current-voltage (I-V) measurements under dark and illumination of visible light. Activation energies extracted from the temperature dependent I-V characteristics reveals that recombination and tunneling mechanism across the interfacial barrier plays a significant role in the current flow.Keywords: heterojunction, electrical transport, nanorods, solar cells
Procedia PDF Downloads 224718 Exploration of Industrial Symbiosis Opportunities with an Energy Perspective
Authors: Selman Cagman
Abstract:
A detailed analysis is made within an organized industrial zone (OIZ) that has 1165 production facilities such as manufacturing of furniture, fabricated metal products (machinery and equipment), food products, plastic and rubber products, machinery and equipment, non-metallic mineral products, electrical equipment, textile products, and manufacture of wood and cork products. In this OIZ, a field study is done by choosing some facilities that can represent the whole OIZ sectoral distribution. In this manner, there are 207 facilities included to the site visit, and there is a 17 questioned survey carried out with each of them to assess their inputs, outputs, and waste amounts during manufacturing processes. The survey result identify that MDF/Particleboard and chipboard particles, textile, food, foam rubber, sludge (treatment sludge, phosphate-paint sludge, etc.), plastic, paper and packaging, scrap metal (aluminum shavings, steel shavings, iron scrap, profile scrap, etc.), slag (coal slag), ceramic fracture, ash from the fluidized bed are the wastes come from these facilities. As a result, there are 5 industrial symbiosis projects established with this study. One of the projects is a 2.840 kW capacity Integrated Biomass Based Waste Incineration-Energy Production Facility running on 35.000 tons/year of MDF particles and chipboard waste. Another project is a biogas plant with 225 tons/year whey, 100 tons/year of sesame husk, 40 tons/year of burnt wafer dough, and 2.000 tons/year biscuit waste. These two plants investment costs and operational costs are given in detail. The payback time of the 2.840 kW plant is almost 4 years and the biogas plant is around 6 years.Keywords: industrial symbiosis, energy, biogas, waste to incineration
Procedia PDF Downloads 107717 Preparation and CO2 Permeation Properties of Carbonate-Ceramic Dual-Phase Membranes
Authors: H. Ishii, S. Araki, H. Yamamoto
Abstract:
In recent years, the carbon dioxide (CO2) separation technology is required in terms of the reduction of emission of global warming gases and the efficient use of fossil fuels. Since the emission amount of CO2 gas occupies the large part of greenhouse effect gases, it is considered that CO2 have the most influence on global warming. Therefore, we need to establish the CO2 separation technologies with high efficiency at low cost. In this study, we focused on the membrane separation compared with conventional separation technique such as distillation or cryogenic separation. In this study, we prepared carbonate-ceramic dual-phase membranes to separate CO2 at high temperature. As porous ceramic substrate, the (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+σ, La0.6Sr0.4Ti0.3 Fe0.7O3 and Ca0.8Sr0.2Ti0.7Fe0.3O3-α (PLNCG, LSTF and CSTF) were examined. PLNCG, LSTF and CSTF have the perovskite structure. The perovskite structure has high stability and shows ion-conducting doped by another metal ion. PLNCG, LSTF and CSTF have perovskite structure and has high stability and high oxygen ion diffusivity. PLNCG, LSTF and CSTF powders were prepared by a solid-phase process using the appropriate carbonates or oxides. To prepare porous substrates, these powders mixed with carbon black (20 wt%) and a few drops of polyvinyl alcohol (5 wt%) aqueous solution. The powder mixture were packed into stainless steel mold (13 mm) and uniaxially pressed into disk shape under a pressure of 20 MPa for 1 minute. PLNCG, LSTF and CSTF disks were calcined in air for 6 h at 1473, 1573 and 1473 K, respectively. The carbonate mixture (Li2CO3/Na2CO3/K2CO3: 42.5/32.5/25 in mole percent ratio) was placed inside a crucible and heated to 793 K. Porous substrates were infiltrated with the molten carbonate mixture at 793 K. Crystalline structures of the fresh membranes and after the infiltration with the molten carbonate mixtures were determined by X-ray diffraction (XRD) measurement. We confirmed the crystal structure of PLNCG and CSTF slightly changed after infiltration with the molten carbonate mixture. CO2 permeation experiments with PLNCG-carbonate, LSTF-carbonate and CSTF-carbonate membranes were carried out at 773-1173 K. The gas mixture of CO2 (20 mol%) and He was introduced at the flow rate of 50 ml/min to one side of membrane. The permeated CO2 was swept by N2 (50 ml/min). We confirmed the effect of ceramic materials and temperature on the CO2 permeation at high temperature.Keywords: membrane, perovskite structure, dual-phase, carbonate
Procedia PDF Downloads 367716 Wireless Integrated Switched Oscillator Impulse Generator with Application in Wireless Passive Electric Field Sensors
Authors: S. Mohammadzamani, B. Kordi
Abstract:
Wireless electric field sensors are in high demand in the number of applications that requires measuring electric field such as investigations of high power systems and testing the high voltage apparatus. Passive wireless electric field sensors are most desired since they do not require a source of power and are interrogated wirelessly. A passive wireless electric field sensor has been designed and fabricated by our research group. In the wireless interrogation system of the sensor, a wireless radio frequency impulse generator needs to be employed. A compact wireless impulse generator composed of an integrated resonant switched oscillator (SWO) and a pulse-radiating antenna has been designed and fabricated in this research. The fundamental of Switched Oscillators was introduced by C.E.Baum. A Switched Oscillator consists of a low impedance transmission line charged by a DC source, through large impedance at desired frequencies and terminated to a high impedance antenna at one end and a fast closing switch at the other end. Once the line is charged, the switch will close and short-circuit the transmission line. Therefore, a fast transient wave will be generated and travels along the transmission line. Because of the mismatch between the antenna and the transmission line, only a part of fast transient wave will be radiated, and a portion of the fast-transient wave will reflect back. At the other end of the transmission line, there is a closed switch. Consequently, a second reflection with a reversed sign will propagate towards the antenna and the wave continues back and forth. hence, at the terminal of the antenna, there will be a series of positive and negative pulses with descending amplitude. In this research a single ended quarter wavelength Switched Oscillator has been designed and simulated at 800MHz. The simulation results show that the designed Switched Oscillator generates pulses with decreasing amplitude at the frequency of 800MHz with the maximum amplitude of 10V and bandwidth of about 10MHz at the antenna end. The switched oscillator has been fabricated using a 6cm long coaxial cable transmission line which is charged by a DC source and an 8cm monopole antenna as the pulse radiating antenna. A 90V gas discharge switch has been employed as the fast closing switch. The Switched oscillator sends a series of pulses with decreasing amplitude at the frequency of 790MHz with the maximum amplitude of 0.3V in the distance of 30 cm.Keywords: electric field measurement, impulse radiating antenna, switched oscillator, wireless impulse generator
Procedia PDF Downloads 181715 Feasibility Study of Tidal Current of the Bay of Bengal to Generate Electricity as a Renewable Energy
Authors: Myisha Ahmad, G. M. Jahid Hasan
Abstract:
Electricity is the pinnacle of human civilization. At present, the growing concerns over significant climate change have intensified the importance of the use of renewable energy technologies for electricity generation. The interest is primarily due to better energy security, smaller environmental impact and providing a sustainable alternative compared to the conventional energy sources. Solar power, wind, biomass, tidal power, and wave power are some of the most reliable sources of renewable energy. Ocean approximately holds 2×10³ TW of energy and has the largest renewable energy resource on the planet. Ocean energy has many forms namely, encompassing tides, ocean circulation, surface waves, salinity and thermal gradients. Ocean tide in particular, associates both potential and kinetic energy. The study is focused on the latter concept that deals with tidal current energy conversion technologies. Tidal streams or marine currents generate kinetic energy that can be extracted by marine current energy devices and converted into transmittable energy form. The principle of technology development is very comparable to that of wind turbines. Conversion of marine tidal resources into substantial electrical power offers immense opportunities to countries endowed with such resources and this work is aimed at addressing such prospects of Bangladesh. The study analyzed the extracted current velocities from numerical model works at several locations in the Bay of Bengal. Based on current magnitudes, directions and available technologies the most fitted locations were adopted and possible annual generation capacity was estimated. The paper also examines the future prospects of tidal current energy along the Bay of Bengal and establishes a constructive approach that could be adopted in future project developments.Keywords: bay of Bengal, energy potential, renewable energy, tidal current
Procedia PDF Downloads 375