Search results for: surface preparation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7890

Search results for: surface preparation

4110 One Way to Address the Complications of Dental Implantology

Authors: Predrag Kavaric, Vladimir L. Jubic, Maxim Cadenovic

Abstract:

The patient was transferred from his dentist to our tertiary medical institution. In anamnesis, we got information that his dental intervention was two years ago when he got dental implants but because of the coronavirus pandemic event, he didn’t finish the whole procedure. After two years, he decided that he will continue his work at his dentist, then his dentist noticed that there is no earlier inserted implant in the upper jaw on the right side. They do Panoramic X-ray and find that the implant is all in the maxillary sinus cavity. The flour of the maxilla was intact without any fistula on the place where the implant was inserted in the maxilla bone, After that initial diagnostic they sent the patient to maxillofacial surgery and otorhinolaryngology. We asked for a CT scan of paranasal sinuses, which confirmed the foreign body in the right maxillary sinus. The plan was that in general anesthesia we do FESS and try to find a foreign body in the maxillary sinus or in case of failure to do Caldwel Luc on that side. After preoperative preparation in GA, we do FESS. In inspection, we find small polyps and chronically changed mucosa of osteomeatal complex and right maxillary sinus. After removing polyps we did uncinectomy and medial maxillectomy. With Heuweiser Antrum grasping forceps after several attempts we managed to extract a foreign body from the bottom of the right maxillary sinus. On the first postoperative day we did detamponade, and then we discharge the patient from hospital. The Covid pandemic has contributed to the postponement of a large number of planned operations, which has resulted in various complications in the treatment of a number of patients. In this case, it happened that the implant was most likely rejected by the bone but in the direction of the maxillary sinus, which is not a common cause. On the other hand, the success was that less traumatic intervention was able to remove the foreign body from the maxillary sinus in which it was located. Since the sinus floor is free of bone defects, it can be continued relatively quickly with dental procedures.

Keywords: x-ray, surgery, maxillar sinus, complication, fees

Procedia PDF Downloads 146
4109 Effect of Aryl Imidazolium Ionic Liquids as Asphaltene Dispersants

Authors: Raghda Ahmed El-Nagar

Abstract:

Oil spills are one of the most serious environmental issues that have occurred during the production and transportation of petroleum crude oil. Chemical asphaltene dispersants are hazardous to the marine environment, so Ionic liquids (ILs) as asphaltene dispersants are a critical area of study. In this work, different aryl imidazolium ionic liquids were synthesized with high yield and elucidated via tools of analysis (Elemental analysis, FT-IR, and 1H-NMR). Thermogravimetric analysis confirmed that the prepared ILs posses high thermal stability. The critical micelle concentration (CMC), surface tension, and emulsification index were investigated. Evaluation of synthesized ILs as asphaltene dispersants were assessed at various concentrations, and data reveals high dispersion efficiency.

Keywords: ionic liquids, oil spill, asphaltene dispersants, CMC, efficiency

Procedia PDF Downloads 194
4108 Analysis of the Influence of Fiber Volume and Fiber Orientation on Post-Cracking Behavior of Steel Fiber Reinforced Concrete

Authors: Marilia M. Camargo, Luisa A. Gachet-Barbosa, Rosa C. C. Lintz

Abstract:

The addition of fibers into concrete matrix can enhance some properties of the composite, such as tensile, flexural and impact strengths, toughness, deformation capacity and post-cracking ductility. Many factors affect the mechanical behavior of fiber reinforced concrete, such as concrete matrix (concrete strength, additions, aggregate diameter, etc.), characteristics of the fiber (geometry, type, aspect ratio, volume, orientation, distribution, strength, stiffness, etc.), specimen (size, geometry, method of preparation and loading rate). This research investigates the effects of fiber volume and orientation on the post-cracking behavior of steel fiber reinforced concrete (SFRC). Hooked-end steel fibers with aspect ratios of 45 were added into concrete with volume of 0,32%, 0,64%, 0,94%. The post-cracking behaviour was assessed by double punch test of cubic specimens and the actual volume and orientation of the fibers were determined by non-destructive tests by means of electromagnetic induction. The results showed that the actual volume of fibers in each sample differs in a small amount from the dosed volume of fibers and that the deformation and toughness of the concrete increase with the increase in the actual volume of fibers. In determining the orientation of the fibers, it was found that they tend to distribute more in the X and Y axes due to the influence of the walls of the mold. In addition, it was concluded that the orientation of the fibers is important in the post-cracking behaviour of FRC when analyzed together with the actual volume of fibers, since the greater the volume of fibers, the greater the number of fibers oriented orthogonally to the application of loadings and, consequently, there is a better mechanical behavior of the composite. These results provide a better understanding of the influence of volume and fiber orientation on the post-cracking behavior of the FRC.

Keywords: fiber reinforced concrete, steel fibers, volume of fibers, orientation of fibers, post-cracking behaviour

Procedia PDF Downloads 180
4107 Environmental Fate and Toxicity of Aged Titanium Dioxide Nano-Composites Used in Sunscreen

Authors: Danielle Slomberg, Jerome Labille, Riccardo Catalano, Jean-Claude Hubaud, Alexandra Lopes, Alice Tagliati, Teresa Fernandes

Abstract:

In the assessment and management of cosmetics and personal care products, sunscreens are of emerging concern regarding both human and environmental health. Organic UV blockers in many sunscreens have been evidenced to undergo rapid photodegradation, induce dermal allergic reactions due to skin penetration, and to cause adverse effects on marine systems. While mineral UV-blockers may offer a safer alternative, their fate and impact and resulting regulation are still under consideration, largely related to the potential influence of nanotechnology-based products on both consumers and the environment. Nanometric titanium dioxide (TiO₂) UV-blockers have many advantages in terms of sun protection and asthetics (i.e., transparency). These UV-blockers typically consist of rutile nanoparticles coated with a primary mineral layer (silica or alumina) aimed at blocking the nanomaterial photoactivity and can include a secondary organic coating (e.g., stearic acid, methicone) aimed at favouring dispersion of the nanomaterial in the sunscreen formulation. The nanomaterials contained in the sunscreen can leave the skin either through a bathing of everyday usage, with subsequent release into rivers, lakes, seashores, and/or sewage treatment plants. The nanomaterial behaviour, fate and impact in these different systems is largely determined by its surface properties, (e.g. the nanomaterial coating type) and lifetime. The present work aims to develop the eco-design of sunscreens through the minimisation of risks associated with nanomaterials incorporated into the formulation. All stages of the sunscreen’s life cycle must be considered in this aspect, from its manufacture to its end-of-life, through its use by the consumer to its impact on the exposed environment. Reducing the potential release and/or toxicity of the nanomaterial from the sunscreen is a decisive criterion for its eco-design. TiO₂ UV-blockers of varied size and surface coating (e.g., stearic acid and silica) have been selected for this study. Hydrophobic TiO₂ UV-blockers (i.e., stearic acid-coated) were incorporated into a typical water-in-oil (w/o) formulation while hydrophilic, silica-coated TiO₂ UV-blockers were dispersed into an oil-in-water (o/w) formulation. The resulting sunscreens were characterised in terms of nanomaterial localisation, sun protection factor, and photo-passivation. The risk to the direct aquatic environment was assessed by evaluating the release of nanomaterials from the sunscreen through a simulated laboratory aging procedure. The size distribution, surface charge, and degradation state of the nano-composite by-products, as well as their nanomaterial concentration and colloidal behaviour were determined in a variety of aqueous environments (e.g., seawater and freshwater). Release of the hydrophobic nanocomposites into the aqueous environment was driven by oil droplet formation while hydrophilic nano-composites were readily dispersed. Ecotoxicity of the sunscreen by-products (from both w/o and o/w formulations) and their risk to marine organisms were assessed using coral symbiotes and tropical corals, evaluating both lethal and sublethal toxicities. The data dissemination and provided risk knowledge from the present work will help guide regulation related to nanomaterials in sunscreen, provide better information for consumers, and allow for easier decision-making for manufacturers.

Keywords: alteration, environmental fate, sunscreens, titanium dioxide nanoparticles

Procedia PDF Downloads 263
4106 Chitosan-Whey Protein Isolate Core-Shell Nanoparticles as Delivery Systems

Authors: Zahra Yadollahi, Marjan Motiei, Natalia Kazantseva, Petr Saha

Abstract:

Chitosan (CS)-whey protein isolate (WPI) core-shell nanoparticles were synthesized through self-assembly of whey protein isolated polyanions and chitosan polycations in the presence of tripolyphosphate (TPP) as a crosslinker. The formation of this type of nanostructures with narrow particle size distribution is crucial for developing delivery systems since the functional characteristics highly depend on their sizes. To achieve this goal, the nanostructure was optimized by varying the concentrations of WPI, CS, and TPP in the reaction mixture. The chemical characteristics, surface morphology, and particle size of the nanoparticles were evaluated.

Keywords: whey protein isolated, chitosan, nanoparticles, delivery system

Procedia PDF Downloads 93
4105 Fused Deposition Modelling as the Manufacturing Method of Fully Bio-Based Water Purification Filters

Authors: Natalia Fijol, Aji P. Mathew

Abstract:

We present the processing and characterisation of three-dimensional (3D) monolith filters based on polylactic acid (PLA) reinforced with various nature-derived nanospecies such as hydroxyapatite, modified cellulose fibers and chitin fibers. The nanospecies of choice were dispersed in PLA through Thermally Induced Phase Separation (TIPS) method. The biocomposites were developed via solvent-assisted blending and the obtained pellets were further single-screw extruded into 3D-printing filaments and processed into various geometries using Fused Deposition Modelling (FDM) technique. The printed prototypes included cubic, cylindrical and hour-glass shapes with diverse patterns of printing infill as well as varying pore structure including uniform and multiple level gradual pore structure. The pores and channel structure as well as overall shape of the prototypes were designed in attempt to optimize the flux and maximize the adsorption-active time. FDM is a cost and energy-efficient method, which does not require expensive tools and elaborated post-processing maintenance. Therefore, FDM offers the possibility to produce customized, highly functional water purification filters with tuned porous structures suitable for removal of wide range of common water pollutants. Moreover, as 3D printing becomes more and more available worldwide, it allows producing portable filters at the place and time where they are most needed. The study demonstrates preparation route for the PLA-based, fully biobased composite and their processing via FDM technique into water purification filters, addressing water treatment challenges on an industrial scale.

Keywords: fused deposition modelling, water treatment, biomaterials, 3D printing, nanocellulose, nanochitin, polylactic acid

Procedia PDF Downloads 115
4104 Preparation and Optimization of Curcumin-HPβCD Complex Bioadhesive Vaginal Films for Vaginal Candidiasis by Factorial Design

Authors: Umme Hani, H. G. Shivakumar, M. D. Younus Pasha

Abstract:

The purpose of this work was to design and optimize a novel vaginal drug delivery system for more effective treatment against vaginal candidiasis. To achieve a better therapeutic efficacy and patient compliance in the treatment for vaginal candidiasis, herbal antifungal agent Curcumin which is 2.5 fold more potent than fluconazole at inhibiting the adhesion of candida albicans has been formulated in a bio-adhesive vaginal film. Curcumin was formulated in bio-adhesive film formulations that could be retained in the vagina for prolonged intervals. The polymeric films were prepared by solvent evaporation and optimized for various physicodynamic and aesthetic properties. Curcumin HPβCD (Hydroxypropyl β Cyclodextrin) was first developed to increase the solubility of curcumin. The formation of the Curcumin HPβCD complex was characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and FT-IR and evaluated for its solubility. Curcumin HPβCD complex was formulated in a bio-adhesive film using hydroxypropyl methyl cellulose (HPMC) and Carbopol 934P and characterized. DSC and FT-IR data of Curcumin HPβCD indicate there was complex formation between the drug and HPβCD. The little moisture content (8.02±0.34% w/w) was present in the film, which helps them to remain stable and kept them from being completely dry and brittle. The mechanical properties, tensile strength, and percentage elongation at break reveal that the formulations were found to be soft and tough. The films showed good peelability, relatively good swelling index, and moderate tensile strength and retained vaginal mucosa up to 8 h. The developed Curcumin vaginal film could be a promising safe herbal medication and can ensure longer residence at the vagina and provide an efficient therapy for vaginal candidiasis.

Keywords: curcumin, curcumin-HPβCD complex, bio-adhesive vaginal film, vaginal candidiasis, 23 factorial design

Procedia PDF Downloads 382
4103 Preparation Static Dissipative Nanocomposites of Alkaline Earth Metal Doped Aluminium Oxide and Methyl Vinyl Silicone Polymer

Authors: Aparna M. Joshi

Abstract:

Methyl vinyl silicone polymer (VMQ) - alkaline earth metal doped aluminium oxide composites are prepared by conventional two rolls open mill mixing method. Doped aluminium oxides (DAO) using silvery white coloured alkaline earth metals such as Mg and Ca as dopants in the concentration of 0.4 % are synthesized by microwave combustion method and referred as MA ( Mg doped aluminium oxide) and CA ( Ca doped aluminium oxide). The as-synthesized materials are characterized for the electrical resistance, X–ray diffraction, FE-SEM, TEM and FTIR. The electrical resistances of the DAOs are observed to be ~ 8-20 MΩ. This means that the resistance of aluminium oxide (Corundum) α-Al2O3 which is ~ 1010Ω is reduced by the order of ~ 103 to 104 Ω after doping. XRD studies reveal the doping of Mg and Ca in aluminium oxide. The microstructural study using FE-SEM shows the flaky clusterous structures with the thickness of the flakes between 10 and 20 nm. TEM images depict the rod-shaped morphological geometry of the particles with the diameter of ~50-70 nm. The nanocomposites are synthesized by incorporating the DAOs in the concentration of 75 phr (parts per hundred parts of rubber) into VMQ polymer. The electrical resistance of VMQ polymer, which is ~ 1015Ω, drops by the order of 108Ω. There is a retention of the electrical resistance of ~ 30-50 MΩ for the nanocomposites which is a static dissipative range of electricity. In this work white coloured electrically conductive VMQ polymer-DAO nanocomposites (MAVMQ for Mg doping and CAVMQ for Ca doping) have been synthesized. The physical and mechanical properties of the composites such as specific gravity, hardness, tensile strength and rebound resilience are measured. Hardness and tensile strength are found to increase, with the negligible alteration in the other properties.

Keywords: doped aluminium oxide, methyl vinyl silicone polymer, microwave synthesis, static dissipation

Procedia PDF Downloads 557
4102 Investigation of Damage in Glass Subjected to Static Indentation Using Continuum Damage Mechanics

Authors: J. Ismail, F. Zaïri, M. Naït-Abdelaziz, Z. Azari

Abstract:

In this work, a combined approach of continuum damage mechanics (CDM) and fracture mechanics is applied to model a glass plate behavior under static indentation. A spherical indenter is used and a CDM based constitutive model with an anisotropic damage tensor was selected and implemented into a finite element code to study the damage of glass. Various regions with critical damage values were predicted in good agreement with the experimental observations in the literature. In these regions, the directions of crack propagation, including both cracks initiating on the surface as well as in the bulk, were predicted using the strain energy density factor.

Keywords: finite element modeling, continuum damage mechanics, indentation, cracks

Procedia PDF Downloads 421
4101 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment

Authors: Arindam Chaudhuri

Abstract:

Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.

Keywords: FRSVM, Hadoop, MapReduce, PFRSVM

Procedia PDF Downloads 490
4100 Preparation of Flurbiprofen Derivative for Enhanced Brain Penetration

Authors: Jungkyun Im

Abstract:

Nonsteroidal anti-inflammatory drugs (NSAIDs) are effective for relieving pain and reducing inflammation. They are nonselective inhibitors of two isoforms of COX, cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), and thereby inhibiting the production of hormone-like lipid compounds such as, prostaglandins and thromboxanes which cause inflammation, pain, fever, platelet aggregation, etc. In addition, recently there are many research articles reporting the neuroprotective effect of NSAIDs in neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). However, the clinical use of NSAIDs in these diseases is limited by low brain distribution. Therefore, in order to assist the in-depth investigation on the pharmaceutical mechanism of flurbiprofen in neuroprotection and to make flurbiprofen a more potent drug to prevent or alleviate neurodegenerative diseases, delivery of flurbiprofen to brain should be effective and sufficient amount of flurbiprofen must penetrate the BBB thus gaining access into the patient’s brain. We have recently developed several types of guanidine-rich molecular carriers with high molecular weights and good water solubility that readily cross the blood-brain barrier (BBB) and display efficient distributions in the mouse brain. The G8 (having eight guanidine groups) molecular carrier based on D-sorbitol was found to be very effective in delivering anticancer drugs to a mouse brain. In the present study, employing the same molecular carrier, we prepared the flurbiprofen conjugate and studied its BBB permeation by mouse tissue distribution study. Flurbiprofen was attached to a molecular carrier with a fluorescein probe and multiple terminal guanidiniums. The conjugate was found to internalize into live cells and readily cross the BBB to enter the mouse brain. Our novel synthetic flurbiprofen conjugate will hopefully delivery NSAIDs into brain, and is therefore applicable to the neurodegenerative diseases treatment or prevention.

Keywords: flurbiprofen, drug delivery, molecular carrier, organic synthesis

Procedia PDF Downloads 231
4099 Ointment of Rosella Flower Petals Extract (Hibiscus sabdariffa): Pharmaceutical Preparations Formulation Development of Herbs for Antibacterial S. aureus

Authors: Muslihatus Syarifah

Abstract:

Introduction: Rosella flower petals can be used as an antibacterial because it contains alkaloids, flavonoids, phenolics, and terpenoids) for the . Bacteria activity is S. aureus can cause skin infections and pengobatanya most appropriate use of topical preparations. Ointment is a topical preparation comprising the active substance and ointment base. Not all the base matches the active substances or any type of disease. In this study using flavonoid active substances contained in rosella flower petals (Hibiscus sabdariffa) to be made ointment by testing a variety of different bases in order to obtain a suitable basis for the formulation of ointment extract rosella flower petals. Methods: Experimental research with research methods Post test control group design using the ointment is hydrocarbon sample, absorption, leached water and dissolved water. Then tested for bacteria S. aureus with different concentrations of 1%, 2%, 4%, 8%, 16, 32%. Data were analyzed using One Way ANOVA followed by Post Hoc test. Results: Ointment with a hydrocarbon base, absorption, leached water and dissolved water having no change in physical properties during storage. Base affect the physical properties of an ointment that adhesion, dispersive power and pH. The physical properties of the ointment with different concentrations produce different physical properties including adhesion, dispersive power and pH. The higher the concentration the higher dispersive power, but the smaller the adhesion and pH. Conclusion: Differences bases, storage time, the concentration of the extract can affect the physical properties of the ointment. Concentration of extract in the ointment extract rosella flower petals is 32%.

Keywords: rosella, physical properties, ointments, antibacterial

Procedia PDF Downloads 371
4098 Method for Controlling the Groundwater Polluted by the Surface Waters through Injection Wells

Authors: Victorita Radulescu

Abstract:

Introduction: The optimum exploitation of agricultural land in the presence of an aquifer polluted by the surface sources requires close monitoring of groundwater level in both periods of intense irrigation and in absence of the irrigations, in times of drought. Currently in Romania, in the south part of the country, the Baragan area, many agricultural lands are confronted with the risk of groundwater pollution in the absence of systematic irrigation, correlated with the climate changes. Basic Methods: The non-steady flow of the groundwater from an aquifer can be described by the Bousinesq’s partial differential equation. The finite element method was used, applied to the porous media needed for the water mass balance equation. By the proper structure of the initial and boundary conditions may be modeled the flow in drainage or injection systems of wells, according to the period of irrigation or prolonged drought. The boundary conditions consist of the groundwater levels required at margins of the analyzed area, in conformity to the reality of the pollutant emissaries, following the method of the double steps. Major Findings/Results: The drainage condition is equivalent to operating regimes on the two or three rows of wells, negative, as to assure the pollutant transport, modeled with the variable flow in groups of two adjacent nodes. In order to obtain the level of the water table, in accordance with the real constraints, are needed, for example, to be restricted its top level below of an imposed value, required in each node. The objective function consists of a sum of the absolute values of differences of the infiltration flow rates, increased by a large penalty factor when there are positive values of pollutant. In these conditions, a balanced structure of the pollutant concentration is maintained in the groundwater. The spatial coordinates represent the modified parameters during the process of optimization and the drainage flows through wells. Conclusions: The presented calculation scheme was applied to an area having a cross-section of 50 km between two emissaries with various levels of altitude and different values of pollution. The input data were correlated with the measurements made in-situ, such as the level of the bedrock, the grain size of the field, the slope, etc. This method of calculation can also be extended to determine the variation of the groundwater in the aquifer following the flood wave propagation in envoys.

Keywords: environmental protection, infiltrations, numerical modeling, pollutant transport through soils

Procedia PDF Downloads 156
4097 Metropolitan Governance in Statutory Plan Making Process

Authors: Vibhore Bakshi

Abstract:

This research paper is a step towards understanding the role of governance in the plan preparation process. It addresses the complexities of the peri-urban, historical constructions, politics and policies of sustainability, and legislative frameworks. The paper reflects on the Delhi NCT as one of the classical cases that have happened to witness different structural changes in the master plan around 1981, 2001, 2021, and Proposed Draft 2041. The Delhi Landsat imageries for 1989 and 2018 show an increase in the built-up areas around the periphery of NCT. The peri-urbanization has been a result of increasing in-migration to peri–urban areas of Delhi. The built-up extraction for years 1981, 1991, 2001, 2011, and 2018 highlights the growing peri-urbanization on scarce land therefore, it becomes equally important to research the history of the land and its legislative measures. It is interesting to understand the streaks of changes that have occurred in the land of Delhi in accordance with the different master plans and land legislative policies. The process of masterplan process in Delhi has experienced a lot of complexities in juxtaposition to other metropolitan regions of the world. The paper identifies the shortcomings in the current master planning process approach in regard to the stage of the planning process, traditional planning approach, and lagging ICT-based interventions. The metropolitan governance systems across the globe and India depict diversity in the organizational setup and varied dissemination of functions. It addresses the complexity of the peri-urban, historical constructions, politics and policies of sustainability, and legislative frameworks.

Keywords: governance, land provisions, built-up areas, in migration, built up extraction, master planning process, legislative policies, metropolitan governance systems

Procedia PDF Downloads 172
4096 Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms

Authors: Dhruvit S. Berawala, Jann R. Ursin, Obrad Slijepcevic

Abstract:

Shale gas is one of the most rapidly growing forms of natural gas. Unconventional natural gas deposits are difficult to characterize overall, but in general are often lower in resource concentration and dispersed over large areas. Moreover, gas is densely packed into the matrix through adsorption which accounts for large volume of gas reserves. Gas production from tight shale deposits are made possible by extensive and deep well fracturing which contacts large fractions of the formation. The conventional reservoir modelling and production forecasting methods, which rely on fluid-flow processes dominated by viscous forces, have proved to be very pessimistic and inaccurate. This paper presents a new approach to forecast shale gas production by detailed modeling of gas desorption, diffusion and non-linear flow mechanisms in combination with statistical representation of these processes. The representation of the model involves a cube as a porous media where free gas is present and a sphere (SiC: Sphere in Cube model) inside it where gas is adsorbed on to the kerogen or organic matter. Further, the sphere is considered consisting of many layers of adsorbed gas in an onion-like structure. With pressure decline, the gas desorbs first from the outer most layer of sphere causing decrease in its molecular concentration. The new available surface area and change in concentration triggers the diffusion of gas from kerogen. The process continues until all the gas present internally diffuses out of the kerogen, gets adsorbs onto available surface area and then desorbs into the nanopores and micro-fractures in the cube. Each SiC idealizes a gas pathway and is characterized by sphere diameter and length of the cube. The diameter allows to model gas storage, diffusion and desorption; the cube length takes into account the pathway for flow in nanopores and micro-fractures. Many of these representative but general cells of the reservoir are put together and linked to a well or hydraulic fracture. The paper quantitatively describes these processes as well as clarifies the geological conditions under which a successful shale gas production could be expected. A numerical model has been derived which is then compiled on FORTRAN to develop a simulator for the production of shale gas by considering the spheres as a source term in each of the grid blocks. By applying SiC to field data, we demonstrate that the model provides an effective way to quickly access gas production rates from shale formations. We also examine the effect of model input properties on gas production.

Keywords: adsorption, diffusion, non-linear flow, shale gas production

Procedia PDF Downloads 166
4095 Flexural Properties of Typha Fibers Reinforced Polyester Composite

Authors: Sana Rezig, Yosr Ben Mlik, Mounir Jaouadi, Foued Khoffi, Slah Msahli, Bernard Durand

Abstract:

Increasing interest in environmental concerns, natural fibers are once again being considered as reinforcements for polymer composites. The main objective of this study is to explore another natural resource, Typha fiber; which is renewable without production cost and available abundantly in nature. The aim of this study was to study the flexural properties of composite resin with and without reinforcing Typha leaf and stem fibers. The specimens were made by the hand-lay-up process using polyester matrix. In our work, we focused on the effect of various treatment conditions (sea water, alkali treatment and a combination of the two treatments), as a surface modifier, on the flexural properties of the Typha fibers reinforced polyester composites. Moreover, weight ratio of Typha leaf or stem fibers was investigated. Besides, both fibers from leaf and stem of Typha plant were used to evaluate the reinforcing effect. Another parameter, which is reinforcement structure, was investigated. In fact, a first composite was made with air-laid nonwoven structure of fibers. A second composite was with a mixture of fibers and resin for each kind of treatment. Results show that alkali treatment and combined process provided better mechanical properties of composites in comparison with fiber treated by sea water. The fiber weight ratio influenced the flexural properties of composites. Indeed, a maximum value of flexural strength of 69.8 and 62,32 MPa with flexural modulus of 6.16 and 6.34 GPawas observed respectively for composite reinforced with leaf and stem fibers for 12.6 % fiber weight ratio. For the different treatments carried out, the treatment using caustic soda, whether alone or after retting seawater, show the best results because it improves adhesion between the polyester matrix and the fibers of reinforcement. SEM photographs were made to ascertain the effects of the surface treatment of the fibers. By varying the structure of the fibers of Typha, the reinforcement used in bulk shows more effective results as that used in the non-woven structure. In addition, flexural strength rises with about (65.32 %) in the case of composite reinforced with a mixture of 12.6% leaf fibers and (27.45 %) in the case of a composite reinforced with a nonwoven structure of 12.6 % of leaf fibers. Thus, to better evaluate the effect of the fiber origin, the reinforcing structure, the processing performed and the reinforcement factor on the performance of composite materials, a statistical study was performed using Minitab. Thus, ANOVA was used, and the patterns of the main effects of these parameters and interaction between them were established. Statistical analysis, the fiber treatment and reinforcement structure seem to be the most significant parameters.

Keywords: flexural properties, fiber treatment, structure and weight ratio, SEM photographs, Typha leaf and stem fibers

Procedia PDF Downloads 415
4094 Examining Pre-Consumer Textile Waste Recycling, Barriers to Implementation, and Participant Demographics: A Review of Literature

Authors: Madeline W. Miller

Abstract:

The global textile industry produces pollutants in the form of liquid discharge, solid waste, and emissions into the natural environment. Textile waste resulting from garment production and other manufacturing processes makes a significant contribution to the amount of waste landfilled globally. While the majority of curbside and other convenient recycling methods cater to post-consumer paper and plastics, pre-consumer textile waste is often discarded with trash and is commonly classified as ‘other’ in municipal solid waste breakdowns. On a larger scale, many clothing manufacturers and other companies utilizing textiles have not yet identified or began using the most sustainable methods for discarding their post-industrial, pre-consumer waste. To lessen the amount of waste sent to landfills, there are post-industrial, pre-consumer textile waste recycling methods that can be used to give textiles a new life. This process requires that textile and garment manufacturers redirect their waste to companies that use industrial machinery to shred or fiberize these materials in preparation for their second life. The goal of this literature review is to identify the recycling and reuse challenges faced by producers within the clothing and textile industry that prevent these companies from utilizing the described recycling methods, causing them to opt for landfill. The literature analyzed in this review reflects manufacturer sentiments toward waste disposal and recycling. The results of this review indicate that the cost of logistics is the determining factor when it comes to companies recycling their pre-consumer textile waste and that the most applicable and successful textile waste recycling methods require a company separate from the manufacturer to account for waste production, provide receptacles for waste, arrange waste transport, and identify a secondary use for the material at a price-point below that of traditional waste disposal service.

Keywords: leadership demographics, post-industrial textile waste, pre-consumer textile waste, industrial shoddy

Procedia PDF Downloads 151
4093 Characterization of the Dispersion Phenomenon in an Optical Biosensor

Authors: An-Shik Yang, Chin-Ting Kuo, Yung-Chun Yang, Wen-Hsin Hsieh, Chiang-Ho Cheng

Abstract:

Optical biosensors have become a powerful detection and analysis tool for wide-ranging applications in biomedical research, pharmaceuticals and environmental monitoring. This study carried out the computational fluid dynamics (CFD)-based simulations to explore the dispersion phenomenon in the microchannel of a optical biosensor. The predicted time sequences of concentration contours were utilized to better understand the dispersion development occurred in different geometric shapes of microchannels. The simulation results showed the surface concentrations at the sensing probe (with the best performance of a grating coupler) in respect of time to appraise the dispersion effect and therefore identify the design configurations resulting in minimum dispersion.

Keywords: CFD simulations, dispersion, microfluidic, optical waveguide sensors

Procedia PDF Downloads 545
4092 Influence of Atmospheric Circulation Patterns on Dust Pollution Transport during the Harmattan Period over West Africa

Authors: Ayodeji Oluleye

Abstract:

This study used Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) and reanalysis dataset of thirty years (1983-2012) to investigate the influence of the atmospheric circulation on dust transport during the Harmattan period over WestAfrica using TOMS data. The Harmattan dust mobilization and atmospheric circulation pattern were evaluated using a kernel density estimate which shows the areas where most points are concentrated between the variables. The evolution of the Inter-Tropical Discontinuity (ITD), Sea surface Temperature (SST) over the Gulf of Guinea, and the North Atlantic Oscillation (NAO) index during the Harmattan period (November-March) was also analyzed and graphs of the average ITD positions, SST and the NAO were observed on daily basis. The Pearson moment correlation analysis was also employed to assess the effect of atmospheric circulation on Harmattan dust transport. The results show that the departure (increased) of TOMS AI values from the long-term mean (1.64) occurred from around 21st of December, which signifies the rich dust days during winter period. Strong TOMS AI signal were observed from January to March with the maximum occurring in the latter months (February and March). The inter-annual variability of TOMSAI revealed that the rich dust years were found between 1984-1985, 1987-1988, 1997-1998, 1999-2000, and 2002-2004. Significantly, poor dust year was found between 2005 and 2006 in all the periods. The study has found strong north-easterly (NE) trade winds were over most of the Sahelianregion of West Africa during the winter months with the maximum wind speed reaching 8.61m/s inJanuary.The strength of NE winds determines the extent of dust transport to the coast of Gulf of Guinea during winter. This study has confirmed that the presence of the Harmattan is strongly dependent on theSST over Atlantic Ocean and ITD position. The locus of the average SST and ITD positions over West Africa could be described by polynomial functions. The study concludes that the evolution of near surface wind field at 925 hpa, and the variations of SST and ITD positions are the major large scale atmospheric circulation systems driving the emission, distribution, and transport of Harmattan dust aerosols over West Africa. However, the influence of NAO was shown to have fewer significance effects on the Harmattan dust transport over the region.

Keywords: atmospheric circulation, dust aerosols, Harmattan, West Africa

Procedia PDF Downloads 310
4091 Enhancing Photocatalytic Hydrogen Production: Modification of TiO₂ by Coupling with Semiconductor Nanoparticles

Authors: Saud Hamdan Alshammari

Abstract:

Photocatalytic water splitting to produce hydrogen (H₂) has obtained significant attention as an environmentally friendly technology. This process, which produces hydrogen from water and sunlight, represents a renewable energy source. Titanium dioxide (TiO₂) plays a critical role in photocatalytic hydrogen production due to its chemical stability, availability, and low cost. Nevertheless, TiO₂'s wide band gap (3.2 eV) limits its visible light absorption and might affect the effectiveness of the photocatalytic. Coupling TiO₂ with other semiconductors is a strategy that can enhance TiO₂ by narrowing its band gap and improving visible light absorption. This paper studies the modification of TiO₂ by coupling it with another semiconductor such as CdS nanoparticles using a reflux reactor and autoclave reactor that helps form a core-shell structure. Characterization techniques, including TEM and UV-Vis spectroscopy, confirmed successful coating of TiO₂ on CdS core, reduction of the band gap from 3.28 eV to 3.1 eV, and enhanced light absorption in the visible region. These modifications are attributed to the heterojunction structure between TiO₂ and CdS.The essential goal of this study is to improve TiO₂ for use in photocatalytic water splitting to enhance hydrogen production. The core-shell TiO₂@CdS nanoparticles exhibited promising results, due to band gap narrowing and improved light absorption. Future work will involve adding Pt as a co-catalyst, which is known to increase surface reaction activity by enhancing proton adsorption. Evaluation of the TiO₂@CdS@Pt catalyst will include performance assessments and hydrogen productivity tests, considering factors such as effective shapes and material ratios. Moreover, the study could be enhanced by studying further modifications to the catalyst and displaying additional performance evaluations. For instance, doping TiO₂ with metals such as nickel (Ni), iron (Fe), and cobalt (Co) and non-metals such as nitrogen (N), carbon (C), and sulfur (S) could positively influence the catalyst by reducing the band gap, enhancing the separation of photogenerated electron-hole pairs, and increasing the surface area, respectively. Additionally, to further improve catalytic performance, examining different catalyst morphologies, such as nanorods, nanowires, and nanosheets, in hydrogen production could be highly beneficial. Optimizing photoreactor design for efficient photon delivery and illumination will further enhance the photocatalytic process. These strategies collectively aim to overcome current challenges and improve the efficiency of hydrogen production via photocatalysis.

Keywords: hydrogen production, photocatalytic, water spliiting, semiconductor, nanoparticles

Procedia PDF Downloads 23
4090 Ta-doped Nb2O5: Synthesis and Photocatalytic Activity

Authors: Mahendrasingh J. Pawar, M. D. Gaoner

Abstract:

Ta-doped Nb2O5 (Ta content 0.5-2% mole fraction) nanoparticles in the range of 20-40 nm were synthesized by combustion technique. The crystalline phase, morphology and size of the nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectroscopy. The specific surface area of the nanoparticles was measured by nitrogen adsorption (BET analysis). The undoped Nb2O5 nanoparticles were found to have the particles size in the range of 50−80 nm. The photocatalytic performance of the samples was characterized by degrading 20 mg/L toluene under UV−Vis irradiation. The results show that the Ta-doped Nb2O5 nanoparticles exhibit a significant increase in photocatalytic performance over the undoped Nb2O5 nanoparticles, and the Nb2O5 nanoparticles doped with 1.5% Ta and calcined at 450°C show the best photocatalytic performance.

Keywords: Nb2O5, Ta-doped Nb2O5, photodegradation of Toluene, combustion method

Procedia PDF Downloads 564
4089 C4H6 Adsorption on the Surface of A BN Nanotube: A DFT Studies

Authors: Maziar Noei

Abstract:

Adsorption of a boron nitride nanotube (BNNT) was examined toward ethylacetylene (C4H6) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G (d) level, and it was found that the adsorption energy (Ead) of ethylacetylene the pristine nanotubes is about -1.60kcal/mol. But when nanotube have been doped with Si and Al atomes, the adsorption energy of ethylacetylene molecule was increased. Calculation showed that when the nanotube is doping by Al, the adsorption energy is about -24.19kcal/mol and also the amount of HOMO/LUMO energy gap (Eg) will reduce significantly. Boron nitride nanotube is a suitable adsorbent for ethylacetylene and can be used in separation processes ethylacetylene. It is seem that nanotube (BNNT) is a suitable semiconductor after doping, and the doped BNNT in the presence of ethylacetylene an electrical signal is generating directly and therefore can potentially be used for ethylacetylene sensors.

Keywords: sensor, nanotube, DFT, ethylacetylene

Procedia PDF Downloads 249
4088 Investigation of Operational Conditions for Treatment of Industrial Wastewater Contaminated with Pesticides Using Electro-Fenton Process

Authors: Mohamed Gar Alalm

Abstract:

This study aims to investigate various operating conditions that affect the performance of the electro-Fenton process for degradation of pesticides. Stainless steel electrodes were utilized in the electro-Fenton cell due to their relatively low cost. The favored conditions of current intensity, pH, iron loading, and pesticide concentration were deeply discussed. Complete removal of pesticide was attained at the optimum conditions. The degradation kinetics were described by pseudo- first-order pattern. In addition, a response surface model was developed to describe the performance of electro-Fenton process under different operational conditions. The model indicated that the coefficient of determination was (R² = 0.995).

Keywords: electro-Fenton, stainless steel, pesticide, wastewater

Procedia PDF Downloads 141
4087 Numerical Model Validation Using Durbin Method

Authors: H. Al-Hajeri

Abstract:

The computation of the effectiveness of turbulence enhancement surface features, such as ribs as means of promoting mixing and hence heat transfer, has attracted the continued attention of the engineering community. In this study, the simulation of a three-dimensional cooling passage is carried out employing a number of turbulence models including Durbin model. The cooling passage consists of a square section duct whose upper and lower surfaces feature staggered cuboid ribs. The main objective of this paper is to provide comparisons of the performance of the v2-f model against other established turbulence models as implemented in the commercial CFD code Ansys Fluent. The present study demonstrates that the v2-f model can successfully capture the isothermal air flow phenomena in flow over obstacles.

Keywords: CFD, cooling passage, Durbin model, turbulence model

Procedia PDF Downloads 503
4086 Formation Mechanism of Macroporous Cu/CuSe and Its Application as Electrocatalyst for Methanol Oxidation Reaction

Authors: Nabi Ullah

Abstract:

The single-step solvothermal method is used to prepare Cu/CuSe as an electrocatalyst for methanol electro-oxidation reaction (MOR). 1,3-butane-diol is selected as a reaction medium, whose viscosity and complex formation with Cu(II) ions dictate the catalyst morphology. The catalyst has a macroporous structure, which is composed of nanoballs with a high purity, crystallinity, and uniform morphology. The electrocatalyst is excellent for MOR, as it delivers a current density of 37.28 mA/mg at a potential of 0.6 V (vs Ag/AgCl) in the electrolyte of 1 M KOH and 0.75 M methanol at a 50 mV/s scan rate under conditions of cyclic voltammetry. The catalyst also shows good stability for 3600 s with negligible charge transfer resistance and a high electrochemical active surface area (ECSA) value of 0.100 mF/cm².

Keywords: MOR, copper selenide, electocatalyst, energy application

Procedia PDF Downloads 63
4085 New Ethanol Method for Soft Tissue Imaging in Micro-CT

Authors: Matej Patzelt, Jan Dudak, Frantisek Krejci, Jan Zemlicka, Vladimir Musil, Jitka Riedlova, Viktor Sykora, Jana Mrzilkova, Petr Zach

Abstract:

Introduction: Micro-CT is well used for examination of bone structures and teeth. On the other hand visualization of the soft tissues is still limited. The goal of our study was to create a new fixation method for soft tissue imaging in micro-CT. Methodology: We used organs of 18 mice - heart, lungs, kidneys, liver and brain, which we fixated in ethanol after meticulous preparation. We fixated organs in different concentrations of ethanol and for different period of time. We used three types of ethanol concentration - 97%, 50% and ascending ethanol concentration (25%, 50%, 75%, 97% each for 12 hours). Fixated organs were scanned after 72 hours, 168 hours and 336 hours period of fixation. We scanned all specimens in micro-CT MARS (Medipix All Resolution System). Results: Ethanol method provided contrast enhancement in all studied organs in all used types of fixation. Fixation in 97% ethanol provided very fast fixation and the contrast among the tissues was visible already after 72 hours of fixation. Fixation for the period of 168 and 336 hours gave better details, especially in lung tissue, where alveoli were visualized. On the other hand, this type of fixation caused organs to petrify. Fixation in 50% ethanol provided best results in 336 hours fixation, details were visualized better than in 97% ethanol and samples were not as hard as in fixation in 97% ethanol. Best results were obtained in fixation in ascending ethanol concentration. All organs were visualized in great details, best-visualized organ was heart, where trabeculae and valves were visible. In this type of fixation, organs stayed soft for whole time. Conclusion: New ethanol method is a great option for soft tissue fixation as well as the method for enhancing contrast among tissues in organs. The best results were obtained with fixation of the organs in ascending ethanol concentration, the best visualized organ was the heart.

Keywords: x-ray imaging, small animals, ethanol, ex-vivo

Procedia PDF Downloads 321
4084 Managment Skills and Values of School Aministrator Public Secondary School Division of Leyte Area IV: Enchancement Model

Authors: Jenney Perez Bacalla

Abstract:

The study was conducted to assess the five (5) identified school administrators of the identified secondary schools in terms of professional characteristics, management skills and values patterns in the Division of Leyte Area IV for a proposed enhancement model for school administrators. The study utilized the qualitative method. There were two (2) groups of respondents: the teachers and the school administrators. The teachers perceived the management skills of the school administrators in their technical and conceptual skills and values in planning and organizing work, allocating and using of funds, submitting reports, decision-making, leading people, public relations and community involvement and other value development. It was found out in the study that most of the school administrators’ management skills were very well manifested. Their value patterns were also very well manifested. Most of them had earned master’s degree and with a unit in doctoral and five (5) years and above in service as a school administrator. Most administrators were performing and successfully execute the planning, organizing and utilizing funds and they were able to lead their subordinates. In planning, it shows that administrators studied the future and arrange the plan. Administrators also were able to manage, maintained the good environment wherein individual work together. School administrators were creating an environment conducive to learning. The school administrator is manifesting the desirable practices in school management. In terms of their educational qualifications, they were all qualified. Academic preparation, trainings and maturation were their attributes to the development of managerial skills of the school administrators. They showed competence in the areas of management skills that they were able to carry their functions with utmost responsibility and capability. School administrators in terms of seminars and trainings on administration and supervision were already equipped. It is concluded that the school administrators possessed the necessary skills and work values in administering the school.

Keywords: management skills and values, public secondary schools, qualitative, school administrators

Procedia PDF Downloads 335
4083 Synthesis of Pd@ Cu Core−Shell Nanowires by Galvanic Displacement of Cu by Pd²⁺ Ions as a Modified Glassy Carbon Electrode for the Simultaneous Determination of Dihydroxybenzene Isomers Speciation

Authors: Majid Farsadrouh Rashti, Parisa Jahani, Amir Shafiee, Mehrdad Mofidi

Abstract:

The dihydroxybenzene isomers, hydroquinone (HQ), catechol (CC) and resorcinol (RS) have been widely recognized as important environmental pollutants due to their toxicity and low degradability in the ecological environment. Speciation of HQ, CC and RS is very important for environmental analysis because they co-exist of these isomers in environmental samples and are too difficult to degrade as an environmental contaminant with high toxicity. There are many analytical methods have been reported for detecting these isomers, such as spectrophotometry, fluorescence, High-performance liquid chromatography (HPLC) and electrochemical methods. These methods have attractive advantages such as simple and fast response, low maintenance costs, wide linear analysis range, high efficiency, excellent selectivity and high sensitivity. A novel modified glassy carbon electrode (GCE) with Pd@ Cu/CNTs core−shell nanowires for the simultaneous determination of hydroquinone (HQ), catechol (CC) and resorcinol (RS) is described. A detailed investigation by field emission scanning electron microscopy and electrochemistry was performed in order to elucidate the preparation process and properties of the GCE/ Pd/CuNWs-CNTs. The electrochemical response characteristic of the modified GPE/LFOR toward HQ, CC and RS were investigated by cyclic voltammetry, differential pulse voltammetry (DPV) and Chronoamperometry. Under optimum conditions, the calibrations curves were linear up to 228 µM for each with detection limits of 0.4, 0.6 and 0.8 µM for HQ, CC and RS, respectively. The diffusion coefficient for the oxidation of HQ, CC and RS at the modified electrode was calculated as 6.5×10⁻⁵, 1.6 ×10⁻⁵ and 8.5 ×10⁻⁵ cm² s⁻¹, respectively. DPV was used for the simultaneous determination of HQ, CC and RS at the modified electrode and the relative standard deviations were 2.1%, 1.9% and 1.7% for HQ, CC and RS, respectively. Moreover, GCE/Pd/CuNWs-CNTs was successfully used for determination of HQ, CC and RS in real samples.

Keywords: dihydroxybenzene isomers, galvanized copper nanowires, electrochemical sensor, Palladium, speciation

Procedia PDF Downloads 128
4082 Different Data-Driven Bivariate Statistical Approaches to Landslide Susceptibility Mapping (Uzundere, Erzurum, Turkey)

Authors: Azimollah Aleshzadeh, Enver Vural Yavuz

Abstract:

The main goal of this study is to produce landslide susceptibility maps using different data-driven bivariate statistical approaches; namely, entropy weight method (EWM), evidence belief function (EBF), and information content model (ICM), at Uzundere county, Erzurum province, in the north-eastern part of Turkey. Past landslide occurrences were identified and mapped from an interpretation of high-resolution satellite images, and earlier reports as well as by carrying out field surveys. In total, 42 landslide incidence polygons were mapped using ArcGIS 10.4.1 software and randomly split into a construction dataset 70 % (30 landslide incidences) for building the EWM, EBF, and ICM models and the remaining 30 % (12 landslides incidences) were used for verification purposes. Twelve layers of landslide-predisposing parameters were prepared, including total surface radiation, maximum relief, soil groups, standard curvature, distance to stream/river sites, distance to the road network, surface roughness, land use pattern, engineering geological rock group, topographical elevation, the orientation of slope, and terrain slope gradient. The relationships between the landslide-predisposing parameters and the landslide inventory map were determined using different statistical models (EWM, EBF, and ICM). The model results were validated with landslide incidences, which were not used during the model construction. In addition, receiver operating characteristic curves were applied, and the area under the curve (AUC) was determined for the different susceptibility maps using the success (construction data) and prediction (verification data) rate curves. The results revealed that the AUC for success rates are 0.7055, 0.7221, and 0.7368, while the prediction rates are 0.6811, 0.6997, and 0.7105 for EWM, EBF, and ICM models, respectively. Consequently, landslide susceptibility maps were classified into five susceptibility classes, including very low, low, moderate, high, and very high. Additionally, the portion of construction and verification landslides incidences in high and very high landslide susceptibility classes in each map was determined. The results showed that the EWM, EBF, and ICM models produced satisfactory accuracy. The obtained landslide susceptibility maps may be useful for future natural hazard mitigation studies and planning purposes for environmental protection.

Keywords: entropy weight method, evidence belief function, information content model, landslide susceptibility mapping

Procedia PDF Downloads 132
4081 Corrosion Analysis of a 3-1/2” Production Tubing of an Offshore Oil and Gas Well

Authors: Suraj Makkar, Asis Isor, Jeetendra Gupta, Simran Bareja, Maushumi K. Talukdar

Abstract:

During the exploratory testing phase of an offshore oil and gas well, when the tubing string was pulled out after production testing, it was observed that there was visible corrosion/pitting in a few of the 3-1/2” API 5 CT L-80 Grade tubing. The area of corrosion was at the same location in all the tubing, i.e., just above the pin end. Since the corrosion was observed in the tubing within two months of their installation, it was a matter of concern, as it could lead to premature failures resulting in leakages and production loss and thus affecting the integrity of the asset. Therefore, the tubing was analysed to ascertain the mechanism of the corrosion occurring on its surface. During the visual inspection, it was observed that the corrosion was totally external, which was near the pin end, and no significant internal corrosion was observed. The chemical compositional analysis and mechanical properties (tensile and impact) show that the pipeline material was conforming to API 5 CT L-80 specifications. The metallographic analysis of the tubing revealed tempered martensitic microstructure. The grain size was observed to be different at the pin end as compared to the microstructure at base metal. The microstructures of the corroded area near threads reveal an oriented microstructure. The clearly oriented microstructure of the cold-worked zone near threads and the difference in microstructure represents inappropriate heat treatment after cold work. This was substantiated by hardness test results as well, which show higher hardness at the pin end in comparison to hardness at base metal. Scanning Electron Microscope (SEM) analysis revealed the presence of round and deep pits and cracks on the corroded surface of the tubing. The cracks were stress corrosion cracks in a corrosive environment arising out of the residual stress, which was not relieved after cold working, as mentioned above. Energy Dispersive Spectroscopy (EDS) analysis indicates the presence of mainly Fe₂O₃, Chlorides, Sulphides, and Silica in the corroded part indicating the interaction of the tubing with the well completion fluid and well bore environment. Thus it was concluded that residual stress after the cold working of male pins during threading and the corrosive environment acted in synergy to cause this pitting corrosion attack on the highly stressed zone along the circumference of the tubing just below the threaded area. Accordingly, the following suitable recommendations were given to avoid the recurrence of such corrosion problems in the wells. (i) After any kind of hot work/cold work, tubing should be normalized at full length to achieve uniform microstructure throughout its length. (ii) Heat treatment requirements (as per API 5 CT) should be part of technical specifications while at the procurement stage.

Keywords: pin end, microstructure, grain size, stress corrosion cracks

Procedia PDF Downloads 80