Search results for: phases model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17878

Search results for: phases model

14098 Microstructural Investigation and Fatigue Damage Quantification of Anisotropic Behavior in AA2017 Aluminum Alloy under Cyclic Loading

Authors: Abdelghani May

Abstract:

This paper reports on experimental investigations concerning the underlying reasons for the anisotropic behavior observed during the cyclic loading of AA2017 aluminum alloy. Initially, we quantified the evolution of fatigue damage resulting from controlled proportional cyclic loadings along the axial and shear directions. Our primary objective at this stage was to verify the anisotropic mechanical behavior recently observed. To accomplish this, we utilized various models of fatigue damage quantification and conducted a comparative study of the obtained results. Our analysis confirmed the anisotropic nature of the material under investigation. In the subsequent step, we performed microstructural investigations aimed at understanding the origins of the anisotropic mechanical behavior. To this end, we utilized scanning electron microscopy to examine the phases and precipitates in both the transversal and longitudinal sections. Our findings indicate that the structure and morphology of these entities are responsible for the anisotropic behavior observed in the aluminum alloy. Furthermore, results obtained from Kikuchi diagrams, pole figures, and inverse pole figures have corroborated these conclusions. These findings demonstrate significant differences in the crystallographic texture of the material.

Keywords: microstructural investigation, fatigue damage quantification, anisotropic behavior, AA2017 aluminum alloy, cyclic loading, crystallographic texture, scanning electron microscopy

Procedia PDF Downloads 76
14097 Trends in Research Regarding International Student Connectedness, A Systematic Review

Authors: Zilola Kozimova

Abstract:

Humans are highly social creatures, and our social surroundings create a large part of our daily experiences. Feeling connected and belonging at school have been studied a lot, especially in the period up to college. The need to feel connected becomes even more vital when people choose to study abroad. The number of published research in the field has increased recently, creating sufficient studies for a systematic literature review. The current study was conducted to find out existing trends and central themes in the field regarding international student connectedness. Using PRISMA 2020 and Shariff et al.’s work as the guidelines, I conducted a systematic literature review of studies regarding international student connectedness in higher education. Three steps of inclusion/exclusion criteria were used to determine the final studies to be included. The results show an increasing trend in the field as the number of related studies drastically rose after 2017. the results showed that there are three phases in the research regarding the connectedness of international students: a rejection period, a sudden increase of interest in the topic, and merging as an essential part of the mental well-being of international students. There is also a change in the themes regarding the topic, as there is a rise in the number of research published regarding international students’ mental health in recent years, connectedness being a sub-topic.

Keywords: international students, connectedness, mental well-being of international students, trends, higher education

Procedia PDF Downloads 119
14096 A Modular and Reusable Bond Graph Model of Epithelial Transport in the Proximal Convoluted Tubule

Authors: Leyla Noroozbabaee, David Nickerson

Abstract:

We introduce a modular, consistent, reusable bond graph model of the renal nephron’s proximal convoluted tubule (PCT), which can reproduce biological behaviour. In this work, we focus on ion and volume transport in the proximal convoluted tubule of the renal nephron. Modelling complex systems requires complex modelling problems to be broken down into manageable pieces. This can be enabled by developing models of subsystems that are subsequently coupled hierarchically. Because they are based on a graph structure. In the current work, we define two modular subsystems: the resistive module representing the membrane and the capacitive module representing solution compartments. Each module is analyzed based on thermodynamic processes, and all the subsystems are reintegrated into circuit theory in network thermodynamics. The epithelial transport system we introduce in the current study consists of five transport membranes and four solution compartments. Coupled dissipations in the system occur in the membrane subsystems and coupled free-energy increasing, or decreasing processes appear in solution compartment subsystems. These structural subsystems also consist of elementary thermodynamic processes: dissipations, free-energy change, and power conversions. We provide free and open access to the Python implementation to ensure our model is accessible, enabling the reader to explore the model through setting their simulations and reproducibility tests.

Keywords: Bond Graph, Epithelial Transport, Water Transport, Mathematical Modeling

Procedia PDF Downloads 87
14095 Vehicular Speed Detection Camera System Using Video Stream

Authors: C. A. Anser Pasha

Abstract:

In this paper, a new Vehicular Speed Detection Camera System that is applicable as an alternative to traditional radars with the same accuracy or even better is presented. The real-time measurement and analysis of various traffic parameters such as speed and number of vehicles are increasingly required in traffic control and management. Image processing techniques are now considered as an attractive and flexible method for automatic analysis and data collections in traffic engineering. Various algorithms based on image processing techniques have been applied to detect multiple vehicles and track them. The SDCS processes can be divided into three successive phases; the first phase is Objects detection phase, which uses a hybrid algorithm based on combining an adaptive background subtraction technique with a three-frame differencing algorithm which ratifies the major drawback of using only adaptive background subtraction. The second phase is Objects tracking, which consists of three successive operations - object segmentation, object labeling, and object center extraction. Objects tracking operation takes into consideration the different possible scenarios of the moving object like simple tracking, the object has left the scene, the object has entered the scene, object crossed by another object, and object leaves and another one enters the scene. The third phase is speed calculation phase, which is calculated from the number of frames consumed by the object to pass by the scene.

Keywords: radar, image processing, detection, tracking, segmentation

Procedia PDF Downloads 467
14094 Quantitative Assessment of Road Infrastructure Health Using High-Resolution Remote Sensing Data

Authors: Wang Zhaoming, Shao Shegang, Chen Xiaorong, Qi Yanan, Tian Lei, Wang Jian

Abstract:

This study conducts a comparative analysis of the spectral curves of asphalt pavements at various aging stages to improve road information extraction from high-resolution remote sensing imagery. By examining the distinguishing capabilities and spectral characteristics, the research aims to establish a pavement information extraction methodology based on China's high-resolution satellite images. The process begins by analyzing the spectral features of asphalt pavements to construct a spectral assessment model suitable for evaluating pavement health. This model is then tested at a national highway traffic testing site in China, validating its effectiveness in distinguishing different pavement aging levels. The study's findings demonstrate that the proposed model can accurately assess road health, offering a valuable tool for road maintenance planning and infrastructure management.

Keywords: spectral analysis, asphalt pavement aging, high-resolution remote sensing, pavement health assessment

Procedia PDF Downloads 21
14093 Selective Laser Melting (SLM) Process and Its Influence on the Machinability of TA6V Alloy

Authors: Rafał Kamiński, Joel Rech, Philippe Bertrand, Christophe Desrayaud

Abstract:

Titanium alloys are among the most important material in the aircraft industry, due to its low density, high strength, and corrosion resistance. However, these alloys are considered as difficult to machine because they have poor thermal properties and high reactivity with cutting tools. The Selective Laser Melting (SLM) process becomes even more popular through industry since it enables the design of new complex components, that cannot be manufactured by standard processes. However, the high temperature reached during the melting phase as well as the several rapid heating and cooling phases, due to the movement of the laser, induce complex microstructures. These microstructures differ from conventional equiaxed ones obtained by casting+forging. Parts obtained by SLM have to be machined in order calibrate the dimensions and the surface roughness of functional surfaces. The ball milling technique is widely applied to finish complex shapes. However, the machinability of titanium is strongly influenced by the microstructure. So the objective of this work is to investigate the influence of the SLM process, i.e. microstructure, on the machinability of titanium, compared to conventional forming processes. The machinability is analyzed by measuring surface roughness, cutting forces, cutting tool wear for a range of cutting conditions (depth of cut ap, feed per tooth fz, spindle speed N) in accordance with industrial practices.

Keywords: ball milling, microstructure, surface roughness, titanium

Procedia PDF Downloads 297
14092 SVM-RBN Model with Attentive Feature Culling Method for Early Detection of Fruit Plant Diseases

Authors: Piyush Sharma, Devi Prasad Sharma, Sulabh Bansal

Abstract:

Diseases are fairly common in fruits and vegetables because of the changing climatic and environmental circumstances. Crop diseases, which are frequently difficult to control, interfere with the growth and output of the crops. Accurate disease detection and timely disease control measures are required to guarantee high production standards and good quality. In India, apples are a common crop that may be afflicted by a variety of diseases on the fruit, stem, and leaves. It is fungi, bacteria, and viruses that trigger the early symptoms of leaf diseases. In order to assist farmers and take the appropriate action, it is important to develop an automated system that can be used to detect the type of illnesses. Machine learning-based image processing can be used to: this research suggested a system that can automatically identify diseases in apple fruit and apple plants. Hence, this research utilizes the hybrid SVM-RBN model. As a consequence, the model may produce results that are more effective in terms of accuracy, precision, recall, and F1 Score, with respective values of 96%, 99%, 94%, and 93%.

Keywords: fruit plant disease, crop disease, machine learning, image processing, SVM-RBN

Procedia PDF Downloads 64
14091 Designing an Agent-Based Model of SMEs to Assess Flood Response Strategies and Resilience

Authors: C. Li, G. Coates, N. Johnson, M. Mc Guinness

Abstract:

In the UK, flooding is responsible for significant losses to the economy due to the impact on businesses, the vast majority of which are Small and Medium Enterprises (SMEs). Businesses of this nature tend to lack formal plans to aid their response to and recovery from disruptive events such as flooding. This paper reports on work on how an agent-based model (ABM) is being developed based on interview data gathered from SMEs at-risk of flooding and/or have direct experience of flooding. The ABM will enable simulations to be performed allowing investigations of different response strategies which SMEs may employ to lessen the impact of flooding, thus strengthening their resilience.

Keywords: ABM, flood response, SMEs, business continuity

Procedia PDF Downloads 313
14090 Model-Based Fault Diagnosis in Carbon Fiber Reinforced Composites Using Particle Filtering

Authors: Hong Yu, Ion Matei

Abstract:

Carbon fiber reinforced composites (CFRP) used as aircraft structure are subject to lightning strike, putting structural integrity under risk. Indirect damage may occur after a lightning strike where the internal structure can be damaged due to excessive heat induced by lightning current, while the surface of the structures remains intact. Three damage modes may be observed after a lightning strike: fiber breakage, inter-ply delamination and intra-ply cracks. The assessment of internal damage states in composite is challenging due to complicated microstructure, inherent uncertainties, and existence of multiple damage modes. In this work, a model based approach is adopted to diagnose faults in carbon composites after lighting strikes. A resistor network model is implemented to relate the overall electrical and thermal conduction behavior under simulated lightning current waveform to the intrinsic temperature dependent material properties, microstructure and degradation of materials. A fault detection and identification (FDI) module utilizes the physics based model and a particle filtering algorithm to identify damage mode as well as calculate the probability of structural failure. Extensive simulation results are provided to substantiate the proposed fault diagnosis methodology with both single fault and multiple faults cases. The approach is also demonstrated on transient resistance data collected from a IM7/Epoxy laminate under simulated lightning strike.

Keywords: carbon composite, fault detection, fault identification, particle filter

Procedia PDF Downloads 195
14089 Frictional Effects on the Dynamics of a Truncated Double-Cone Gravitational Motor

Authors: Barenten Suciu

Abstract:

In this work, effects of the friction and truncation on the dynamics of a double-cone gravitational motor, self-propelled on a straight V-shaped horizontal rail, are evaluated. Such mechanism has a variable radius of contact, and, on one hand, it is similar to a pulley mechanism that changes the potential energy into the kinetic energy of rotation, but on the other hand, it is similar to a pendulum mechanism that converts the potential energy of the suspended body into the kinetic energy of translation along a circular path. Movies of the self- propelled double-cones, made of S45C carbon steel and wood, along rails made of aluminum alloy, were shot for various opening angles of the rails. Kinematical features of the double-cones were estimated through the slow-motion processing of the recorded movies. Then, a kinematical model is derived under assumption that the distance traveled by the contact points on the rectilinear rails is identical with the distance traveled by the contact points on the truncated conical surface. Additionally, a dynamic model, for this particular contact problem, was proposed and validated against the experimental results. Based on such model, the traction force and the traction torque acting on the double-cone are identified. One proved that the rolling traction force is always smaller than the sliding friction force; i.e., the double-cone is rolling without slipping. Results obtained in this work can be used to achieve the proper design of such gravitational motor.

Keywords: Truncated double-cone, friction, rolling and sliding, dynamic model, gravitational motor

Procedia PDF Downloads 275
14088 Modeling Usage Patterns of Mobile App Service in App Market Using Hidden Markov Model

Authors: Yangrae Cho, Jinseok Kim, Yongtae Park

Abstract:

Mobile app service ecosystem has been abruptly emerged, explosively grown, and dynamically transformed. In contrast with product markets in which product sales directly cause increment in firm’s income, customer’s usage is less visible but more valuable in service market. Especially, the market situation with cutthroat competition in mobile app store makes securing and keeping of users as vital. Although a few service firms try to manage their apps’ usage patterns by fitting on S-curve or applying other forecasting techniques, the time series approaches based on past sequential data are subject to fundamental limitation in the market where customer’s attention is being moved unpredictably and dynamically. We therefore propose a new conceptual approach for detecting usage pattern of mobile app service with Hidden Markov Model (HMM) which is based on the dual stochastic structure and mainly used to clarify unpredictable and dynamic sequential patterns in voice recognition or stock forecasting. Our approach could be practically utilized for app service firms to manage their services’ lifecycles and academically expanded to other markets.

Keywords: mobile app service, usage pattern, Hidden Markov Model, pattern detection

Procedia PDF Downloads 337
14087 A Study of Level of Happiness in Orphans of Patna District

Authors: Riya Kartikee, Uday Shankar

Abstract:

Background –.Happiness refers to a range of the balance of positive and pleasant emotions of joy, pride, contentment, gratitude, and living with ethics. Happiness is an experience combined with a sense that one’s life is good, meaningful, and worth a while, but in the context of orphans who have lost their birthgivers, their parents who play an important role in bringing necessities and comfort to them, but many terms of the above phases are missing in the life of orphan So, stress increases because of lack of love, attention, sympathy, care, they experience many kind of trauma and also in some cases their lives get worst as they face some physiological abuse, sexual abuse, they are forced to have stress at a not only mentally but physically also in the context of Patna, Bihar where many people are below poverty line, lack of resources is a normal condition for the Orphanages.AIM- The present study was intended to study the level of Happiness among the orphans of Patna District, also it was attempted to find the role of happiness in their lives as an individual.Method- The sample of 70 Orphans in the age group of 12 to 18 years were taken from the orphanages of Patna district-Apnaghar, Rainbow homes, etc. Purposive sampling was used in the study, There has been one research tool used in the study, which is Happiness scale by Dr.R.L Bhardwaj and Dr.Poonam R Das. Results- Results have revealed that Orphans have possessed a very low level of happiness and unhappiness was related due to their living conditions in the orphanage.Conclusion-It can be stated that the Level of happiness is an important missing determinant in the lives of orphans.

Keywords: happiness, orphans, patna, orphanage

Procedia PDF Downloads 173
14086 Modeling and Optimization of Nanogenerator for Energy Harvesting

Authors: Fawzi Srairi, Abderrahmane Dib

Abstract:

Recently, the desire for a self-powered micro and nanodevices has attracted a great interest of using sustainable energy sources. Further, the ultimate goal of nanogenerator is to harvest energy from the ambient environment in which a self-powered device based on these generators is needed. With the development of nanogenerator-based circuits design and optimization, the building of new device simulator is necessary for the study and the synthesis of electromechanical parameters of this type of models. In the present article, both numerical modeling and optimization of piezoelectric nanogenerator based on zinc oxide have been carried out. They aim to improve the electromechanical performances, robustness, and synthesis process for nanogenerator. The proposed model has been developed for a systematic study of the nanowire morphology parameters in stretching mode. In addition, heuristic optimization technique, namely, particle swarm optimization has been implemented for an analytic modeling and an optimization of nanogenerator-based process in stretching mode. Moreover, the obtained results have been tested and compared with conventional model where a good agreement has been obtained for excitation mode. The developed nanogenerator model can be generalized, extended and integrated into simulators devices to study nanogenerator-based circuits.

Keywords: electrical potential, heuristic algorithms, numerical modeling, nanogenerator

Procedia PDF Downloads 308
14085 Assessing Functional Structure in European Marine Ecosystems Using a Vector-Autoregressive Spatio-Temporal Model

Authors: Katyana A. Vert-Pre, James T. Thorson, Thomas Trancart, Eric Feunteun

Abstract:

In marine ecosystems, spatial and temporal species structure is an important component of ecosystems’ response to anthropological and environmental factors. Although spatial distribution patterns and fish temporal series of abundance have been studied in the past, little research has been allocated to the joint dynamic spatio-temporal functional patterns in marine ecosystems and their use in multispecies management and conservation. Each species represents a function to the ecosystem, and the distribution of these species might not be random. A heterogeneous functional distribution will lead to a more resilient ecosystem to external factors. Applying a Vector-Autoregressive Spatio-Temporal (VAST) model for count data, we estimate the spatio-temporal distribution, shift in time, and abundance of 140 species of the Eastern English Chanel, Bay of Biscay and Mediterranean Sea. From the model outputs, we determined spatio-temporal clusters, calculating p-values for hierarchical clustering via multiscale bootstrap resampling. Then, we designed a functional map given the defined cluster. We found that the species distribution within the ecosystem was not random. Indeed, species evolved in space and time in clusters. Moreover, these clusters remained similar over time deriving from the fact that species of a same cluster often shifted in sync, keeping the overall structure of the ecosystem similar overtime. Knowing the co-existing species within these clusters could help with predicting data-poor species distribution and abundance. Further analysis is being performed to assess the ecological functions represented in each cluster.

Keywords: cluster distribution shift, European marine ecosystems, functional distribution, spatio-temporal model

Procedia PDF Downloads 194
14084 An Optimization Model for the Arrangement of Assembly Areas Considering Time Dynamic Area Requirements

Authors: Michael Zenker, Henrik Prinzhorn, Christian Böning, Tom Strating

Abstract:

Large-scale products are often assembled according to the job-site principle, meaning that during the assembly the product is located at a fixed position, while the area requirements are constantly changing. On one hand, the product itself is growing with each assembly step, whereas varying areas for storage, machines or working areas are temporarily required. This is an important factor when arranging products to be assembled within the factory. Currently, it is common to reserve a fixed area for each product to avoid overlaps or collisions with the other assemblies. Intending to be large enough to include the product and all adjacent areas, this reserved area corresponds to the superposition of the maximum extents of all required areas of the product. In this procedure, the reserved area is usually poorly utilized over the course of the entire assembly process; instead a large part of it remains unused. If the available area is a limited resource, a systematic arrangement of the products, which complies with the dynamic area requirements, will lead to an increased area utilization and productivity. This paper presents the results of a study on the arrangement of assembly objects assuming dynamic, competing area requirements. First, the problem situation is extensively explained, and existing research on associated topics is described and evaluated on the possibility of an adaptation. Then, a newly developed mathematical optimization model is introduced. This model allows an optimal arrangement of dynamic areas, considering logical and practical constraints. Finally, in order to quantify the potential of the developed method, some test series results are presented, showing the possible increase in area utilization.

Keywords: dynamic area requirements, facility layout problem, optimization model, product assembly

Procedia PDF Downloads 233
14083 Dynamic Simulation for Surface Wear Prognosis of the Main Bearings in the Internal Combustion Engine

Authors: Yanyan Zhang, Ziyu Diao, Zhentao Liu, Ruidong Yan

Abstract:

The wear character of the main bearing is one of the critical indicators for the overhaul of an internal combustion engine, and the aim of this paper is to reveal the dynamic wear mechanism of the main bearings. A numerical simulation model combined multi-body dynamic equations of the engine, the average Reynolds equations of the bearing lubricant, asperity contact and wear model of the joint surfaces were established under typical operating conditions. The wear results were verified by experimental data, and then the influence of operating conditions, bearing clearance and cylinder pressure on the wear character of selected main bearings were analyzed. The results show that the contribution degree of different working conditions on the wear profile and depth of each bearing is obviously different, and the increase of joint clearance or cylinder pressure will accelerate the wear. The numerical model presented can be used to wear prognosis for joints and provide guidance for optimization design of sliding bearings.

Keywords: dynamic simulation, multi-body dynamics, sliding bearing, surface wear

Procedia PDF Downloads 148
14082 A Fuzzy Hybrıd Decısıon Support System for Naval Base Place Selectıon in a Foreıgn Country

Authors: Latif Yanar, Muharrem Kaçan

Abstract:

In this study, an Analytic Hierarchy Process and Analytic Network Process Decision Support System (DSS) model for determination of a navy base place in another country is proposed together with a decision support software (DESTEC 1.0) developed using C Sharp programming language. The proposed software also has the ability of performing the fuzzy models (Fuzzy AHP and Fuzzy ANP) of the proposed DSS to cope with the ambiguous and linguistic nature of the model. The AHP and ANP model, for a decision support for selecting the best place among the alternatives, including the criteria and alternatives, is developed and solved by the experts from Turkish Navy and Turkish academicians related to international relations branches of the universities in Turkey. Also, the questionnaires used for weighting of the criteria and the alternatives are filled by these experts.Some of our alternatives are: economic and political stability of the third country, the effect of another super power in that country, historical relations, security in that country, social facilities in the city in which the base will be built, the transportation security and difficulty from a main city that have an airport to the city will have the base etc. Over 20 criteria like these are determined which are categorized in social, political, economic and military aspects. As a result all the criteria and three alternatives are evaluated by different people who have background and experience to weight the criteria and alternatives as it must be in AHP and ANP evaluation system. The alternatives got their degrees all between 0 – 1 and the total is 1. At the end the DSS advices one of the alternatives as the best one to the decision maker according to the developed model and the evaluations of the experts.

Keywords: analytic hierarchical process, analytic network process, fuzzy logic, naval base place selection, multiple criteria decision making

Procedia PDF Downloads 391
14081 Dry Friction Fluctuations in Plain Journal Bearings

Authors: James Moran, Anusarn Permsuwan

Abstract:

This paper compares oscillations in the dry friction coefficient in different journal bearings. Measurements are made of the average and standard deviation in the coefficient of friction as a function of sliding velocity. The standard deviation of the friction coefficient changed dramatically with sliding velocity. The magnitude and frequency of the oscillations were a function of the velocity. A numerical model was developed for the frictional oscillations. There was good agreement between the model and results. Five different materials were used as the sliding surfaces in the experiments, Aluminum, Bronze, Mild Steel, Stainless Steel, and Nylon.

Keywords: Coulomb friction, dynamic friction, non-lubricated bearings, frictional oscillations

Procedia PDF Downloads 367
14080 Development and Validation for Center-Based Learning in Teaching Science

Authors: Julie Berame

Abstract:

The study probed that out of eight (8) lessons in Science Six have been validated, lessons 1-3 got the descriptive rating of very satisfactory and lessons 4-8 got the descriptive rating of outstanding based on the content analysis of the prepared CBL lesson plans. The evaluation of the lesson plans focused on the three main features such as statements of the lesson objectives, lesson content, and organization and effectiveness. The study used developmental research procedure that contained three phases, namely: Development phase consists of determining the learning unit, lesson plans, creation of the table of specifications, exercises/quizzes, and revision of the materials; Evaluation phase consists of the development of experts’ assessment checklist, presentation of checklist to the adviser, comments and suggestions, and final validation of the materials; and try-out phase consists of identification of the subject, try-out of the materials using CBL strategy, administering science attitude questionnaire, and statistical analysis to obtain the data. The findings of the study revealed that the relevance and usability of CBL lessons 1 and 2 in terms of lesson objective, lesson content, and organization and effectiveness got the rating of very satisfactory (4.4) and lessons 3-8 got the rating of outstanding (4.7). The lessons 1-8 got the grand rating of outstanding (4.6). Additionally, results showed that CBL strategy helped foster positive attitude among students and achieved effectiveness in psychomotor learning objectives.

Keywords: development, validation, center-based learning, science

Procedia PDF Downloads 237
14079 Remote Criminal Proceedings as Implication to Rethink the Principles of Criminal Procedure

Authors: Inga Žukovaitė

Abstract:

This paper aims to present postdoc research on remote criminal proceedings in court. In this period, when most countries have introduced the possibility of remote criminal proceedings in their procedural laws, it is not only possible to identify the weaknesses and strengths of the legal regulation but also assess the effectiveness of the instrument used and to develop an approach to the process. The example of some countries (for example, Italy) shows, on the one hand, that criminal procedure, based on orality and immediacy, does not lend itself to easy modifications that pose even a slight threat of devaluation of these principles in a society with well-established traditions of this procedure. On the other hand, such strong opposition and criticism make us ask whether we are facing the possibility of rethinking the traditional ways to understand the safeguards in order to preserve their essence without devaluing their traditional package but looking for new components to replace or compensate for the so-called “loss” of safeguards. The reflection on technological progress in the field of criminal procedural law indicates the need to rethink, on the basis of fundamental procedural principles, the safeguards that can replace or compensate for those that are in crisis as a result of the intervention of technological progress. Discussions in academic doctrine on the impact of technological interventions on the proceedings as such or on the limits of such interventions refer to the principles of criminal procedure as to a point of reference. In the context of the inferiority of technology, scholarly debate still addresses the issue of whether the court will not gradually become a mere site for the exercise of penal power with the resultant consequences – the deformation of the procedure itself as a physical ritual. In this context, this work seeks to illustrate the relationship between remote criminal proceedings in court and the principle of immediacy, the concept of which is based on the application of different models of criminal procedure (inquisitorial and adversarial), the aim is to assess the challenges posed for legal regulation by the interaction of technological progress with the principles of criminal procedure. The main hypothesis to be tested is that the adoption of remote proceedings is directly linked to the prevailing model of criminal procedure, arguing that the more principles of the inquisitorial model are applied to the criminal process, the more remote criminal trial is acceptable, and conversely, the more the criminal process is based on an adversarial model, more the remote criminal process is seen as incompatible with the principle of immediacy. In order to achieve this goal, the following tasks are set: to identify whether there is a difference in assessing remote proceedings with the immediacy principle between the adversarial model and the inquisitorial model, to analyse the main aspects of the regulation of remote criminal proceedings based on the examples of different countries (for example Lithuania, Italy, etc.).

Keywords: remote criminal proceedings, principle of orality, principle of immediacy, adversarial model inquisitorial model

Procedia PDF Downloads 68
14078 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis

Authors: Yakin Hajlaoui, Richard Labib, Jean-François Plante, Michel Gamache

Abstract:

This study introduces the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs' processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW's ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. it employ gradient descent and backpropagation to train ML-IDW, comparing its performance against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. the results highlight the efficacy of ML-IDW, particularly in handling complex spatial datasets, exhibiting lower mean square error in regression and higher F1 score in classification.

Keywords: deep learning, multi-layer neural networks, gradient descent, spatial interpolation, inverse distance weighting

Procedia PDF Downloads 52
14077 Automating 2D CAD to 3D Model Generation Process: Wall pop-ups

Authors: Mohit Gupta, Chialing Wei, Thomas Czerniawski

Abstract:

In this paper, we have built a neural network that can detect walls on 2D sheets and subsequently create a 3D model in Revit using Dynamo. The training set includes 3500 labeled images, and the detection algorithm used is YOLO. Typically, engineers/designers make concentrated efforts to convert 2D cad drawings to 3D models. This costs a considerable amount of time and human effort. This paper makes a contribution in automating the task of 3D walls modeling. 1. Detecting Walls in 2D cad and generating 3D pop-ups in Revit. 2. Saving designer his/her modeling time in drafting elements like walls from 2D cad to 3D representation. An object detection algorithm YOLO is used for wall detection and localization. The neural network is trained over 3500 labeled images of size 256x256x3. Then, Dynamo is interfaced with the output of the neural network to pop-up 3D walls in Revit. The research uses modern technological tools like deep learning and artificial intelligence to automate the process of generating 3D walls without needing humans to manually model them. Thus, contributes to saving time, human effort, and money.

Keywords: neural networks, Yolo, 2D to 3D transformation, CAD object detection

Procedia PDF Downloads 144
14076 Bathymetric Change of Brahmaputra River and Its Influence on Flooding Scenario

Authors: Arup Kumar Sarma, Rohan Kar

Abstract:

The development of physical model of River like Brahmaputra, which finds its origin in the Chema Yundung glacier of Tibet and flows through India and Bangladesh, is always expensive and very much time consuming. With the advancement of computational technique, mathematical modeling has found wide application. MIKE 21C is one such commercial software, developed by Danish Hydraulic Institute (DHI), with the depth-averaged approach and a two-dimensional curvilinear finite-difference model, which is capable of modeling hydrodynamic and morphological processes with some limitations. The main purpose of this study are to generate bathymetry of the River Brahmaputra starting from “Sadia” at upstream to “Dhubri,” at downstream stretching a distance of approximately 695 km, for four different years: 1957, 1971, 1977, and 1981 over the grid generated in the MIKE 21C and to carry out the hydrodynamic simulation for these years to analyze the effect of bathymetry change on the surface water elevation. The study has established that bathymetric change can influence the flood level significantly in some of the river reaches and therefore the modification or updating of regular bathymetry is very much essential for the reliable flood routing in alluvial rivers.

Keywords: bathymetry, brahmaputra river, hydrodynamic model, surface water elevation

Procedia PDF Downloads 455
14075 Supersymmetry versus Compositeness: 2-Higgs Doublet Models Tell the Story

Authors: S. De Curtis, L. Delle Rose, S. Moretti, K. Yagyu

Abstract:

Supersymmetry and compositeness are the two prevalent paradigms providing both a solution to the hierarchy problem and motivation for a light Higgs boson state. An open door towards the solution is found in the context of 2-Higgs Doublet Models (2HDMs), which are necessary to supersymmetry and natural within compositeness in order to enable Electro-Weak Symmetry Breaking. In scenarios of compositeness, the two isospin doublets arise as pseudo Nambu-Goldstone bosons from the breaking of SO(6). By calculating the Higgs potential at one-loop level through the Coleman-Weinberg mechanism from the explicit breaking of the global symmetry induced by the partial compositeness of fermions and gauge bosons, we derive the phenomenological properties of the Higgs states and highlight the main signatures of this Composite 2-Higgs Doublet Model at the Large Hadron Collider. These include modifications to the SM-like Higgs couplings as well as production and decay channels of heavier Higgs bosons. We contrast the properties of this composite scenario to the well-known ones established in supersymmetry, with the MSSM being the most notorious example. We show how 2HDM spectra of masses and couplings accessible at the Large Hadron Collider may allow one to distinguish between the two paradigms.

Keywords: beyond the standard model, composite Higgs, supersymmetry, Two-Higgs Doublet Model

Procedia PDF Downloads 126
14074 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor

Authors: Yash Jain

Abstract:

The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.

Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier

Procedia PDF Downloads 163
14073 Unpacking Tourist Experience: A Case Study of Chinese Tourists Visiting the UK

Authors: Guanhao Tong, Li Li, Ben David

Abstract:

This study aims to provide an explanatory account of how the leisure tourist experience emerges from tourists and their surroundings through a critical realist lens. This was achieved by applying Archer’s realist social theory as the underlying theoretical ground to unpack the interplays between the external (tourism system or structure) and the internal (tourists or agency). This theory argues that social phenomena can be analyzed in three domains - structure, agency, and culture (SAC), and along three phases – structure conditioning, sociocultural interactions, and structure elaboration. From the realist perspective, the world is an open system; events and discourses are irreducible to present individuals and collectivities. Therefore, identifying the processes or mechanisms is key to help researchers understand how social reality is brought about. Based on the contextual nature of the tourist experience, the research focuses on Chinese tourists (from mainland China) to London as a destination and British culture conveyed through the concept of the destination image. This study uses an intensive approach based on Archer’s M/M approach to discover the mechanisms/processes of the emergence of the tourist experience. Individual interviews were conducted to reveal the underlying causes of lived experiences of the tourists. Secondary data was also collected to understand how British destinations are portrayed to Chinese tourists.

Keywords: Chinese tourists, destination image, M/M approach, realist social theory, social mechanisms, tourist experience

Procedia PDF Downloads 72
14072 Effect of Installation Method on the Ratio of Tensile to Compressive Shaft Capacity of Piles in Dense Sand

Authors: A. C. Galvis-Castro, R. D. Tovar, R. Salgado, M. Prezzi

Abstract:

It is generally accepted that the shaft capacity of piles in the sand is lower for tensile loading that for compressive loading. So far, very little attention has been paid to the role of the influence of the installation method on the tensile to compressive shaft capacity ratio. The objective of this paper is to analyze the effect of installation method on the tensile to compressive shaft capacity of piles in dense sand as observed in tests on half-circular model pile tests in a half-circular calibration chamber with digital image correlation (DIC) capability. Model piles are either monotonically jacked, jacked with multiple strokes or pre-installed into the dense sand samples. Digital images of the model pile and sand are taken during both the installation and loading stages of each test and processed using the DIC technique to obtain the soil displacement and strain fields. The study provides key insights into the mobilization of shaft resistance in tensile and compressive loading for both displacement and non-displacement piles.

Keywords: digital image correlation, piles, sand, shaft resistance

Procedia PDF Downloads 272
14071 Reaction Kinetics of Biodiesel Production from Refined Cottonseed Oil Using Calcium Oxide

Authors: Ude N. Callistus, Amulu F. Ndidi, Onukwuli D. Okechukwu, Amulu E. Patrick

Abstract:

Power law approximation was used in this study to evaluate the reaction orders of calcium oxide, CaO catalyzed transesterification of refined cottonseed oil and methanol. The kinetics study was carried out at temperatures of 45, 55 and 65 oC. The kinetic parameters such as reaction order 2.02 and rate constant 2.8 hr-1g-1cat, obtained at the temperature of 65 oC best fitted the kinetic model. The activation energy, Ea obtained was 127.744 KJ/mol. The results indicate that the transesterification reaction of the refined cottonseed oil using calcium oxide catalyst is approximately second order reaction.

Keywords: refined cottonseed oil, transesterification, CaO, heterogeneous catalysts, kinetic model

Procedia PDF Downloads 543
14070 Thick Data Analytics for Learning Cataract Severity: A Triplet Loss Siamese Neural Network Model

Authors: Jinan Fiaidhi, Sabah Mohammed

Abstract:

Diagnosing cataract severity is an important factor in deciding to undertake surgery. It is usually conducted by an ophthalmologist or through taking a variety of fundus photography that needs to be examined by the ophthalmologist. This paper carries out an investigation using a Siamese neural net that can be trained with small anchor samples to score cataract severity. The model used in this paper is based on a triplet loss function that takes the ophthalmologist best experience in rating positive and negative anchors to a specific cataract scaling system. This approach that takes the heuristics of the ophthalmologist is generally called the thick data approach, which is a kind of machine learning approach that learn from a few shots. Clinical Relevance: The lens of the eye is mostly made up of water and proteins. A cataract occurs when these proteins at the eye lens start to clump together and block lights causing impair vision. This research aims at employing thick data machine learning techniques to rate the severity of the cataract using Siamese neural network.

Keywords: thick data analytics, siamese neural network, triplet-loss model, few shot learning

Procedia PDF Downloads 111
14069 Thermal Instability in Rivlin-Ericksen Elastico-Viscous Nanofluid with Connective Boundary Condition: Effect of Vertical Throughflow

Authors: Shivani Saini

Abstract:

The effect of vertical throughflow on the onset of convection in Rivlin-Ericksen Elastico-Viscous nanofluid with convective boundary condition is investigated. The flow is stimulated with modified Darcy model under the assumption that the nanoparticle volume fraction is not actively managed on the boundaries. The heat conservation equation is formulated by introducing the convective term of nanoparticle flux. A linear stability analysis based upon normal mode is performed, and an approximate solution of eigenvalue problems is obtained using the Galerkin weighted residual method. Investigation of the dependence of the Rayleigh number on various viscous and nanofluid parameter is performed. It is found that through flow and nanofluid parameters hasten the convection while capacity ratio, kinematics viscoelasticity, and Vadasz number do not govern the stationary convection. Using the convective component of nanoparticle flux, critical wave number is the function of nanofluid parameters as well as the throughflow parameter. The obtained solution provides important physical insight into the behavior of this model.

Keywords: Darcy model, nanofluid, porous layer, throughflow

Procedia PDF Downloads 137