Search results for: health data standards
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31632

Search results for: health data standards

27852 Case-Based Reasoning for Modelling Random Variables in the Reliability Assessment of Existing Structures

Authors: Francesca Marsili

Abstract:

The reliability assessment of existing structures with probabilistic methods is becoming an increasingly important and frequent engineering task. However probabilistic reliability methods are based on an exhaustive knowledge of the stochastic modeling of the variables involved in the assessment; at the moment standards for the modeling of variables are absent, representing an obstacle to the dissemination of probabilistic methods. The framework according to probability distribution functions (PDFs) are established is represented by the Bayesian statistics, which uses Bayes Theorem: a prior PDF for the considered parameter is established based on information derived from the design stage and qualitative judgments based on the engineer past experience; then, the prior model is updated with the results of investigation carried out on the considered structure, such as material testing, determination of action and structural properties. The application of Bayesian statistics arises two different kind of problems: 1. The results of the updating depend on the engineer previous experience; 2. The updating of the prior PDF can be performed only if the structure has been tested, and quantitative data that can be statistically manipulated have been collected; performing tests is always an expensive and time consuming operation; furthermore, if the considered structure is an ancient building, destructive tests could compromise its cultural value and therefore should be avoided. In order to solve those problems, an interesting research path is represented by investigating Artificial Intelligence (AI) techniques that can be useful for the automation of the modeling of variables and for the updating of material parameters without performing destructive tests. Among the others, one that raises particular attention in relation to the object of this study is constituted by Case-Based Reasoning (CBR). In this application, cases will be represented by existing buildings where material tests have already been carried out and an updated PDFs for the material mechanical parameters has been computed through a Bayesian analysis. Then each case will be composed by a qualitative description of the material under assessment and the posterior PDFs that describe its material properties. The problem that will be solved is the definition of PDFs for material parameters involved in the reliability assessment of the considered structure. A CBR system represent a good candi¬date in automating the modelling of variables because: 1. Engineers already draw an estimation of the material properties based on the experience collected during the assessment of similar structures, or based on similar cases collected in literature or in data-bases; 2. Material tests carried out on structure can be easily collected from laboratory database or from literature; 3. The system will provide the user of a reliable probabilistic description of the variables involved in the assessment that will also serve as a tool in support of the engineer’s qualitative judgments. Automated modeling of variables can help in spreading probabilistic reliability assessment of existing buildings in the common engineering practice, and target at the best intervention and further tests on the structure; CBR represents a technique which may help to achieve this.

Keywords: reliability assessment of existing buildings, Bayesian analysis, case-based reasoning, historical structures

Procedia PDF Downloads 337
27851 Field Production Data Collection, Analysis and Reporting Using Automated System

Authors: Amir AlAmeeri, Mohamed Ibrahim

Abstract:

Various data points are constantly being measured in the production system, and due to the nature of the wells, these data points, such as pressure, temperature, water cut, etc.., fluctuations are constant, which requires high frequency monitoring and collection. It is a very difficult task to analyze these parameters manually using spreadsheets and email. An automated system greatly enhances efficiency, reduce errors, the need for constant emails which take up disk space, and frees up time for the operator to perform other critical tasks. Various production data is being recorded in an oil field, and this huge volume of data can be seen as irrelevant to some, especially when viewed on its own with no context. In order to fully utilize all this information, it needs to be properly collected, verified and stored in one common place and analyzed for surveillance and monitoring purposes. This paper describes how data is recorded by different parties and departments in the field, and verified numerous times as it is being loaded into a repository. Once it is loaded, a final check is done before being entered into a production monitoring system. Once all this is collected, various calculations are performed to report allocated production. Calculated production data is used to report field production automatically. It is also used to monitor well and surface facility performance. Engineers can use this for their studies and analyses to ensure field is performing as it should be, predict and forecast production, and monitor any changes in wells that could affect field performance.

Keywords: automation, oil production, Cheleken, exploration and production (E&P), Caspian Sea, allocation, forecast

Procedia PDF Downloads 156
27850 Development of Knowledge Discovery Based Interactive Decision Support System on Web Platform for Maternal and Child Health System Strengthening

Authors: Partha Saha, Uttam Kumar Banerjee

Abstract:

Maternal and Child Healthcare (MCH) has always been regarded as one of the important issues globally. Reduction of maternal and child mortality rates and increase of healthcare service coverage were declared as one of the targets in Millennium Development Goals till 2015 and thereafter as an important component of the Sustainable Development Goals. Over the last decade, worldwide MCH indicators have improved but could not match the expected levels. Progress of both maternal and child mortality rates have been monitored by several researchers. Each of the studies has stated that only less than 26% of low-income and middle income countries (LMICs) were on track to achieve targets as prescribed by MDG4. Average worldwide annual rate of reduction of under-five mortality rate and maternal mortality rate were 2.2% and 1.9% as on 2011 respectively whereas rates should be minimum 4.4% and 5.5% annually to achieve targets. In spite of having proven healthcare interventions for both mothers and children, those could not be scaled up to the required volume due to fragmented health systems, especially in the developing and under-developed countries. In this research, a knowledge discovery based interactive Decision Support System (DSS) has been developed on web platform which would assist healthcare policy makers to develop evidence-based policies. To achieve desirable results in MCH, efficient resource planning is very much required. In maximum LMICs, resources are big constraint. Knowledge, generated through this system, would help healthcare managers to develop strategic resource planning for combatting with issues like huge inequity and less coverage in MCH. This system would help healthcare managers to accomplish following four tasks. Those are a) comprehending region wise conditions of variables related with MCH, b) identifying relationships within variables, c) segmenting regions based on variables status, and d) finding out segment wise key influential variables which have major impact on healthcare indicators. Whole system development process has been divided into three phases. Those were i) identifying contemporary issues related with MCH services and policy making; ii) development of the system; and iii) verification and validation of the system. More than 90 variables under three categories, such as a) educational, social, and economic parameters; b) MCH interventions; and c) health system building blocks have been included into this web-based DSS and five separate modules have been developed under the system. First module has been designed for analysing current healthcare scenario. Second module would help healthcare managers to understand correlations among variables. Third module would reveal frequently-occurring incidents along with different MCH interventions. Fourth module would segment regions based on previously mentioned three categories and in fifth module, segment-wise key influential interventions will be identified. India has been considered as case study area in this research. Data of 601 districts of India has been used for inspecting effectiveness of those developed modules. This system has been developed by importing different statistical and data mining techniques on Web platform. Policy makers would be able to generate different scenarios from the system before drawing any inference, aided by its interactive capability.

Keywords: maternal and child heathcare, decision support systems, data mining techniques, low and middle income countries

Procedia PDF Downloads 258
27849 Elimination of Mother to Child Transmission of HIV/AIDS: A Study of the Knowledge, Attitudes and Perceptions of Healthcare Workers in Abuja Nigeria

Authors: Ezinne K. Okoro, Takahiko Katoh, Yoko Kawamura, Stanley C. Meribe

Abstract:

HIV infection in children is largely as a result of vertical transmission (mother to child transmission [MTCT]). Thus, elimination of mother to child transmission of HIV/AIDS is critical in eliminating HIV infection in children. In Nigeria, drawbacks such as; limited pediatric screening, limited human capital, insufficient advocacy and poor understanding of ART guidelines, have impacted efforts at combating the disease, even as treatment services are free. Prevention of Mother to Child Transmission (PMTCT) program relies on health workers who not only counsel pregnant women on first contact but can competently provide HIV-positive pregnant women with accurate information about the PMTCT program such as feeding techniques and drug adherence. In developing regions like Nigeria where health care delivery faces a lot of drawbacks, it becomes paramount to address these issues of poor PMTCT coverage by conducting a baseline assessment of the knowledge, practices and perceptions related to HIV prevention amongst healthcare workers in Nigeria. A descriptive cross-sectional study was conducted amongst 250 health workers currently employed in health facilities in Abuja, Nigeria where PMTCT services were offered with the capacity to carry out early infant diagnosis testing (EID). Data was collected using a self-administered, pretested, structured questionnaire. This study showed that the knowledge of PMTCT of HIV was poor (30%) among healthcare workers who offer this service day-to-day to pregnant women. When PMTCT practices were analyzed in keeping with National PMTCT guidelines, over 61% of the respondents reported observing standard practices and the majority (58%) had good attitudes towards caring for patients with HIV/AIDS. Although 61% of the respondents reported being satisfied with the quality of service being rendered, 63% reported not being satisfied with their level of knowledge. Predictors of good knowledge were job designation and level of educational attainment. Health workers who were more satisfied with their working conditions and those who had worked for a longer time in the PMTCT service were more likely to observe standard PMTCT practices. With over 62% of the healthcare workers suggesting that more training would improve the quality of service being rendered, this is a strong pointer to stakeholders to consider a ‘healthcare worker-oriented approach’ when planning and conducting PMTCT training for healthcare workers. This in turn will increase pediatric ARV coverage, the knowledge and effectiveness of the healthcare workers in carrying out appropriate PMTCT interventions and culminating in the reduction/elimination of HIV transmission to newborns.

Keywords: attitudes, HIV/AIDS, healthcare workers, knowledge, mother to child transmission, Nigeria, perceptions

Procedia PDF Downloads 205
27848 Time Series Regression with Meta-Clusters

Authors: Monika Chuchro

Abstract:

This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.

Keywords: clustering, data analysis, data mining, predictive models

Procedia PDF Downloads 466
27847 Python Implementation for S1000D Applicability Depended Processing Model - SALERNO

Authors: Theresia El Khoury, Georges Badr, Amir Hajjam El Hassani, Stéphane N’Guyen Van Ky

Abstract:

The widespread adoption of machine learning and artificial intelligence across different domains can be attributed to the digitization of data over several decades, resulting in vast amounts of data, types, and structures. Thus, data processing and preparation turn out to be a crucial stage. However, applying these techniques to S1000D standard-based data poses a challenge due to its complexity and the need to preserve logical information. This paper describes SALERNO, an S1000d AppLicability dEpended pRocessiNg mOdel. This python-based model analyzes and converts the XML S1000D-based files into an easier data format that can be used in machine learning techniques while preserving the different logic and relationships in files. The model parses the files in the given folder, filters them, and extracts the required information to be saved in appropriate data frames and Excel sheets. Its main idea is to group the extracted information by applicability. In addition, it extracts the full text by replacing internal and external references while maintaining the relationships between files, as well as the necessary requirements. The resulting files can then be saved in databases and used in different models. Documents in both English and French languages were tested, and special characters were decoded. Updates on the technical manuals were taken into consideration as well. The model was tested on different versions of the S1000D, and the results demonstrated its ability to effectively handle the applicability, requirements, references, and relationships across all files and on different levels.

Keywords: aeronautics, big data, data processing, machine learning, S1000D

Procedia PDF Downloads 157
27846 Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines

Authors: Xiaogang Li, Jieqiong Miao

Abstract:

As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square error

Keywords: Grey prediction model, trigonometric functions, support vector machines, genetic algorithms, root mean square error

Procedia PDF Downloads 461
27845 Advancing Early Intervention Strategies for United States Adolescents and Young Adults with Schizophrenia in the Post-COVID-19 Era

Authors: Peggy M. Randon, Lisa Randon

Abstract:

Introduction: The post-COVID-19 era has presented unique challenges for addressing complex mental health issues, particularly due to exacerbated stress, increased social isolation, and disrupted continuity of care. This article outlines relevant health disparities and policy implications within the context of the United States while maintaining international relevance. Methods: A comprehensive literature review (including studies, reports, and policy documents) was conducted to examine concerns related to childhood-onset schizophrenia and the impact on patients and their families. Qualitative and quantitative data were synthesized to provide insights into the complex etiology of schizophrenia, the effects of the pandemic, and the challenges faced by socioeconomically disadvantaged populations. Case studies were employed to illustrate real-world examples and areas requiring policy reform. Results: Early intervention in childhood is crucial for preventing or mitigating the long-term impact of complex psychotic disorders, particularly schizophrenia. A comprehensive understanding of the genetic, environmental, and physiological factors contributing to the development of schizophrenia is essential. The COVID-19 pandemic worsened symptoms and disrupted treatment for many adolescent patients with schizophrenia, emphasizing the need for adaptive interventions and the utilization of virtual platforms. Health disparities, including stigma, financial constraints, and language or cultural barriers, further limit access to care, especially for socioeconomically disadvantaged populations. Policy implications: Current US health policies inadequately support patients with schizophrenia. The limited availability of longitudinal care, insufficient resources for families, and stigmatization represent ongoing policy challenges. Addressing these issues necessitates increased research funding, improved access to affordable treatment plans, and cultural competency training for healthcare providers. Public awareness campaigns are crucial to promote knowledge, awareness, and acceptance of mental health disorders. Conclusion: The unique challenges faced by children and families in the US affected by schizophrenia and other psychotic disorders have yet to be adequately addressed on institutional and systemic levels. The relevance of findings to an international audience is emphasized by examining the complex factors contributing to the onset of psychotic disorders and their global policy implications. The broad impact of the COVID-19 pandemic on mental health underscores the need for adaptive interventions and global responses. Addressing policy challenges, improving access to care, and reducing the stigma associated with mental health disorders are crucial steps toward enhancing the lives of adolescents and young adults with schizophrenia and their family members. The implementation of virtual platforms can help overcome barriers and ensure equitable access to support and resources for all patients, enabling them to lead healthy and fulfilling lives.

Keywords: childhood, schizophrenia, policy, United, States, health, disparities

Procedia PDF Downloads 76
27844 Factors Affecting eHealth Literacy among Nursing Students in Jordan

Authors: Laila Habiballah, Ahmad Tubaishat

Abstract:

Background: with the development of information and communication technology, using the internet as a source to obtain health information is increasing. Nursing students as future health care providers should have the skills of locating, evaluating and using online health information. This will enable them to help their patients and families to make informed decisions. Aim: this study has a two-fold aim. The first is to assess the eHealth literacy among nursing students in Jordan. The second aim is to explore the factors that have an effect on the eHealth literacy. Methods: this is a descriptive cross-sectional survey that conducted in two universities in Jordan; public and private one. A number of 541 students from both universities were completed the eHEALS scale, which is an instrument designed to measure the eHealth literacy. Some additional personal and demographical variable were collected to explore its effect on eHealth literacy. Results: Students have a high perceived level of e-Health literacy (M=3.62, SD=0.58). They are aware of the available online health resources, know how to search, locate, and use these resources. But, they do not have the skills to evaluate these resources and cannot differentiate between the high and low-quality resources. The results showed as well that type of university, type of students' admission, academic level, students' skills of using the internet, and the perception of usefulness and importance of internet have an effect on the eHealth literacy. While the age, gender, GPA, and the frequency of using the internet was no significant factors. Conclusion: This study represents a baseline reference for the eHealth literacy in Jordan. Students have some skills of eHealth literacy and other skills need to be improved. Nursing educators and administrators should integrate and incorporate the skills of eHealth literacy in the curriculum.

Keywords: eHealth, literacy, nursing, students, Jordan

Procedia PDF Downloads 397
27843 Decision Support System for Fetus Status Evaluation Using Cardiotocograms

Authors: Oyebade K. Oyedotun

Abstract:

The cardiotocogram is a technical recording of the heartbeat rate and uterine contractions of a fetus during pregnancy. During pregnancy, several complications can occur to both the mother and the fetus; hence it is very crucial that medical experts are able to find technical means to check the healthiness of the mother and especially the fetus. It is very important that the fetus develops as expected in stages during the pregnancy period; however, the task of monitoring the health status of the fetus is not that which is easily achieved as the fetus is not wholly physically available to medical experts for inspection. Hence, doctors have to resort to some other tests that can give an indication of the status of the fetus. One of such diagnostic test is to obtain cardiotocograms of the fetus. From the analysis of the cardiotocograms, medical experts can determine the status of the fetus, and therefore necessary medical interventions. Generally, medical experts classify examined cardiotocograms into ‘normal’, ‘suspect’, or ‘pathological’. This work presents an artificial neural network based decision support system which can filter cardiotocograms data, producing the corresponding statuses of the fetuses. The capability of artificial neural network to explore the cardiotocogram data and learn features that distinguish one class from the others has been exploited in this research. In this research, feedforward and radial basis neural networks were trained on a publicly available database to classify the processed cardiotocogram data into one of the three classes: ‘normal’, ‘suspect’, or ‘pathological’. Classification accuracies of 87.8% and 89.2% were achieved during the test phase of the trained network for the feedforward and radial basis neural networks respectively. It is the hope that while the system described in this work may not be a complete replacement for a medical expert in fetus status evaluation, it can significantly reinforce the confidence in medical diagnosis reached by experts.

Keywords: decision support, cardiotocogram, classification, neural networks

Procedia PDF Downloads 333
27842 Analysis of Citation Rate and Data Reuse for Openly Accessible Biodiversity Datasets on Global Biodiversity Information Facility

Authors: Nushrat Khan, Mike Thelwall, Kayvan Kousha

Abstract:

Making research data openly accessible has been mandated by most funders over the last 5 years as it promotes reproducibility in science and reduces duplication of effort to collect the same data. There are evidence that articles that publicly share research data have higher citation rates in biological and social sciences. However, how and whether shared data is being reused is not always intuitive as such information is not easily accessible from the majority of research data repositories. This study aims to understand the practice of data citation and how data is being reused over the years focusing on biodiversity since research data is frequently reused in this field. Metadata of 38,878 datasets including citation counts were collected through the Global Biodiversity Information Facility (GBIF) API for this purpose. GBIF was used as a data source since it provides citation count for datasets, not a commonly available feature for most repositories. Analysis of dataset types, citation counts, creation and update time of datasets suggests that citation rate varies for different types of datasets, where occurrence datasets that have more granular information have higher citation rates than checklist and metadata-only datasets. Another finding is that biodiversity datasets on GBIF are frequently updated, which is unique to this field. Majority of the datasets from the earliest year of 2007 were updated after 11 years, with no dataset that was not updated since creation. For each year between 2007 and 2017, we compared the correlations between update time and citation rate of four different types of datasets. While recent datasets do not show any correlations, 3 to 4 years old datasets show weak correlation where datasets that were updated more recently received high citations. The results are suggestive that it takes several years to cumulate citations for research datasets. However, this investigation found that when searched on Google Scholar or Scopus databases for the same datasets, the number of citations is often not the same as GBIF. Hence future aim is to further explore the citation count system adopted by GBIF to evaluate its reliability and whether it can be applicable to other fields of studies as well.

Keywords: data citation, data reuse, research data sharing, webometrics

Procedia PDF Downloads 178
27841 Significance of Transient Data and Its Applications in Turbine Generators

Authors: Chandra Gupt Porwal, Preeti C. Porwal

Abstract:

Transient data reveals much about the machine's condition that steady-state data cannot. New technologies make this information much more available for evaluating the mechanical integrity of a machine train. Recent surveys at various stations indicate that simplicity is preferred over completeness in machine audits throughout the power generation industry. This is most clearly shown by the number of rotating machinery predictive maintenance programs in which only steady-state vibration amplitude is trended while important transient vibration data is not even acquired. Efforts have been made to explain what transient data is, its importance, the types of plots used for its display, and its effective utilization for analysis. In order to demonstrate the value of measuring transient data and its practical application in rotating machinery for resolving complex and persistent issues with turbine generators, the author presents a few case studies that highlight the presence of rotor instabilities due to the shaft moving towards the bearing centre in a 100 MM LMZ unit located in the Northern Capital Region (NCR), heavy misalignment noticed—especially after 2993 rpm—caused by loose coupling bolts, which prevented the machine from being synchronized for more than four months in a 250 MW KWU unit in the Western Region (WR), and heavy preload noticed at Intermediate pressure turbine (IPT) bearing near HP- IP coupling, caused by high points on coupling faces at a 500 MW KWU unit in the Northern region (NR), experienced at Indian power plants.

Keywords: transient data, steady-state-data, intermediate -pressure-turbine, high-points

Procedia PDF Downloads 69
27840 Searching for Health-Related Information on the Internet: A Case Study on Young Adults

Authors: Dana Weimann Saks

Abstract:

This study aimed to examine the use of the internet as a source of health-related information (HRI), as well as the change in attitudes following the online search for HRI. The current study sample included 88 participants, randomly divided into two experimental groups. One was given the name of an unfamiliar disease and told to search for information about it using various search engines, and the second was given a text about the disease from a credible scientific source. The study findings show a large percentage of participants used the internet as a source of HRI. Likewise, no differences were found in the extent to which the internet was used as a source of HRI when demographics were compared. Those who searched for the HRI on the internet had more negative opinions and believed symptoms of the disease were worse than the average opinion among those who obtained the information about the disease from a credible scientific source. The Internet clearly influences the participants’ beliefs, regardless of demographic differences.

Keywords: health-related information, internet, young adults, HRI

Procedia PDF Downloads 127
27839 Visual Analytics in K 12 Education: Emerging Dimensions of Complexity

Authors: Linnea Stenliden

Abstract:

The aim of this paper is to understand emerging learning conditions, when a visual analytics is implemented and used in K 12 (education). To date, little attention has been paid to the role visual analytics (digital media and technology that highlight visual data communication in order to support analytical tasks) can play in education, and to the extent to which these tools can process actionable data for young students. This study was conducted in three public K 12 schools, in four social science classes with students aged 10 to 13 years, over a period of two to four weeks at each school. Empirical data were generated using video observations and analyzed with help of metaphors by Latour. The learning conditions are found to be distinguished by broad complexity characterized by four dimensions. These emerge from the actors’ deeply intertwined relations in the activities. The paper argues in relation to the found dimensions that novel approaches to teaching and learning could benefit students’ knowledge building as they work with visual analytics, analyzing visualized data.

Keywords: analytical reasoning, complexity, data use, problem space, visual analytics, visual storytelling, translation

Procedia PDF Downloads 376
27838 Investigating of the Fuel Consumption in Construction Machinery and Ways to Reduce Fuel Consumption

Authors: Reza Bahboodian

Abstract:

One of the most important factors in the use of construction machinery is the fuel consumption cost of this equipment. The use of diesel engines in off-road vehicles is an important source of nitrogen oxides and particulate matter. Emissions of nitrogen oxides and particulate matter 10 in off-road vehicles (construction and mining) may be high. Due to the high cost of fuel, it is necessary to minimize fuel consumption. Factors affecting the fuel consumption of these cars are very diverse. Climate changes such as changes in pressure, temperature, humidity, fuel type selection, type of gearbox used in the car are effective in fuel consumption and pollution, and engine efficiency. In this paper, methods for reducing fuel consumption and pollutants by considering valid European and European standards are examined based on new methods such as hybridization, optimal gear change, adding hydrogen to diesel fuel, determining optimal working fluids, and using oxidation catalysts.

Keywords: improve fuel consumption, construction machinery, pollutant reduction, determining the optimal working cycle

Procedia PDF Downloads 162
27837 Achieving Success in NPD Projects

Authors: Ankush Agrawal, Nadia Bhuiyan

Abstract:

The new product development (NPD) literature emphasizes the importance of introducing new products on the market for continuing business success. New products are responsible for employment, economic growth, technological progress, and high standards of living. Therefore, the study of NPD and the processes through which they emerge is important. The goal of our research is to propose a framework of critical success factors, metrics, and tools and techniques for implementing metrics for each stage of the new product development (NPD) process. An extensive literature review was undertaken to investigate decades of studies on NPD success and how it can be achieved. These studies were scanned for common factors for firms that enjoyed success of new products on the market. The paper summarizes NPD success factors, suggests metrics that should be used to measure these factors, and proposes tools and techniques to make use of these metrics. This was done for each stage of the NPD process, and brought together in a framework that the authors propose should be followed for complex NPD projects. While many studies have been conducted on critical success factors for NPD, these studies tend to be fragmented and focus on one or a few phases of the NPD process.

Keywords: new product development, performance, critical success factors, framework

Procedia PDF Downloads 399
27836 Ontology-Driven Generation of Radiation Protection Procedures

Authors: Chamseddine Barki, Salam Labidi, Hanen Boussi Rahmouni

Abstract:

In this article, we present the principle and suitable methodology for the design of a medical ontology that highlights the radiological and dosimetric knowledge, applied in diagnostic radiology and radiation-therapy. Our ontology, which we named «Onto.Rap», is the subject of radiation protection in medical and radiology centers by providing a standardized regulatory oversight. Thanks to its added values of knowledge-sharing, reuse and the ease of maintenance, this ontology tends to solve many problems. Of which we name the confusion between radiological procedures a practitioner might face while performing a patient radiological exam. Adding to it, the difficulties they might have in interpreting applicable patient radioprotection standards. Here, the ontology, thanks to its concepts simplification and expressiveness capabilities, can ensure an efficient classification of radiological procedures. It also provides an explicit representation of the relations between the different components of the studied concept. In fact, an ontology based-radioprotection expert system, when used in radiological center, could implement systematic radioprotection best practices during patient exam and a regulatory compliance service auditing afterwards.

Keywords: knowledge, ontology, radiation protection, radiology

Procedia PDF Downloads 312
27835 Decreased Non-Communicable Disease by Surveillance, Control, Prevention Systems, and Community Engagement Process in Phayao, Thailand

Authors: Vichai Tienthavorn

Abstract:

Background: Recently, the patients of non-communicable diseases (NCDs) are increasing in Thailand; especially hypertension and diabetes. Hypertension and Diabetes patients were found to be of 3.7 million in 2008. The varieties of human behaviors have been extensively changed in health. Hence, Thai Government has a policy to reduce NCDs. Generally, primary care plays an important role in treatment using medical process. However, NCDs patients have not been decreased. Objectives: This study not only reduce the patient and mortality rate but also increase the quality of life, could apply in different areas and propose to be the national policy, effectively for a long term operation. Methods: Here we report that primary health care (PHC), which is a primary process to screening, rapidly seek the person's risk. The screening tool of the study was Vichai's 7 color balls model, the medical education tool to transfer knowledge from student health team to community through health volunteers, creating community engagement in terms of social participation. It was found that people in community were realized in their health and they can evaluate the level of risk using this model. Results: Projects implementation (2015) in Nong Lom Health Center in Phayao (target group 15-65 years, 2529); screening hypertension coveraged 99.01%, risk group (light green) was decreased to normal group (white) from 1806 to 1893, significant severe patient (red) was decreased to moderate (orange) from 10 to 5. Health Program in behaving change with best practice of 3Es (Eating, Exercise, Emotion) and 3Rs (Reducing tobacco, alcohol, obesity) were applied in risk group; and encourage strictly medication, investigation in severe patient (red). Conclusion: This is the first demonstration of knowledge transfer to community engagement by student, which is the sustainable education in PHC.

Keywords: non-communicable disease, surveillance control and prevention systems, community engagement, primary health care

Procedia PDF Downloads 250
27834 Prevalence, Awareness and Control of Hypertension among the University of Venda Academic Staff, South Africa

Authors: Thizwilondi Madzaga, Jabu Tsakani Mabunda, Takalani Tshitangano

Abstract:

Hypertension is a global public health problem. In most cases, hypertension individuals are not aware of their condition, and they only detected it accidentally during public awareness programmes. The aim of the study was to determine the prevalence, awareness and control of hypertension among University of Venda academic staff. UNIVEN is situated in Thohoyandou, South Africa. A cross-sectional study was conducted to determine the prevalence, awareness and control of hypertension among University of Venda academic staff. Slovin’s formula was used to randomly select 179 academic staff (male=104 and female=75). WHO stepwise Questionnaire version 23.0 was used to get information on demographic information. Blood pressure was measured twice after five minutes rest using electronic blood pressure monitor. In this study, hypertension referred to self-reported to be on hypertension medication or having blood pressure equal or exceeding 140 over 90 mmHg. Statistical Package of Social Sciences version 23.0 was used to analyse data. Prevalence of hypertension was 20% and 46% prehypertension. Only 34% had a normal blood pressure. About 34% were not sure of their current blood pressure status (within 12 months). About 10% of the total respondents had been previously diagnosed with hypertension and half of them who were hypertensive were not aware that they had it. Among those who were aware that they are hypertensive, about 90% were on treatment whereas 10% had stopped taking treatment. About 13% of those who were on treatment had controlled blood pressure. There is a need for health education programmes to increase hypertension awareness.

Keywords: academic staff, awareness, control, hypertension, prevalence

Procedia PDF Downloads 337
27833 Achieving High Renewable Energy Penetration in Western Australia Using Data Digitisation and Machine Learning

Authors: A. D. Tayal

Abstract:

The energy industry is undergoing significant disruption. This research outlines that, whilst challenging; this disruption is also an emerging opportunity for electricity utilities. One such opportunity is leveraging the developments in data analytics and machine learning. As the uptake of renewable energy technologies and complimentary control systems increases, electricity grids will likely transform towards dense microgrids with high penetration of renewable generation sources, rich in network and customer data, and linked through intelligent, wireless communications. Data digitisation and analytics have already impacted numerous industries, and its influence on the energy sector is growing, as computational capabilities increase to manage big data, and as machines develop algorithms to solve the energy challenges of the future. The objective of this paper is to address how far the uptake of renewable technologies can go given the constraints of existing grid infrastructure and provides a qualitative assessment of how higher levels of renewable energy penetration can be facilitated by incorporating even broader technological advances in the fields of data analytics and machine learning. Western Australia is used as a contextualised case study, given its abundance and diverse renewable resources (solar, wind, biomass, and wave) and isolated networks, making a high penetration of renewables a feasible target for policy makers over coming decades.

Keywords: data, innovation, renewable, solar

Procedia PDF Downloads 365
27832 Proposition of an Ontology of Diseases and Their Signs from Medical Ontologies Integration

Authors: Adama Sow, Abdoulaye Guiss´e, Oumar Niang

Abstract:

To assist medical diagnosis, we propose a federation of several existing and open medical ontologies and terminologies. The goal is to merge the strengths of all these resources to provide clinicians the access to a variety of shared knowledges that can facilitate identification and association of human diseases and all of their available characteristic signs such as symptoms and clinical signs. This work results to an integration model loaded from target known ontologies of the bioportal platform such as DOID, MESH, and SNOMED for diseases selection, SYMP, and CSSO for all existing signs.

Keywords: medical decision, medical ontologies, ontologies integration, linked data, knowledge engineering, e-health system

Procedia PDF Downloads 198
27831 Anticorrosive Polyurethane Clear Coat with Self-Cleaning Character

Authors: Nihit Madireddi, P. A. Mahanwar

Abstract:

We have aimed to produce a self-cleaning transparent polymer coating with polyurethane (PU) matrix as the latter is highly solvent, chemical and weather resistant having good mechanical properties. Nano-silica modified by 1H, 1H, 2H, 2H-perflurooctyltriethoxysilane was incorporated into the PU matrix for attaining self-cleaning ability through hydrophobicity. The modification was confirmed by particle size analysis and scanning electron microscopy (SEM). Thermo-gravimetric (TGA) studies were carried to ascertain the grafting of silane onto the silica. Several coating formulations were prepared by varying the silica loading content and compared to a commercial equivalent. The effect of dispersion and the morphology of the coated films were assessed by SEM analysis. All coating standardized tests like solvent resistance, adhesion, flexibility, acid, alkali, gloss etc. have been performed as per ASTM standards. Water contact angle studies were conducted to analyze the hydrophobic character of the coating. In addition, the coatings were also subjected to salt spray and accelerated weather testing to analyze the durability of the coating.

Keywords: FAS, nano-silica, PU clear coat, self-cleaning

Procedia PDF Downloads 311
27830 Clinical Validation of an Automated Natural Language Processing Algorithm for Finding COVID-19 Symptoms and Complications in Patient Notes

Authors: Karolina Wieczorek, Sophie Wiliams

Abstract:

Introduction: Patient data is often collected in Electronic Health Record Systems (EHR) for purposes such as providing care as well as reporting data. This information can be re-used to validate data models in clinical trials or in epidemiological studies. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. Mentioning a disease in a discharge letter does not necessarily mean that a patient suffers from this disease. Many of them discuss a diagnostic process, different tests, or discuss whether a patient has a certain disease. The COVID-19 dataset in this study used natural language processing (NLP), an automated algorithm which extracts information related to COVID-19 symptoms, complications, and medications prescribed within the hospital. Free-text patient clinical patient notes are rich sources of information which contain patient data not captured in a structured form, hence the use of named entity recognition (NER) to capture additional information. Methods: Patient data (discharge summary letters) were exported and screened by an algorithm to pick up relevant terms related to COVID-19. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. A list of 124 Systematized Nomenclature of Medicine (SNOMED) Clinical Terms has been provided in Excel with corresponding IDs. Two independent medical student researchers were provided with a dictionary of SNOMED list of terms to refer to when screening the notes. They worked on two separate datasets called "A” and "B”, respectively. Notes were screened to check if the correct term had been picked-up by the algorithm to ensure that negated terms were not picked up. Results: Its implementation in the hospital began on March 31, 2020, and the first EHR-derived extract was generated for use in an audit study on June 04, 2020. The dataset has contributed to large, priority clinical trials (including International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) by bulk upload to REDcap research databases) and local research and audit studies. Successful sharing of EHR-extracted datasets requires communicating the provenance and quality, including completeness and accuracy of this data. The results of the validation of the algorithm were the following: precision (0.907), recall (0.416), and F-score test (0.570). Percentage enhancement with NLP extracted terms compared to regular data extraction alone was low (0.3%) for relatively well-documented data such as previous medical history but higher (16.6%, 29.53%, 30.3%, 45.1%) for complications, presenting illness, chronic procedures, acute procedures respectively. Conclusions: This automated NLP algorithm is shown to be useful in facilitating patient data analysis and has the potential to be used in more large-scale clinical trials to assess potential study exclusion criteria for participants in the development of vaccines.

Keywords: automated, algorithm, NLP, COVID-19

Procedia PDF Downloads 102
27829 A New Paradigm to Make Cloud Computing Greener

Authors: Apurva Saxena, Sunita Gond

Abstract:

Demand of computation, data storage in large amount are rapidly increases day by day. Cloud computing technology fulfill the demand of today’s computation but this will lead to high power consumption in cloud data centers. Initiative for Green IT try to reduce power consumption and its adverse environmental impacts. Paper also focus on various green computing techniques, proposed models and efficient way to make cloud greener.

Keywords: virtualization, cloud computing, green computing, data center

Procedia PDF Downloads 555
27828 Needs-Gap Analysis on Culturally and Linguistically Diverse Grandparent Carers ‘Hidden Issues’: An Insight for Community Nurses

Authors: Mercedes Sepulveda, Saras Henderson, Dana Farrell, Gaby Heuft

Abstract:

In Australia, there is a significant number of Culturally and Linguistically Diverse (CALD) Grandparent Carers who are sole carers for their grandchildren. Services in the community such as accessible healthcare, financial support, legal aid, and transport to services can assist Grandparent Carers to continue to live in their own home whilst caring for their grandchildren. Community nurses can play a major role by being aware of the needs of these grandparents and link them to services via information and referrals. The CALD Grandparent Carer experiences have only been explored marginally and may be similar to the general Grandparent Carer population, although cultural aspects may add to their difficulties. This Needs-Gap Analysis aimed to uncover ‘hidden issues’ for CALD Grandparent Carers such as service gaps and actions needed to address these issues. The stakeholders selected for this Needs-Gap Analysis were drawn from relevant service providers such as community and aged care services, child and/or grandparents support services and CALD specific services. One hundred relevant service providers were surveyed using six structured questions via face to face, phone interviews, or email correspondence. CALD Grandparents who had a significant or sole role of being a carer for grandchildren were invited to participate through their CALD community leaders. Consultative Forums asking five questions that focused on the caring role, issues encountered, and what needed to be done, were conducted with the African, Asian, Spanish-Speaking, Middle Eastern, European, Pacific Islander and Maori Grandparent Carers living in South-east Queensland, Australia. Data from the service provider survey and the CALD Grandparent Carer forums were content analysed using thematic principles. Our findings highlighted social determinants of health grouped into six themes. These were; 1) service providers and Grandparent Carer perception that there was limited research data on CALD grandparents as carers; 2) inadequate legal and financial support; 3) barriers to accessing information and advice; 4) lack of childcare options in the light of aging and health issues; 5) difficulties around transport; and 6) inadequate technological skills often leading to social isolation for both carer and grandchildren. Our Needs-Gap Analysis provides insight to service providers especially health practitioners such as doctors and community nurses, particularly on the impact of caring for grandchildren on CALD Grandparent Carers. Furthermore, factors such as cultural differences, English language difficulties, and migration experiences also impacted on the way CALD Grandparent Carers are able to cope. The findings of this Need-Gap Analysis signposts some of the ‘ hidden issues’ that CALD Grandparents Carers face and draws together recommendations for the future as put forward by the stakeholders themselves.

Keywords: CALD grandparents, carer needs, community nurses, grandparent carers

Procedia PDF Downloads 313
27827 A Study to Assess the Employment Ambitions of Graduating Students from College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia

Authors: J. George, M. Al Mutairi, W. Aljuryyad, A. Alhussanan, A. Alkashan, T. Aldoghiri, Z. Alamari, A. Albakr

Abstract:

Introduction: Students make plans for their career and are keen in exploring options of employment in those carriers. They make their employment choice based on their desires and preferences. This study aims to identify if students of King Saud Bin Abdulaziz for Health Sciences, College of Applied Medical Sciences after obtaining appropriate education prefer to work as clinicians, university faculty, or full-time researchers. There are limited studies in Saudi Arabia exploring the university student’s employment choices and preferences. This study would help employers to build the required job positions and prevent misleading employers from opening undesired positions in the job market. Methodology: The study included 394 students from third and fourth years both male and female among the eighth programs of college of applied medical sciences, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh campus. A prospective quantitative cross-sectional study was conducted; data were collected by distributing a seven item questionnaire and analyzed using SPSS. Results: Among the participants, 358 (90.9%) of them chose one of the three listed career choices, 263 (66.8%) decided to work as hospital staff after their education, 75 students (19.0%) chose to work as a faculty member in a university after obtaining appropriate degree, 20 students (5.1%) preferred to work as full-time researcher after obtaining appropriate degree, the remaining 36 students (9.1%) had different career goals, such as obtaining a master degree after graduating, to obtain a bachelor of medicine and bachelor in surgery degree, and working in the private sector. The most recurrent reason behind the participants' choice was "career goal", where 276 (70.1%) chose it as a reason. Conclusion: The findings of the study showed that most student’s preferred to work in hospitals as clinicians, followed by choice of working as a faculty in a university, the least choice was to be working as full-time researchers.

Keywords: College of Applied Medical Sciences, employment ambitions, graduating students, King Saud bin Abdulaziz University for Health Sciences

Procedia PDF Downloads 162
27826 Analysis of Atomic Models in High School Physics Textbooks

Authors: Meng-Fei Cheng, Wei Fneg

Abstract:

New Taiwan high school standards emphasize employing scientific models and modeling practices in physics learning. However, to our knowledge. Few studies address how scientific models and modeling are approached in current science teaching, and they do not examine the views of scientific models portrayed in the textbooks. To explore the views of scientific models and modeling in textbooks, this study investigated the atomic unit in different textbook versions as an example and provided suggestions for modeling curriculum. This study adopted a quantitative analysis of qualitative data in the atomic units of four mainstream version of Taiwan high school physics textbooks. The models were further analyzed using five dimensions of the views of scientific models (nature of models, multiple models, purpose of the models, testing models, and changing models); each dimension had three levels (low, medium, high). Descriptive statistics were employed to compare the frequency of describing the five dimensions of the views of scientific models in the atomic unit to understand the emphasis of the views and to compare the frequency of the eight scientific models’ use to investigate the atomic model that was used most often in the textbooks. Descriptive statistics were further utilized to investigate the average levels of the five dimensions of the views of scientific models to examine whether the textbooks views were close to the scientific view. The average level of the five dimensions of the eight atomic models were also compared to examine whether the views of the eight atomic models were close to the scientific views. The results revealed the following three major findings from the atomic unit. (1) Among the five dimensions of the views of scientific models, the most portrayed dimension was the 'purpose of models,' and the least portrayed dimension was 'multiple models.' The most diverse view was the 'purpose of models,' and the most sophisticated scientific view was the 'nature of models.' The least sophisticated scientific view was 'multiple models.' (2) Among the eight atomic models, the most mentioned model was the atomic nucleus model, and the least mentioned model was the three states of matter. (3) Among the correlations between the five dimensions, the dimension of 'testing models' was highly related to the dimension of 'changing models.' In short, this study examined the views of scientific models based on the atomic units of physics textbooks to identify the emphasized and disregarded views in the textbooks. The findings suggest how future textbooks and curriculum can provide a thorough view of scientific models to enhance students' model-based learning.

Keywords: atomic models, textbooks, science education, scientific model

Procedia PDF Downloads 158
27825 Determinants of Healthcare Team Effectiveness in Subterranean Settings: A Mixed-Methods Study

Authors: Nasra Idilbi, Jalal Tarabeia, Layalleh Masalha, Heiam Shoufani Kassis, Gizell Green

Abstract:

Background: Healthcare professionals working in underground facilities face unique challenges affecting their physical and mental health and team effectiveness. We aimed to examine how an underground work environment affects the physical and mental health and effectiveness of a multi-professional medical team in a medical center under continuous war threats and the contribution of various demographic and professional characteristics. Methods: A cross-sectional survey was disseminated electronically. The questionnaire assessed team effectiveness, the quality of the work, and the health symptoms reported by the team while working in the underground complex. Results: In total, 270 healthcare workers (mean age 40 years, 75.6% females, 88.4% nurses) completed the questionnaire. Women reported statistically significantly higher mean scores of physical strain, fatigue, and eye irritation associated with the work environment compared to men. Multiple regression analysis revealed that psychological distress, noise, and lighting in the underground compound significantly influenced team effectiveness. The qualitative analysis revealed two key themes: the mental health impact of working in an underground environment and the effects of noise and lighting on staff performance. Nurses reported feelings of suffocation, claustrophobia, and difficulty concentrating due to the enclosed space, with some expressing heightened stress levels that impaired their ability to work effectively and safely. Female staff reported more pronounced symptoms of physical strain, fatigue, and eye irritation. Additionally, the underground complex’s poor noise absorption created a highly disruptive work environment, while inadequate lighting hindered accurate patient assessments, leading to potential errors. These challenges were exacerbated by physical symptoms like headaches and nausea, which further impacted job performance. The findings underscore the significant role of environmental factors in influencing both mental health and operational effectiveness, aligning with quantitative data on the predictors of team performance. Conclusions: The underground work environment is crucial in influencing healthcare team effectiveness, with psychological distress, noise, and lighting as key factors. The study highlights the importance of creating a comfortable work environment to foster team efficiency. The findings provide valuable insights for managers in underground healthcare facilities to optimize team performance and well-being.

Keywords: team effectiveness, underground settings, healthcare, environmental factors, a mixed-methods study

Procedia PDF Downloads 8
27824 Urban Compactness and Sustainability: Beijing Experience

Authors: Xilu Liu, Ameen Farooq

Abstract:

Beijing has several compact residential housing settings in many of its urban districts. The study in this paper reveals that urban compactness, as predictor of density, may carry an altogether different meaning in the developing world when compared to the U.S for achieving objectives of urban sustainability. Recent urban design studies in the U.S are debating for compact and mixed-use higher density housing to achieve sustainable and energy efficient living environments. While the concept of urban compactness is widely accepted as an approach in modern architectural and urban design fields, this belief may not directly carry well into all areas within cities of developing countries. Beijing’s technology-driven economy, with its historic and rich cultural heritage and a highly speculated real-estate market, extends its urban boundaries into multiple compact urban settings of varying scales and densities. The accelerated pace of migration from the countryside for better opportunities has led to unsustainable and uncontrolled buildups in order to meet the growing population demand within and outside of the urban center. This unwarranted compactness in certain urban zones has produced an unhealthy physical density with serious environmental and ecological challenging basic living conditions. In addition, crowding, traffic congestion, pollution and limited housing surrounding this compactness is a threat to public health. Several residential blocks in close proximity to each other were found quite compacted, or ill-planned, with residential sites due to lack of proper planning in Beijing. Most of them at first sight appear to be compact and dense but further analytical studies revealed that what appear to be dense actually are not as dense as to make a good case that could serve as the corner stone of sustainability and energy efficiency. This study considered several factors including floor area ratio (FAR), ground coverage (GSI), open space ratio (OSR) as indicators in analyzing urban compactness as a predictor of density. The findings suggest that these measures, influencing the density of residential sites under study, were much smaller in density than expected given their compact adjacencies. Further analysis revealed that several residential housing appear to support the notion of density in its compact layout but are actually compacted due to unregulated planning marred by lack of proper urban design standards, policies and guidelines specific to their urban context and condition.

Keywords: Beijing, density, sustainability, urban compactness

Procedia PDF Downloads 424
27823 Classification of Coughing and Breathing Activities Using Wearable and a Light-Weight DL Model

Authors: Subham Ghosh, Arnab Nandi

Abstract:

Background: The proliferation of Wireless Body Area Networks (WBAN) and Internet of Things (IoT) applications demonstrates the potential for continuous monitoring of physical changes in the body. These technologies are vital for health monitoring tasks, such as identifying coughing and breathing activities, which are necessary for disease diagnosis and management. Monitoring activities such as coughing and deep breathing can provide valuable insights into a variety of medical issues. Wearable radio-based antenna sensors, which are lightweight and easy to incorporate into clothing or portable goods, provide continuous monitoring. This mobility gives it a substantial advantage over stationary environmental sensors like as cameras and radar, which are constrained to certain places. Furthermore, using compressive techniques provides benefits such as reduced data transmission speeds and memory needs. These wearable sensors offer more advanced and diverse health monitoring capabilities. Methodology: This study analyzes the feasibility of using a semi-flexible antenna operating at 2.4 GHz (ISM band) and positioned around the neck and near the mouth to identify three activities: coughing, deep breathing, and idleness. Vector network analyzer (VNA) is used to collect time-varying complex reflection coefficient data from perturbed antenna nearfield. The reflection coefficient (S11) conveys nuanced information caused by simultaneous variations in the nearfield radiation of three activities across time. The signatures are sparsely represented with gaussian windowed Gabor spectrograms. The Gabor spectrogram is used as a sparse representation approach, which reassigns the ridges of the spectrogram images to improve their resolution and focus on essential components. The antenna is biocompatible in terms of specific absorption rate (SAR). The sparsely represented Gabor spectrogram pictures are fed into a lightweight deep learning (DL) model for feature extraction and classification. Two antenna locations are investigated in order to determine the most effective localization for three different activities. Findings: Cross-validation techniques were used on data from both locations. Due to the complex form of the recorded S11, separate analyzes and assessments were performed on the magnitude, phase, and their combination. The combination of magnitude and phase fared better than the separate analyses. Various sliding window sizes, ranging from 1 to 5 seconds, were tested to find the best window for activity classification. It was discovered that a neck-mounted design was effective at detecting the three unique behaviors.

Keywords: activity recognition, antenna, deep-learning, time-frequency

Procedia PDF Downloads 11