Search results for: nonprofit organizations-national data maturity index (NDI)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27594

Search results for: nonprofit organizations-national data maturity index (NDI)

23844 The Multidisciplinary Treatment in Residence Care Clinic for Treatment of Feeding and Eating Disorders

Authors: Yuri Melis, Mattia Resteghini, Emanuela Apicella, Eugenia Dozio, Leonardo Mendolicchio

Abstract:

Aim: This retrospective study was created to analyze the psychometric, anthropometric and body composition values in patients at the beginning and the discharge of their of hospitalization in the residential care clinic for eating and feeding disorders (EFD’s). Method: The sample was composed by (N=59) patients with mean age N= 33,50, divided in subgroups: Anorexia Nervosa (AN) (N=28), Bulimia Nervosa (BN) (N=13) and Binge Eating Disorders (BED) (N=14) recruited from a residential care clinic for eating and feeding disorders. The psychometrics level was measured with self-report questionnaires: Eating Disorders Inventory-3 (EDI-3) The Body Uneasiness Test (BUT), Minnesota Multiphasic Personality Inventory (MMPI – 2). The anthropometric and nutritional values was collected by Body Impedance Assessment (B.I.A), Body mass index (B.M.I.). Measurements were made at the beginning and at the end of hospitalization, with an average time of recovery of about 8,6 months. Results: The all data analysis showed a statistical significance (p-value >0,05 | power size N=0,950) in variation from T0 (start of recovery) to T1 (end of recovery) in the clinical scales of MMPI-2, AN group (Hypocondria T0 64,14 – T1 56,39) (Depression T0 72,93 – T1 59,50) (Hysteria T0 61,29 – T1 56,17) (Psychopathic deviation T0 64,00 – T1 60,82) (Paranoia T0 63,82 – T1 56,14) (Psychasthenia T0 63,82 – T1 57,86) (Schizophrenia T0 64,68 – T1 60,43) (Obsessive T0 60,36 – T1 55,68); BN group (Hypocondria T0 64,08 – T1 47,54) (Depression T0 67,46 – T1 52,46) (Hysteria T0 60,62 – T1 47,84) (Psychopathic deviation T0 65,69 – T1 58,92) (Paranoia T0 67,46 – T1 55,23) (Psychasthenia T0 60,77 – T1 53,77) (Schizophrenia T0 64,68 – T1 60,43) (Obsessive T0 62,92 – T1 54,08); B.E.D groups (Hypocondria T0 59,43 – T1 53,14) (Depression T0 66,71 – T1 54,57) (Hysteria T0 59,86 – T1 53,82) (Psychopathic deviation T0 67,39 – T1 59,03) (Paranoia T0 58,57 – T1 53,21) (Psychasthenia T0 61,43 – T1 53,00) (Schizophrenia T0 62,29 – T1 56,36) (Obsessive T0 58,57 – T1 48,64). EDI-3 report mean value is higher than clinical cut-off at T0, in T1, there is a significant reduction of the general mean of value. The same result is present in the B.U.T. test in the difference between T0 to T1. B.M.I mean value in AN group is (T0 14,83 – T1 18,41) BN group (T0 20 – T1 21,33) BED group (T0 42,32 – T1 34,97) Phase Angle results: AN group (T0 4,78 – T1 5,64) BN (T0 6 – T1 6,53) BED group (T0 6 – T1 6,72). Discussion and conclusion: The evident presence that on the whole sample, we have an altered serious psychiatric and clinic conditions at the beginning of recovery. The interesting conclusions that we can draw from this analysis are that a multidisciplinary approach that includes the entire care of the subject: from the pharmacological treatment, analytical psychotherapy, Psychomotricity, nutritional rehabilitation, and rehabilitative, educational activities. Thus, this Multidisciplinary treatment allows subjects in our sample to be able to restore psychopathological and metabolic values to below the clinical cut-off.

Keywords: feeding and eating disorders, anorexia nervosa, care clinic treatment, multidisciplinary treatment

Procedia PDF Downloads 124
23843 A Study on the Correlation Analysis between the Pre-Sale Competition Rate and the Apartment Unit Plan Factor through Machine Learning

Authors: Seongjun Kim, Jinwooung Kim, Sung-Ah Kim

Abstract:

The development of information and communication technology also affects human cognition and thinking, especially in the field of design, new techniques are being tried. In architecture, new design methodologies such as machine learning or data-driven design are being applied. In particular, these methodologies are used in analyzing the factors related to the value of real estate or analyzing the feasibility in the early planning stage of the apartment housing. However, since the value of apartment buildings is often determined by external factors such as location and traffic conditions, rather than the interior elements of buildings, data is rarely used in the design process. Therefore, although the technical conditions are provided, the internal elements of the apartment are difficult to apply the data-driven design in the design process of the apartment. As a result, the designers of apartment housing were forced to rely on designer experience or modular design alternatives rather than data-driven design at the design stage, resulting in a uniform arrangement of space in the apartment house. The purpose of this study is to propose a methodology to support the designers to design the apartment unit plan with high consumer preference by deriving the correlation and importance of the floor plan elements of the apartment preferred by the consumers through the machine learning and reflecting this information from the early design process. The data on the pre-sale competition rate and the elements of the floor plan are collected as data, and the correlation between pre-sale competition rate and independent variables is analyzed through machine learning. This analytical model can be used to review the apartment unit plan produced by the designer and to assist the designer. Therefore, it is possible to make a floor plan of apartment housing with high preference because it is possible to feedback apartment unit plan by using trained model when it is used in floor plan design of apartment housing.

Keywords: apartment unit plan, data-driven design, design methodology, machine learning

Procedia PDF Downloads 268
23842 Impact of Protean Career Attitude on Career Success with the Mediating Effect of Career Insight

Authors: Prabhashini Wijewantha

Abstract:

This study looks at the impact of protean career attitude of employees on their career success and next it looks at the mediation effect of career insights on the above relationship. Career success is defined as the accomplishment of desirable work related outcomes at any point in person’s work experiences over time and it comprises of two sub variables, namely, career satisfaction and perceived employability. Protean career attitude was measured using the eight items from the Self Directedness subscale of the Protean Career Attitude scale developed by Briscoe and Hall, where as career satisfaction was measured by the three item scale developed by Martine, Eddleston, and Veiga. Perceived employability was also evaluated using three items and career insight was measured using fourteen items that were adapted and used by De Vos and Soens. Data were collected from a sample of 300 mid career executives in Sri Lanka deploying the survey strategy and data were analyzed using the SPSS and AMOS software version 20.0. A preliminary analysis of data was initially performed where data were screened and reliability and validity were ensured. Next a simple regression analysis was performed to test the direct impact of protean career attitude on career success and the hypothesis was supported. The Baron and Kenney’s four steps, three regressions approach for mediator testing was used to calculate the mediation effect of career insight on the above relationship and a partial mediation was supported by the data. Finally theoretical and practical implications are discussed.

Keywords: career success, career insight, mid career MBAs, protean career attitude

Procedia PDF Downloads 360
23841 Studying the Influence of Systematic Pre-Occupancy Data Collection through Post-Occupancy Evaluation: A Shift in the Architectural Design Process

Authors: Noor Abdelhamid, Donovan Nelson, Cara Prosser

Abstract:

The architectural design process could be mapped out as a dialogue between designer and user that is constructed across multiple phases with the overarching goal of aligning design outcomes with user needs. Traditionally, this dialogue is bounded within a preliminary phase of determining factors that will direct the design intent, and a completion phase, of handing off the project to the client. Pre- and post-occupancy evaluations (P/POE’s) could provide an alternative process by extending this dialogue on both ends of the design process. The purpose of this research is to study the influence of systematic pre-occupancy data collection in achieving design goals by conducting post-occupancy evaluations of two case studies. In the context of this study, systematic pre-occupancy data collection is defined as the preliminary documentation of the existing conditions that helps portray stakeholders’ needs. When implemented, pre-occupancy occurs during the early phases of the architectural design process, utilizing the information to shape the design intent. Investigative POE’s are performed on two case studies with distinct early design approaches to understand how the current space is impacting user needs, establish design outcomes, and inform future strategies. The first case study underwent systematic pre-occupancy data collection and synthesis, while the other represents the traditional, uncoordinated practice of informally collecting data during an early design phase. POE’s target the dynamics between the building and its occupants by studying how spaces are serving the needs of the users. Data collection for this study consists of user surveys, audiovisual materials, and observations during regular site visits. Mixed methods of qualitative and quantitative analyses are synthesized to identify patterns in the data. The paper concludes by positioning value on both sides of the architectural design process: the integration of systematic pre-occupancy methods in the early phases and the reinforcement of a continued dialogue between building and design team after building completion.

Keywords: architecture, design process, pre-occupancy data, post-occupancy evaluation

Procedia PDF Downloads 164
23840 An Analysis of Oil Price Changes and Other Factors Affecting Iranian Food Basket: A Panel Data Method

Authors: Niloofar Ashktorab, Negar Ashktorab

Abstract:

Oil exports fund nearly half of Iran’s government expenditures, since many years other countries have been imposed different sanctions against Iran. Sanctions that primarily target Iran’s key energy sector have harmed Iran’s economy. The strategic effects of sanctions might be reduction as Iran adjusts to them economically. In this study, we evaluate the impact of oil price and sanctions against Iran on food commodity prices by using panel data method. Here, we find that the food commodity prices, the oil price and real exchange rate are stationary. The results show positive effect of oil price changes, real exchange rate and sanctions on food commodity prices.

Keywords: oil price, food basket, sanctions, panel data, Iran

Procedia PDF Downloads 356
23839 A Proposed Framework for Software Redocumentation Using Distributed Data Processing Techniques and Ontology

Authors: Laila Khaled Almawaldi, Hiew Khai Hang, Sugumaran A. l. Nallusamy

Abstract:

Legacy systems are crucial for organizations, but their intricacy and lack of documentation pose challenges for maintenance and enhancement. Redocumentation of legacy systems is vital for automatically or semi-automatically creating documentation for software lacking sufficient records. It aims to enhance system understandability, maintainability, and knowledge transfer. However, existing redocumentation methods need improvement in data processing performance and document generation efficiency. This stems from the necessity to efficiently handle the extensive and complex code of legacy systems. This paper proposes a method for semi-automatic legacy system re-documentation using semantic parallel processing and ontology. Leveraging parallel processing and ontology addresses current challenges by distributing the workload and creating documentation with logically interconnected data. The paper outlines challenges in legacy system redocumentation and suggests a method of redocumentation using parallel processing and ontology for improved efficiency and effectiveness.

Keywords: legacy systems, redocumentation, big data analysis, parallel processing

Procedia PDF Downloads 46
23838 Armenian Refugees in Early 20th C Japan: Quantitative Analysis on Their Number Based on Japanese Historical Data with the Comparison of a Foreign Historical Data

Authors: Meline Mesropyan

Abstract:

At the beginning of the 20th century, Japan served as a transit point for Armenian refugees fleeing the 1915 Genocide. However, research on Armenian refugees in Japan is sparse, and the Armenian Diaspora has never taken root in Japan. Consequently, Japan has not been considered a relevant research site for studying Armenian refugees. The primary objective of this study is to shed light on the number of Armenian refugees who passed through Japan between 1915 and 1930. Quantitative analyses will be conducted based on newly uncovered Japanese archival documents. Subsequently, the Japanese data will be compared to American immigration data to estimate the potential number of refugees in Japan during that period. This under-researched area is relevant to both the Armenian Diaspora and refugee studies in Japan. By clarifying the number of refugees, this study aims to enhance understanding of Japan's treatment of refugees and the extent of humanitarian efforts conducted by organizations and individuals in Japan, contributing to the broader field of historical refugee studies.

Keywords: Armenian genocide, Armenian refugees, Japanese statistics, number of refugees

Procedia PDF Downloads 57
23837 Building Green Infrastructure Networks Based on Cadastral Parcels Using Network Analysis

Authors: Gon Park

Abstract:

Seoul in South Korea established the 2030 Seoul City Master Plan that contains green-link projects to connect critical green areas within the city. However, the plan does not have detailed analyses for green infrastructure to incorporate land-cover information to many structural classes. This study maps green infrastructure networks of Seoul for complementing their green plans with identifying and raking green areas. Hubs and links of main elements of green infrastructure have been identified from incorporating cadastral data of 967,502 parcels to 135 of land use maps using geographic information system. Network analyses were used to rank hubs and links of a green infrastructure map with applying a force-directed algorithm, weighted values, and binary relationships that has metrics of density, distance, and centrality. The results indicate that network analyses using cadastral parcel data can be used as the framework to identify and rank hubs, links, and networks for the green infrastructure planning under a variable scenarios of green areas in cities.

Keywords: cadastral data, green Infrastructure, network analysis, parcel data

Procedia PDF Downloads 206
23836 Non-Adiabatic Silica Microfibre Sensor for BOD/COD Ratio Measurement

Authors: S. S. Chong, A. R. Abdul Aziz, S. W. Harun, H. Arof

Abstract:

A miniaturized non-adiabatic silica microfiber is proposed for biological oxygen demand (BOD) ratio chemical oxygen demand (COD) sensing for the first time. BOD and COD are two main parameters to justify quality of wastewater. A ratio, BOD:COD can usually be established between the two analytical methods once COD and BOD value has been gathered. This ratio plays a vital role to determine appropriate strategy in wastewater treatment. A non-adiabatic microfiber sensor was formed by tapering the SMF to generate evanescent field where sensitive to perturbation of sensing medium. Because difference ratio BOD and COD contain in solution, this may induced changes of effective refractive index between microfiber and sensing medium. Attenuation wavelength shift to right with 0.5 nm and 3.5 nm while BOD:COD equal to 0.09 and 0.18 respectively. Significance difference wavelength shift may relate with the biodegradability of analyte. This proposed sensor is compact, reliable and feasible to determine the BOD:COD. Further research and investigation should be proceeded to enhance sensitivity and precision of the sensor for several of wastewater online monitoring.

Keywords: non-adiabatic fiber sensor, environmental sensing, biodegradability, evanescent field

Procedia PDF Downloads 661
23835 Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms

Authors: Shaik Ayesha Fathima, Shaik Noor Jahan, Duvvada Rajeswara Rao

Abstract:

Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.

Keywords: area calculation, atrous convolution, deep globe land cover classification, deepLabv3, land cover classification, resnet 50

Procedia PDF Downloads 140
23834 Design and Implementation of Partial Denoising Boundary Image Matching Using Indexing Techniques

Authors: Bum-Soo Kim, Jin-Uk Kim

Abstract:

In this paper, we design and implement a partial denoising boundary image matching system using indexing techniques. Converting boundary images to time-series makes it feasible to perform fast search using indexes even on a very large image database. Thus, using this converting method we develop a client-server system based on the previous partial denoising research in the GUI (graphical user interface) environment. The client first converts a query image given by a user to a time-series and sends denoising parameters and the tolerance with this time-series to the server. The server identifies similar images from the index by evaluating a range query, which is constructed using inputs given from the client, and sends the resulting images to the client. Experimental results show that our system provides much intuitive and accurate matching result.

Keywords: boundary image matching, indexing, partial denoising, time-series matching

Procedia PDF Downloads 138
23833 The Effect of CPU Location in Total Immersion of Microelectronics

Authors: A. Almaneea, N. Kapur, J. L. Summers, H. M. Thompson

Abstract:

Meeting the growth in demand for digital services such as social media, telecommunications, and business and cloud services requires large scale data centres, which has led to an increase in their end use energy demand. Generally, over 30% of data centre power is consumed by the necessary cooling overhead. Thus energy can be reduced by improving the cooling efficiency. Air and liquid can both be used as cooling media for the data centre. Traditional data centre cooling systems use air, however liquid is recognised as a promising method that can handle the more densely packed data centres. Liquid cooling can be classified into three methods; rack heat exchanger, on-chip heat exchanger and full immersion of the microelectronics. This study quantifies the improvements of heat transfer specifically for the case of immersed microelectronics by varying the CPU and heat sink location. Immersion of the server is achieved by filling the gap between the microelectronics and a water jacket with a dielectric liquid which convects the heat from the CPU to the water jacket on the opposite side. Heat transfer is governed by two physical mechanisms, which is natural convection for the fixed enclosure filled with dielectric liquid and forced convection for the water that is pumped through the water jacket. The model in this study is validated with published numerical and experimental work and shows good agreement with previous work. The results show that the heat transfer performance and Nusselt number (Nu) is improved by 89% by placing the CPU and heat sink on the bottom of the microelectronics enclosure.

Keywords: CPU location, data centre cooling, heat sink in enclosures, immersed microelectronics, turbulent natural convection in enclosures

Procedia PDF Downloads 272
23832 A Macroeconomic Analysis of Defense Industry: Comparisons, Trends and Improvements in Brazil and in the World

Authors: J. Fajardo, J. Guerra, E. Gonzales

Abstract:

This paper will outline a study of Brazil's industrial base of defense (IDB), through a bibliographic research method, combined with an analysis of macroeconomic data from several available public data platforms. This paper begins with a brief study about Brazilian national industry, including analyzes of productivity, income, outcome and jobs. Next, the research presents a study on the defense industry in Brazil, presenting the main national companies that operate in the aeronautical, army and naval branches. After knowing the main points of the Brazilian defense industry, data on the productivity of the defense industry of the main countries and competing companies of the Brazilian industry were analyzed, in order to summarize big cases in Brazil with a comparative analysis. Concerned the methodology, were used bibliographic research and the exploration of historical data series, in order to analyze information, to get trends and to make comparisons along the time. The research is finished with the main trends for the development of the Brazilian defense industry, comparing the current situation with the point of view of several countries.

Keywords: economics of defence, industry, trends, market

Procedia PDF Downloads 156
23831 Delineating Subsurface Linear Features and Faults Under Sedimentary Cover in the Bahira Basin Using Integrated Gravity and Magnetic Data

Authors: M. Lghoul, N. El Goumi, M. Guernouche

Abstract:

In order to predict the structural and tectonic framework of the Bahira basin and to have a 3D geological modeling of the basin, an integrated multidisciplinary work has been conducted using gravity, magnetic and geological data. The objective of the current study is delineating the subsurfacefeatures, faults, and geological limits, using airborne magnetic and gravity data analysis of the Bahira basin. To achieve our goal, we have applied different enhanced techniques on magnetic and gravity data: power spectral analysis techniques, reduction to pole (RTP), upward continuation, analytical signal, tilt derivative, total horizontal derivative, 3D Euler deconvolutionand source parameter imagining. The major lineaments/faults trend are: NE–SW, NW-SE, ENE–WSW, and WNW–ESE. The 3D Euler deconvolution analysis highlighted a number of fault trend, mainly in the ENE-WSW, WNW-ESE directions. The depth tothe top of the basement sources in the study area ranges between 200 m, in the southern and northern part of the Bahira basin, to 5000 m located in the Eastern part of the basin.

Keywords: magnetic, gravity, structural trend, depth to basement

Procedia PDF Downloads 132
23830 Copyright Clearance for Artificial Intelligence Training Data: Challenges and Solutions

Authors: Erva Akin

Abstract:

– The use of copyrighted material for machine learning purposes is a challenging issue in the field of artificial intelligence (AI). While machine learning algorithms require large amounts of data to train and improve their accuracy and creativity, the use of copyrighted material without permission from the authors may infringe on their intellectual property rights. In order to overcome copyright legal hurdle against the data sharing, access and re-use of data, the use of copyrighted material for machine learning purposes may be considered permissible under certain circumstances. For example, if the copyright holder has given permission to use the data through a licensing agreement, then the use for machine learning purposes may be lawful. It is also argued that copying for non-expressive purposes that do not involve conveying expressive elements to the public, such as automated data extraction, should not be seen as infringing. The focus of such ‘copy-reliant technologies’ is on understanding language rules, styles, and syntax and no creative ideas are being used. However, the non-expressive use defense is within the framework of the fair use doctrine, which allows the use of copyrighted material for research or educational purposes. The questions arise because the fair use doctrine is not available in EU law, instead, the InfoSoc Directive provides for a rigid system of exclusive rights with a list of exceptions and limitations. One could only argue that non-expressive uses of copyrighted material for machine learning purposes do not constitute a ‘reproduction’ in the first place. Nevertheless, the use of machine learning with copyrighted material is difficult because EU copyright law applies to the mere use of the works. Two solutions can be proposed to address the problem of copyright clearance for AI training data. The first is to introduce a broad exception for text and data mining, either mandatorily or for commercial and scientific purposes, or to permit the reproduction of works for non-expressive purposes. The second is that copyright laws should permit the reproduction of works for non-expressive purposes, which opens the door to discussions regarding the transposition of the fair use principle from the US into EU law. Both solutions aim to provide more space for AI developers to operate and encourage greater freedom, which could lead to more rapid innovation in the field. The Data Governance Act presents a significant opportunity to advance these debates. Finally, issues concerning the balance of general public interests and legitimate private interests in machine learning training data must be addressed. In my opinion, it is crucial that robot-creation output should fall into the public domain. Machines depend on human creativity, innovation, and expression. To encourage technological advancement and innovation, freedom of expression and business operation must be prioritised.

Keywords: artificial intelligence, copyright, data governance, machine learning

Procedia PDF Downloads 83
23829 Modern Agriculture and Employment Generation in Nigeria: A Recursive Model Approach

Authors: Ese Urhie, Olabisi Popoola, Obindah Gershon

Abstract:

Several policies and programs initiated to address the challenge of unemployment in Nigeria seem to be inadequate. The desired structural transformation which is expected to absorb the excess labour in the economy is yet to be achieved. The agricultural sector accounts for almost half of the labour force with very low productivity. This could partly explain why the much anticipated structural transformation has not been achieved. A major reason for the low productivity is the fact that the production process is predominantly based on the use of traditional tools. In view of the underdeveloped nature of the agricultural sector, Nigeria still has huge potentials for productivity enhancement through modern technology. Aside from productivity enhancement, modern agriculture also stimulates both backward and forward linkages that promote investment and thus generate employment. Contrary to the apprehension usually expressed by many stake-holders about the adoption of modern technology by labour-abundant less-developed countries, this study showed that though there will be job loss initially, the reverse will be the case in the long-run. The outcome of this study will enhance the understanding of all stakeholders in the sector and also encourage them to adopt modern techniques of farming. It will also aid policy formulation at both sectoral and national levels. The recursive model and analysis adopted in the study is useful because it exhibits a unilateral cause-and-effect relationship which most simultaneous equation models do not. It enables the structural equations to be ordered in such a way that the first equation includes only predetermined variables on the right-hand side, while the solution for the final endogenous variable is completely determined by all equations of the system. The study examines the transmission channels and effect of modern agriculture on agricultural productivity and employment growth in Nigeria, via its forward and backward linkages. Using time series data spanning 1980 to 2014, the result of the analyses shows that: (i) a significant and positive relationship between agricultural productivity growth and modern agriculture; (ii) a significant and negative relationship between export price index and agricultural productivity growth; (iii) a significant and positive relationship between export and investment; and (iv) a significant and positive relationship between investment and employment growth. The unbalanced growth theory will be a good strategy to adopt by developing countries such as Nigeria.

Keywords: employment, modern agriculture, productivity, recursive model

Procedia PDF Downloads 265
23828 Unified Theory of the Security Dilemma: Geography, MAD and Democracy

Authors: Arash Heydarian Pashakhanlou

Abstract:

The security dilemma is one of the key concepts in International Relations (IR), and the numerous engagements with it have created a great deal of confusion regarding its essence. That is why this article seeks to dissect the security dilemma and rebuild it from its foundational core. In doing so, the present study highlights that the security dilemma requires interaction among actors that seek to protect themselves from other's capacity for harm under the condition of uncertainty to operate. In this constellation, actors are confronted with the dilemma of motives, power, and action, which they seek to resolve by acquiring information regarding their opponents. The relationship between the parties is shaped by the harm-uncertainty index (HUI) consisting of geographical distance, MAD, and joint democracy that determines the intensity of the security dilemma. These elements define the unified theory of the security dilemma (UTSD) developed here. UTSD challenges the prevailing view that the security dilemma is a unidimensional paradoxical concept, regulated by the offense-defense balance and differentiation that only occurs in anarchic settings with tragic outcomes and is equivalent to the spiral model.

Keywords: security dilemma, revisionism, status quo, anarchy, uncertainty, tragedy, spiral, deterrence

Procedia PDF Downloads 239
23827 Long Wavelength GaInNAs Based Hot Electron Light Emission VCSOAs

Authors: Faten Adel Ismael Chaqmaqchee

Abstract:

Optical, electrical and optical-electrical characterisations of surface light emitting VCSOAs devices are reported. The hot electron light emitting and lasing in semiconductor hetero-structure vertical cavity semiconductor optical amplifier (HELLISH VCSOA) device is a surface emitter based on longitudinal injection of electron and hole pairs in their respective channels. Ga0.35In0.65N0.02As0.08/GaAs was used as an active material for operation in the 1.3 μm window of the optical communications. The device has undoped Distributed Bragg Reflectors (DBRs) and the current is injected longitudinally, directly into the active layers and does not involve DBRs. Therefore, problems associated with refractive index contrast and current injection through the DBR layers, which are common with the doped DBRs in conventional VCSOAs, are avoided. The highest gain of around 4 dB is obtained for the 1300 nm wavelength operation.

Keywords: HELLISH, VCSOA, GaInNAs, luminescence, gain

Procedia PDF Downloads 360
23826 Biosorption of Phenol onto Water Hyacinth Activated Carbon: Kinetics and Isotherm Study

Authors: Manoj Kumar Mahapatra, Arvind Kumar

Abstract:

Batch adsorption experiments were carried out for the removal of phenol from its aqueous solution using water hyancith activated carbon (WHAC) as an adsorbent. The sorption kinetics were analysed using pseudo-first order kinetics and pseudo-second order model, and it was observed that the sorption data tend to fit very well in pseudo-second order model for the entire sorption time. The experimental data were analyzed by the Langmuir and Freundlich isotherm models. Equilibrium data fitted well to the Freundlich model with a maximum biosorption capacity of 31.45 mg/g estimated using Langmuir model. The adsorption intensity 3.7975 represents a favorable adsorption condition.

Keywords: adsorption, isotherm, kinetics, phenol

Procedia PDF Downloads 446
23825 A West Coast Estuarine Case Study: A Predictive Approach to Monitor Estuarine Eutrophication

Authors: Vedant Janapaty

Abstract:

Estuaries are wetlands where fresh water from streams mixes with salt water from the sea. Also known as “kidneys of our planet”- they are extremely productive environments that filter pollutants, absorb floods from sea level rise, and shelter a unique ecosystem. However, eutrophication and loss of native species are ailing our wetlands. There is a lack of uniform data collection and sparse research on correlations between satellite data and in situ measurements. Remote sensing (RS) has shown great promise in environmental monitoring. This project attempts to use satellite data and correlate metrics with in situ observations collected at five estuaries. Images for satellite data were processed to calculate 7 bands (SIs) using Python. Average SI values were calculated per month for 23 years. Publicly available data from 6 sites at ELK was used to obtain 10 parameters (OPs). Average OP values were calculated per month for 23 years. Linear correlations between the 7 SIs and 10 OPs were made and found to be inadequate (correlation = 1 to 64%). Fourier transform analysis on 7 SIs was performed. Dominant frequencies and amplitudes were extracted for 7 SIs, and a machine learning(ML) model was trained, validated, and tested for 10 OPs. Better correlations were observed between SIs and OPs, with certain time delays (0, 3, 4, 6 month delay), and ML was again performed. The OPs saw improved R² values in the range of 0.2 to 0.93. This approach can be used to get periodic analyses of overall wetland health with satellite indices. It proves that remote sensing can be used to develop correlations with critical parameters that measure eutrophication in situ data and can be used by practitioners to easily monitor wetland health.

Keywords: estuary, remote sensing, machine learning, Fourier transform

Procedia PDF Downloads 104
23824 Agricultural Water Consumption Estimation in the Helmand Basin

Authors: Mahdi Akbari, Ali Torabi Haghighi

Abstract:

Hamun Lakes, located in the Helmand Basin, consisting of four water bodies, were the greatest (>8500 km2) freshwater bodies in Iran plateau but have almost entirely desiccated over the last 20 years. The desiccation of the lakes caused dust storm in the region which has huge economic and health consequences on the inhabitants. The flow of the Hirmand (or Helmand) River, the most important feeding river, has decreased from 4 to 1.9 km3 downstream due to anthropogenic activities. In this basin, water is mainly consumed for farming. Due to the lack of in-situ data in the basin, this research utilizes remote-sensing data to show how croplands and consequently consumed water in the agricultural sector have changed. Based on Landsat NDVI, we suggest using a threshold of around 0.35-0.4 to detect croplands in the basin. Croplands of this basin has doubled since 1990, especially in the downstream of the Kajaki Dam (the biggest dam of the basin). Using PML V2 Actual Evapotranspiration (AET) data and considering irrigation efficiency (≈0.3), we estimate that the consumed water (CW) for farming. We found that CW has increased from 2.5 to over 7.5 km3 from 2002 to 2017 in this basin. Also, the annual average Potential Evapotranspiration (PET) of the basin has had a negative trend in the recent years, although the AET over croplands has an increasing trend. In this research, using remote sensing data, we covered lack of data in the studied area and highlighted anthropogenic activities in the upstream which led to the lakes desiccation in the downstream.

Keywords: Afghanistan-Iran transboundary Basin, Iran-Afghanistan water treaty, water use, lake desiccation

Procedia PDF Downloads 131
23823 Nonlinear Analysis with Failure Using the Boundary Element Method

Authors: Ernesto Pineda Leon, Dante Tolentino Lopez, Janis Zapata Lopez

Abstract:

The current paper shows the application of the boundary element method for the analysis of plates under shear stress causing plasticity. In this case, the shear deformation of a plate is considered by means of the Reissner’s theory. The probability of failure of a Reissner’s plate due to a proposed index plastic behavior is calculated taken into account the uncertainty in mechanical and geometrical properties. The problem is developed in two dimensions. The classic plasticity’s theory is applied and a formulation for initial stresses that lead to the boundary integral equations due to plasticity is also used. For the plasticity calculation, the Von Misses criteria is used. To solve the non-linear equations an incremental method is employed. The results show a relatively small failure probability for the ranges of loads between 0.6 and 1.0. However, for values between 1.0 and 2.5, the probability of failure increases significantly. Consequently, for load bigger than 2.5 the plate failure is a safe event. The results are compared to those that were found in the literature and the agreement is good.

Keywords: boundary element method, failure, plasticity, probability

Procedia PDF Downloads 311
23822 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks

Authors: Sulemana Ibrahim

Abstract:

Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.

Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks

Procedia PDF Downloads 62
23821 Experimental Characterization of Anisotropic Mechanical Properties of Textile Woven Fabric

Authors: Rym Zouari, Sami Ben Amar, Abdelwaheb Dogui

Abstract:

This paper presents an experimental characterization of the anisotropic mechanical behavior of 4 textile woven fabrics with different weaves (Twill 3, Plain, Twill4 and Satin 4) by off-axis tensile testing. These tests are applied according seven directions oriented by 15° increment with respect to the warp direction. Fixed and articulated jaws are used. Analysis of experimental results is done through global (Effort/Elongation curves) and local scales. Global anisotropy was studied from the Effort/Elongation curves: shape, breaking load (Frup), tensile elongation (EMT), tensile energy (WT) and linearity index (LT). Local anisotropy was studied from the measurement of strain tensor components in the central area of the specimen as a function of testing orientation and effort: longitudinal strain ɛL, transverse strain ɛT and shearing ɛLT. The effect of used jaws is also analyzed.

Keywords: anisotropy, off-axis tensile test, strain fields, textile woven fabric

Procedia PDF Downloads 359
23820 Inflammatory Markers in the Blood and Chronic Periodontitis

Authors: Saimir Heta, Ilma Robo, Nevila Alliu, Tea Meta

Abstract:

Background: Plasma levels of inflammatory markers are the expression of the infectious wastes of existing periodontitis, as well as of existing inflammation everywhere in the body. Materials and Methods: The study consists of the clinical part of the measurement of inflammatory markers of 23 patients diagnosed with chronic periodontitis and the recording of parental periodontal parameters of patient periodontal status: hemorrhage index and probe values, before and 7-10 days after non-surgical periodontal treatment. Results: The level of fibrinogen drops according to the categorization of disease progression, active and passive, with the biggest % (18%-30%) at the fluctuation 10-20 mg/d. Fluctuations in fibrinogen level according to the age of patients in the range 0-10 mg/dL under 40 years and over 40 years was 13%-26%, in the range 10-20 mg/dL was 26%-22%, in the 20-40 mg/dL was 9%-4%. Conclusions: Non-surgical periodontal treatment significantly reduces the level of non-inflammatory markers in the blood. Oral health significantly reduces the potential source for periodontal bacteria, with the potential of promoting thromboembolism, through interaction between thrombocytes.

Keywords: chronic periodontitis, atherosclerosis, risk factor, inflammatory markers

Procedia PDF Downloads 126
23819 Model Predictive Control Using Thermal Inputs for Crystal Growth Dynamics

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

Recently, crystal growth technologies have made progress by the requirement for the high quality of crystal materials. To control the crystal growth dynamics actively by external forces is useuful for reducing composition non-uniformity. In this study, a control method based on model predictive control using thermal inputs is proposed for crystal growth dynamics of semiconductor materials. The control system of crystal growth dynamics considered here is governed by the continuity, momentum, energy, and mass transport equations. To establish the control method for such thermal fluid systems, we adopt model predictive control known as a kind of optimal feedback control in which the control performance over a finite future is optimized with a performance index that has a moving initial time and terminal time. The objective of this study is to establish a model predictive control method for crystal growth dynamics of semiconductor materials.

Keywords: model predictive control, optimal control, process control, crystal growth

Procedia PDF Downloads 359
23818 Relationship between Prolonged Timed up and Go Test and Worse Cardiometabolic Diseases Risk Factors Profile in a Population Aged 60-65 Years

Authors: Bartłomiej K. Sołtysik, Agnieszka Guligowska, Łukasz Kroc, Małgorzata Pigłowska, Elizavetta Fife, Tomasz Kostka

Abstract:

Introduction: Functional capacity is one of the basic determinants of health in older age. Functional capacity may be influenced by multiple disorders, including cardiovascular and metabolic diseases. Nevertheless, there is relatively little evidence regarding the association of functional status and cardiometabolic risk factors. Aim: The aim of this research is to check possible association between functional capacity and cardiovascular risk factor in a group of younger seniors. Materials and Methods: The study group consisted of 300 participants aged 60-65 years (50% were women). Total cholesterol (TC), triglycerides (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), glucose, uric acid, body mass index (BMI), waist-to-height ratio (WHtR) and blood pressure were measured. Smoking status and physical activity level (by Seven Day Physical Activity Recall Questionnaire ) were analysed. Functional status was assessed with the Timed Up and Go (TUG) Test. The data were compared according to gender, and then separately for both sexes regarding prolonged TUG score (>7 s). The limit of significance was set at p≤0.05 for all analyses. Results: Women presented with higher serum lipids and longer TUG. Men had higher blood pressure, glucose, uric acid, the prevalence of hypertension and history of heart infarct. In women group, those with prolonged TUG displayed significantly higher obesity rate (BMI, WHTR), uric acid, hypertension and ischemic heart disease (IHD), but lower physical activity level, TC or LDL-C. Men with prolonged TUG were heavier smokers, had higher TG, lower HDL and presented with higher prevalence of diabetes and IHD. Discussion: This study shows association between functional status and risk profile of cardiometabolic disorders. In women, the relationship of lower functional status to cardiometabolic diseases may be mediated by overweight/obesity. In men, locomotor problems may be related to smoking. Higher education level may be considered as a protective factor regardless of gender.

Keywords: cardiovascular risk factors, functional capacity, TUG test, seniors

Procedia PDF Downloads 287
23817 A Statistical Approach to Classification of Agricultural Regions

Authors: Hasan Vural

Abstract:

Turkey is a favorable country to produce a great variety of agricultural products because of her different geographic and climatic conditions which have been used to divide the country into four main and seven sub regions. This classification into seven regions traditionally has been used in order to data collection and publication especially related with agricultural production. Afterwards, nine agricultural regions were considered. Recently, the governmental body which is responsible of data collection and dissemination (Turkish Institute of Statistics-TIS) has used 12 classes which include 11 sub regions and Istanbul province. This study aims to evaluate these classification efforts based on the acreage of ten main crops in a ten years time period (1996-2005). The panel data grouped in 11 subregions has been evaluated by cluster and multivariate statistical methods. It was concluded that from the agricultural production point of view, it will be rather meaningful to consider three main and eight sub-agricultural regions throughout the country.

Keywords: agricultural region, factorial analysis, cluster analysis,

Procedia PDF Downloads 416
23816 Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings

Authors: Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur Abdelkrim

Abstract:

Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.

Keywords: building system, time series, diagnosis, outliers, delay, data gap

Procedia PDF Downloads 245
23815 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification

Authors: Anita Kushwaha

Abstract:

We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.

Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining

Procedia PDF Downloads 272