Search results for: modeling reliability
1998 Effects of Using Gusset Plate Stiffeners on the Seismic Performance of Concentrically Braced Frame
Authors: B. Mohebi, N. Asadi, F. Kazemi
Abstract:
Inelastic deformation of the brace in Special Concentrically Braced Frame (SCBF) creates inelastic damages on gusset plate connections such as buckling at edges. In this study, to improve the seismic performance of SCBFs connections, an analytical study was undertaken. To improve the gusset plate connection, this study proposes using edge’s stiffeners in both sides of gusset plate. For this purpose, in order to examine edge’s stiffeners effect on gusset plate connections, two groups of modeling with and without considering edge’s stiffener and different types of braces were modeled using ABAQUS software. The results show that considering the edge’s stiffener reduces the equivalent plastic strain values at a connection region of gusset plate with beam and column, which can improve the seismic performance of gusset plate. Furthermore, considering the edge’s stiffeners significantly decreases the strain concentration at regions where gusset plates have been connected to beam and column. Moreover, considering 2tpl distance causes reduction in the plastic strain.Keywords: special concentrically braced frame, gusset plate, edge's stiffener, seismic performance
Procedia PDF Downloads 1281997 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge
Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi
Abstract:
Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring
Procedia PDF Downloads 2091996 The Technology of Magnetic Subs for Downhole Inorganic Scale Mitigation
Authors: Plinio Martins Dias Da Silva, Bruno Barbosa Castro, Andre Leibsohn Martins, Rosane Alves Fontes, Joao Vicente Martins de Magalhaes, Fernando Salatiel de Oliveira, Helga Elisabeth Pinheiro Schluter, Alexandre Zacharias Ignacio Pereira
Abstract:
Inorganic scale is a relevant cause for production losses in offshore operations. In the development of pre-salt fields calcium carbonate crystallization, especially when the flow is submitted to abrupt depressurization, often cause problems in reservoir selectivity and production string obstruction. The conventional strategy for this kind of problem is to continuously inject chemicals to prevent precipitation. The low reliability of injection devices, which frequently fail, and the possibility of adopting downhole completion configurations which do not allow injection at the lower zones stimulated the industry to search for alternative mitigation strategies. The use of magnetic fields to help in minimizing the adhesion of calcium carbonate crystals to downhole surfaces. The proposed mechanisms include the effect of the magnetic field in generating fewer adhesive polymorphs (vaterite) in relation to the more stable ones (calcite). A discussion on this topic has been widely addressed in the literature. The goal of the present article is to describe the construction of real scale prototypes of a magnetic sub, a device to be attached to the production string to generate the necessary magnetic field to achieve the scale mitigation requirements. The strategy for magnetic and mechanical design is described. In addition, a protocol to establish the strategy for field installation in a field development project is detailed. The focus is to equip a given well with several subs and compare the production records with a correlation well with no subs installed. Finally, an update of the status of field installations is presented, with the proposed evaluation methodology customized for each field.Keywords: magnetic subs, downhole, scale, inorganic, mitigation
Procedia PDF Downloads 01995 AI-Driven Solutions for Optimizing Master Data Management
Authors: Srinivas Vangari
Abstract:
In the era of big data, ensuring the accuracy, consistency, and reliability of critical data assets is crucial for data-driven enterprises. Master Data Management (MDM) plays a crucial role in this endeavor. This paper investigates the role of Artificial Intelligence (AI) in enhancing MDM, focusing on how AI-driven solutions can automate and optimize various stages of the master data lifecycle. By integrating AI (Quantitative and Qualitative Analysis) into processes such as data creation, maintenance, enrichment, and usage, organizations can achieve significant improvements in data quality and operational efficiency. Quantitative analysis is employed to measure the impact of AI on key metrics, including data accuracy, processing speed, and error reduction. For instance, our study demonstrates an 18% improvement in data accuracy and a 75% reduction in duplicate records across multiple systems post-AI implementation. Furthermore, AI’s predictive maintenance capabilities reduced data obsolescence by 22%, as indicated by statistical analyses of data usage patterns over a 12-month period. Complementing this, a qualitative analysis delves into the specific AI-driven strategies that enhance MDM practices, such as automating data entry and validation, which resulted in a 28% decrease in manual errors. Insights from case studies highlight how AI-driven data cleansing processes reduced inconsistencies by 25% and how AI-powered enrichment strategies improved data relevance by 24%, thus boosting decision-making accuracy. The findings demonstrate that AI significantly enhances data quality and integrity, leading to improved enterprise performance through cost reduction, increased compliance, and more accurate, real-time decision-making. These insights underscore the value of AI as a critical tool in modern data management strategies, offering a competitive edge to organizations that leverage its capabilities.Keywords: artificial intelligence, master data management, data governance, data quality
Procedia PDF Downloads 181994 Human Factors Considerations in New Generation Fighter Planes to Enhance Combat Effectiveness
Authors: Chitra Rajagopal, Indra Deo Kumar, Ruchi Joshi, Binoy Bhargavan
Abstract:
Role of fighter planes in modern network centric military warfare scenarios has changed significantly in the recent past. New generation fighter planes have multirole capability of engaging both air and ground targets with high precision. Multirole aircraft undertakes missions such as Air to Air combat, Air defense, Air to Surface role (including Air interdiction, Close air support, Maritime attack, Suppression and Destruction of enemy air defense), Reconnaissance, Electronic warfare missions, etc. Designers have primarily focused on development of technologies to enhance the combat performance of the fighter planes and very little attention is given to human factor aspects of technologies. Unique physical and psychological challenges are imposed on the pilots to meet operational requirements during these missions. Newly evolved technologies have enhanced aircraft performance in terms of its speed, firepower, stealth, electronic warfare, situational awareness, and vulnerability reduction capabilities. This paper highlights the impact of emerging technologies on human factors for various military operations and missions. Technologies such as ‘cooperative knowledge-based systems’ to aid pilot’s decision making in military conflict scenarios as well as simulation technologies to enhance human performance is also studied as a part of research work. Current and emerging pilot protection technologies and systems which form part of the integrated life support systems in new generation fighter planes is discussed. System safety analysis application to quantify the human reliability in military operations is also studied.Keywords: combat effectiveness, emerging technologies, human factors, systems safety analysis
Procedia PDF Downloads 1421993 The Corporate Vision Effect on Rajabhat University Brand Building in Thailand
Authors: Pisit Potjanajaruwit
Abstract:
This study aims to (1) investigate the corporate vision factor influencing Rajabhat University brand building in Thailand and (2) explore influences of brand building upon Rajabhat University stakeholders’ loyalty, and the research method will use mixed methods to conduct qualitative research with the quantitative research. The qualitative will approach by Indebt-interview the executive of Rathanagosin Rajabhat University group for 6 key informants and the quantitative data was collected by questionnaires distributed to stakeholder including instructors, staff, students and parents of the Rathanagosin Rajabhat University group for 400 sampling were selected by multi-stage sampling method. Data was analyzed by Structural Equation Modeling: SEM and also provide the focus group interview for confirming the model. Findings corporate vision had a direct and positive influence on Rajabhat University brand building were showed direct and positive influence on stakeholder’s loyalty and stakeholder’s loyalty was indirectly influenced by corporate vision through Rajabhat University brand building.Keywords: brand building, corporate vision, Rajabhat University, stakeholder‘s loyalty
Procedia PDF Downloads 2161992 Diagnosis and Resolution of Intermittent High Vibration Spikes at Exhaust Bearing of Mitsubishi H-25 Gas Turbine using Shaft Vibration Analysis and Detailed Root Cause Analysis
Authors: Fahad Qureshi
Abstract:
This paper provides detailed study on the diagnosis of intermittent high vibration spikes at exhaust bearing (Non-Drive End) of Mitsubishi H-25 gas turbine installed in a petrochemical plant in Pakistan. The diagnosis is followed by successful root cause analysis of the issue and recommendations for improving the reliability of machine. Engro Polymer and Chemicals (EPCL), a Chlor Vinyl complex, has a captive power plant consisting of one combined cycle power plant (CCPP), having two gas turbines each having 25 MW capacity (make: Hitachi) and one extraction condensing steam turbine having 15 MW capacity (make: HTC). Besides, one 6.75 MW SGT-200 1S gas turbine (make: Alstom) is also available. In 2018, the organization faced an issue of intermittent high vibration at exhaust bearing of one of H-25 units having tag GT-2101 A, which eventually led to tripping of machine at configured securities. Since the machine had surpassed 64,000 running hours and major inspection was also due, so bearings inspection was performed. Inspection revealed excessive coke deposition at labyrinth where evidence of rotor rub was also present. Bearing clearance was also at upper limit, and slight babbitt (soft metal) chip off was observed at one of its pads so it was preventively replaced. The unit was restated successfully and exhibited no abnormality until October 2020, when these spikes reoccurred, leading to machine trip. Recurrence of the issue within two years indicated that root cause was not properly addressed, so this paper furthers the discussion on in-depth analysis of findings and establishes successful root cause analysis, which captured significant learnings both in terms of machine design deficiencies and gaps in operation & maintenance (O & M) regime. Lastly, revised O& M regime along with set of recommendations are proposed to avoid recurrence.Keywords: exhaust side bearing, Gas turbine, rubbing, vibration
Procedia PDF Downloads 1861991 Crystal Nucleation in 3D Printed Polymer Scaffolds in Tissue Engineering
Authors: Amani Alotaibi
Abstract:
3D printing has emerged as a pivotal technique for scaffold development, particularly in the field of bone tissue regeneration, due to its ability to customize scaffolds to fit complex geometries of bone defects. Among the various methods available, fused deposition modeling (FDM) is particularly promising as it avoids the use of solvents or toxic chemicals during fabrication. This study investigates the effects of three key parameters, extrusion temperature, screw rotational speed, and deposition speed, on the crystallization and mechanical properties of polycaprolactone (PCL) scaffolds. Three extrusion temperatures (70°C, 80°C, and 90°C), three screw speeds (10 RPM, 15 RPM, and 20 RPM), and three deposition speeds (8 mm/s, 10 mm/s, and 12 mm/s) were evaluated. The scaffolds were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), and tensile testing to assess changes in crystallinity and mechanical properties. Additionally, the scaffolds were analyzed for crystal size and biocompatibility. The results demonstrated that increasing the extrusion temperature to 80°C, combined with a screw speed of 15 RPM and a deposition speed of 10 mm/s, significantly improved the crystallinity, compressive modulus, and thermal resistance of the PCL scaffolds. These findings suggest that by fine-tuning basic 3D printing parameters, it is possible to modulate the structural and mechanical properties of the scaffold, thereby enhancing its suitability for bone tissue regeneration.Keywords: 3D printing, polymer, scaffolds, tissue engineering, crystallization
Procedia PDF Downloads 71990 Investigating Effective Factors on the Organizational Pathology of Knowledge Production in Islamic Azad University
Authors: Davoud Maleki, Neda Zamani
Abstract:
The purpose of this research was to investigate the factors affecting the organizational pathology of knowledge production in Islamic Azad University. The present research method is quantitative. It was a survey type and applied research in terms of its purpose. The statistical population of the present study included all full-time professors of the Islamic Azad Universities in the North, South, East, West and Central regions, including the Islamic Azad Universities of Sari, Isfahan, Kerman, Khorramabad and Shiraz, and their total number was 1389, based on the Cochran formula. 305 people were selected as the sample size by random sampling method. The research tool was a researcher-made questionnaire, whose validity was calculated from the professors' point of view and its reliability was calculated based on Cronbach's alpha and was 0.89. For data analysis, confirmatory factor analysis and structural equations were used with Smart3 Pls software. The findings showed that the variables of strategy, structure and process directly and the variable of strategy explained indirectly through the variables of structure and process 96.8% of the pathology of knowledge production. Also, structure 49.6% and process variable 58.4% explain the pathology of knowledge production. 38% of knowledge production changes related to the direct effect of strategy, 39% of knowledge production changes Related to the effect of structure, 32% of the changes in knowledge production are related to the direct effect of the process, 70.5% of the changes related to the structure are related to the direct effect of the strategy, 36.5% of the changes related to the process are related to the direct effect of the strategy, 46.3 Percentage of process variable changes It is related to the direct effect of the structure. According to the obtained results, it can be acknowledged that the pathology model of knowledge production in Islamic Azad University can be used as an effective model in the pathology of knowledge production and can improve the scientific level of knowledge producers.Keywords: pathology of knowledge production, strategic issues, process issues, Islamic Azad University
Procedia PDF Downloads 191989 A Microwave Heating Model for Endothermic Reaction in the Cement Industry
Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira
Abstract:
Microwave technology has been gaining importance in contributing to decarbonization processes in high energy demand industries. Despite the several numerical models presented in the literature, a proper Verification and Validation exercise is still lacking. This is important and required to evaluate the physical process model accuracy and adequacy. Another issue addresses impedance matching, which is an important mechanism used in microwave experiments to increase electromagnetic efficiency. Such mechanism is not available in current computational tools, thus requiring an external numerical procedure. A numerical model was implemented to study the continuous processing of limestone with microwave heating. This process requires the material to be heated until a certain temperature that will prompt a highly endothermic reaction. Both a 2D and 3D model were built in COMSOL Multiphysics to solve the two-way coupling between Maxwell and Energy equations, along with the coupling between both heat transfer phenomena and limestone endothermic reaction. The 2D model was used to study and evaluate the required numerical procedure, being also a benchmark test, allowing other authors to implement impedance matching procedures. To achieve this goal, a controller built in MATLAB was used to continuously matching the cavity impedance and predicting the required energy for the system, thus successfully avoiding energy inefficiencies. The 3D model reproduces realistic results and therefore supports the main conclusions of this work. Limestone was modeled as a continuous flow under the transport of concentrated species, whose material and kinetics properties were taken from literature. Verification and Validation of the coupled model was taken separately from the chemical kinetic model. The chemical kinetic model was found to correctly describe the chosen kinetic equation by comparing numerical results with experimental data. A solution verification was made for the electromagnetic interface, where second order and fourth order accurate schemes were found for linear and quadratic elements, respectively, with numerical uncertainty lower than 0.03%. Regarding the coupled model, it was demonstrated that the numerical error would diverge for the heat transfer interface with the mapped mesh. Results showed numerical stability for the triangular mesh, and the numerical uncertainty was less than 0.1%. This study evaluated limestone velocity, heat transfer, and load influence on thermal decomposition and overall process efficiency. The velocity and heat transfer coefficient were studied with the 2D model, while different loads of material were studied with the 3D model. Both models demonstrated to be highly unstable when solving non-linear temperature distributions. High velocity flows exhibited propensity to thermal runways, and the thermal efficiency showed the tendency to stabilize for the higher velocities and higher filling ratio. Microwave efficiency denoted an optimal velocity for each heat transfer coefficient, pointing out that electromagnetic efficiency is a consequence of energy distribution uniformity. The 3D results indicated the inefficient development of the electric field for low filling ratios. Thermal efficiencies higher than 90% were found for the higher loads and microwave efficiencies up to 75% were accomplished. The 80% fill ratio was demonstrated to be the optimal load with an associated global efficiency of 70%.Keywords: multiphysics modeling, microwave heating, verification and validation, endothermic reactions modeling, impedance matching, limestone continuous processing
Procedia PDF Downloads 1401988 Investigating the Effect of Different Design Factors on the Required Length of the Ambient Air Vaporizer
Authors: F. S. Alavi
Abstract:
In this study, MATLAB engineering software was used in order to model an industrial Ambient Air Vaporizer (AAV), considering combined convection and conduction heat transfers from the fins and the tube. The developed theoretical model was then used to investigate the effects of various design factors such as gas flow rate, ambient air temperature, fin thickness and etc. on total vaporizer ‘s length required. Cryogenic liquid nitrogen was selected as an input fluid, in all cases. According to the results, increasing the inlet fluid flow rate has direct linear effect on the total required length of vaporizer. Vaporizer’s required length decreases by increasing the size of fin radius or size of fin thickness. The dependency of vaporizer’s length on fin thickness’ size reduces at higher values of thickness and gradually converge to zero. For low flow rates, internal convection heat transfer coefficient depends directly on gas flow rate but it becomes constant, independent on flow rate after a specific value. As the ambient air temperature increases, the external heat transfer coefficient also increases and the total required length of vaporizer decreases.Keywords: heat exchanger, modeling, heat transfer, design
Procedia PDF Downloads 1151987 Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System
Authors: Tisciane Perpetuo e Oliveira, Dante Inga Narvaez, Marcelo Gradella Villalva
Abstract:
Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.Keywords: energy production, meteorological data, irradiance decomposition, solar photovoltaic system
Procedia PDF Downloads 1421986 A Novel Approach to Asynchronous State Machine Modeling on Multisim for Avoiding Function Hazards
Authors: Parisi L., Hamili D., Azlan N.
Abstract:
The aim of this study was to design and simulate a particular type of Asynchronous State Machine (ASM), namely a ‘traffic light controller’ (TLC), operated at a frequency of 0.5 Hz. The design task involved two main stages: firstly, designing a 4-bit binary counter using J-K flip flops as the timing signal and subsequently, attaining the digital logic by deploying ASM design process. The TLC was designed such that it showed a sequence of three different colours, i.e. red, yellow and green, corresponding to set thresholds by deploying the least number of AND, OR and NOT gates possible. The software Multisim was deployed to design such circuit and simulate it for circuit troubleshooting in order for it to display the output sequence of the three different colours on the traffic light in the correct order. A clock signal, an asynchronous 4-bit binary counter that was designed through the use of J-K flip flops along with an ASM were used to complete this sequence, which was programmed to be repeated indefinitely. Eventually, the circuit was debugged and optimized, thus displaying the correct waveforms of the three outputs through the logic analyzer. However, hazards occurred when the frequency was increased to 10 MHz. This was attributed to delays in the feedback being too high.Keywords: asynchronous state machine, traffic light controller, circuit design, digital electronics
Procedia PDF Downloads 4291985 Numerical Modeling of Artisanal and Small Scale Mining of Coltan in the African Great Lakes Region
Authors: Sergio Perez Rodriguez
Abstract:
Coltan Artisanal and Small-Scale Mining (ASM) production from Africa's Great Lakes region has previously been addressed at large scales, notably from regional to country levels. The current findings address the unresolved issue of a production model of ASM of coltan ore by an average Democratic Republic of Congo (DRC) mineworker, which can be used as a reference for a similar characterization of the daily labor of counterparts from other countries in the region. To that end, the Fundamental Equation of Mineral Production has been applied, considering a miner's average daily output of coltan, estimated in the base of gross statistical data gathered from reputable sources. Results indicate daily yields of individual miners in the order of 300 g of coltan ore, with hourly peaks of production in the range of 30 to 40 g of the mineral. Yields are expected to be in the order of 5 g or less during the least productive hours. These outputs are expected to be achieved during the halves of the eight to ten hours of daily working sessions that these artisanal laborers can attend during the mining season.Keywords: coltan, mineral production, production to reserve ratio, artisanal mining, small-scale mining, ASM, human work, Great Lakes region, Democratic Republic of Congo
Procedia PDF Downloads 761984 The Application of Line Balancing Technique and Simulation Program to Increase Productivity in Hard Disk Drive Components
Authors: Alonggot Limcharoen, Jintana Wannarat, Vorawat Panich
Abstract:
This study aims to investigate the balancing of the number of operators (Line Balancing technique) in the production line of hard disk drive components in order to increase efficiency. At present, the trend of using hard disk drives has continuously declined leading to limits in a company’s revenue potential. It is important to improve and develop the production process to create market share and to have the ability to compete with competitors with a higher value and quality. Therefore, an effective tool is needed to support such matters. In this research, the Arena program was applied to analyze the results both before and after the improvement. Finally, the precedent was used before proceeding with the real process. There were 14 work stations with 35 operators altogether in the RA production process where this study was conducted. In the actual process, the average production time was 84.03 seconds per product piece (by timing 30 times in each work station) along with a rating assessment by implementing the Westinghouse principles. This process showed that the rating was 123% underlying an assumption of 5% allowance time. Consequently, the standard time was 108.53 seconds per piece. The Takt time was calculated from customer needs divided by working duration in one day; 3.66 seconds per piece. Of these, the proper number of operators was 30 people. That meant five operators should be eliminated in order to increase the production process. After that, a production model was created from the actual process by using the Arena program to confirm model reliability; the outputs from imitation were compared with the original (actual process) and this comparison indicated that the same output meaning was reliable. Then, worker numbers and their job responsibilities were remodeled into the Arena program. Lastly, the efficiency of production process enhanced from 70.82% to 82.63% according to the target.Keywords: hard disk drive, line balancing, ECRS, simulation, arena program
Procedia PDF Downloads 2261983 Green Supply Chain Design: A Mathematical Modeling Approach
Authors: Nusrat T. Chowdhury
Abstract:
Green Supply Chain Management (GSCM) is becoming a key to success for profitable businesses. The various activities contributing to carbon emissions in a supply chain are transportation, ordering and holding of inventory. This research work develops a mixed-integer nonlinear programming (MINLP) model that considers the scenario of a supply chain with multiple periods, multiple products and multiple suppliers. The model assumes that the demand is deterministic, the buyer has a limited storage space in each period, the buyer is responsible for the transportation cost, a supplier-dependent ordering cost applies for each period in which an order is placed on a supplier and inventory shortage is permissible. The model provides an optimal decision regarding what products to order, in what quantities, with which suppliers, and in which periods in order to maximize the profit. For the purpose of evaluating the carbon emissions, three different carbon regulating policies i.e., carbon cap-and-trade, the strict cap on carbon emission and carbon tax on emissions, have been considered. The proposed MINLP has been validated using a randomly generated data set.Keywords: green supply chain, carbon emission, mixed integer non-linear program, inventory shortage, carbon cap-and-trade
Procedia PDF Downloads 2401982 A Crystal Plasticity Approach to Model Dynamic Strain Aging
Authors: Burak Bal, Demircan Canadinc
Abstract:
Dynamic strain aging (DSA), resulting from the reorientation of C-Mn clusters in the core of dislocations, can provide a strain hardening mechanism. In addition, in Hadfield steel, negative strain rate sensitivity is observed due to the DSA. In our study, we incorporated dynamic strain aging onto crystal plasticity computations to predict the local instabilities and corresponding negative strain rate sensitivity. Specifically, the material response of Hadfield steel was obtained from monotonic and strain-rate jump experiments under tensile loading. The strain rate range was adjusted from 10⁻⁴ to 10⁻¹s ⁻¹. The crystal plasticity modeling of the material response was carried out based on Voce-type hardening law and corresponding Voce hardening parameters were determined. The solute pinning effect of carbon atom was incorporated to crystal plasticity simulations at microscale level by computing the shear stress contribution imposed on an arrested dislocation by carbon atom. After crystal plasticity simulations with modifying hardening rule, which takes into account the contribution of DSA, it was seen that the model successfully predicts both the role of DSA and corresponding strain rate sensitivity.Keywords: crystal plasticity, dynamic strain aging, Hadfield steel, negative strain rate sensitivity
Procedia PDF Downloads 2601981 Flexible Feedstock Concept in Gasification Process for Carbon-Negative Energy Technology: A Case Study in Malaysia
Authors: Zahrul Faizi M. S., Ali A., Norhuda A. M.
Abstract:
Emission of greenhouse gases (GHG) from solid waste treatment and dependency on fossil fuel to produce electricity are the major concern in Malaysia as well as global. Innovation in downdraft gasification with combined heat and power (CHP) systems has the potential to minimize solid waste and reduce the emission of anthropogenic GHG from conventional fossil fuel power plants. However, the efficiency and capability of downdraft gasification to generate electricity from various alternative fuels, for instance, agriculture residues (i.e., woodchip, coconut shell) and municipal solid waste (MSW), are still controversial, on top of the toxicity level from the produced bottom ash. Thus this study evaluates the adaptability and reliability of the 20 kW downdraft gasification system to generate electricity (while considering environmental sustainability from the bottom ash) using flexible local feedstock at 20, 40, and 60% mixed ratio of MSW: agriculture residues. Feedstock properties such as feed particle size, moisture, and ash contents are also analyzed to identify optimal characteristics for the combination of feedstock (feedstock flexibility) to obtain maximum energy generation. Results show that the gasification system is capable to flexibly accommodate different feedstock compositions subjected to specific particle size (less than 2 inches) at a moisture content between 15 to 20%. These values exhibit enhance gasifier performance and provide a significant effect to the syngas composition utilizes by the internal combustion engine, which reflects energy production. The result obtained in this study is able to provide a new perspective on the transition of the conventional gasification system to a future reliable carbon-negative energy technology. Subsequently, promoting commercial scale-up of the downdraft gasification system.Keywords: carbon-negative energy, feedstock flexibility, gasification, renewable energy
Procedia PDF Downloads 1351980 Modeling Studies on the Elevated Temperatures Formability of Tube Ends Using RSM
Authors: M. J. Davidson, N. Selvaraj, L. Venugopal
Abstract:
The elevated temperature forming studies on the expansion of thin walled tubes have been studied in the present work. The influence of process parameters namely the die angle, the die ratio and the operating temperatures on the expansion of tube ends at elevated temperatures is carried out. The range of operating parameters have been identified by perfoming extensive simulation studies. The hot forming parameters have been evaluated for AA2014 alloy for performing the simulation studies. Experimental matrix has been developed from the feasible range got from the simulation results. The design of experiments is used for the optimization of process parameters. Response Surface Method’s (RSM) and Box-Behenken design (BBD) is used for developing the mathematical model for expansion. Analysis of variance (ANOVA) is used to analyze the influence of process parameters on the expansion of tube ends. The effect of various process combinations of expansion are analyzed through graphical representations. The developed model is found to be appropriate as the coefficient of determination value is very high and is equal to 0.9726. The predicted values are found to coincide well with the experimental results, within acceptable error limits.Keywords: expansion, optimization, Response Surface Method (RSM), ANOVA, bbd, residuals, regression, tube
Procedia PDF Downloads 5091979 Cerebrovascular Modeling: A Vessel Network Approach for Fluid Distribution
Authors: Karla E. Sanchez-Cazares, Kim H. Parker, Jennifer H. Tweedy
Abstract:
The purpose of this work is to develop a simple compartmental model of cerebral fluid balance including blood and cerebrospinal-fluid (CSF). At the first level the cerebral arteries and veins are modelled as bifurcating trees with constant scaling factors between generations which are connected through a homogeneous microcirculation. The arteries and veins are assumed to be non-rigid and the cross-sectional area, resistance and mean pressure in each generation are determined as a function of blood volume flow rate. From the mean pressure and further assumptions about the variation of wall permeability, the transmural fluid flux can be calculated. The results suggest the next level of modelling where the cerebral vasculature is divided into three compartments; the large arteries, the small arteries, the capillaries and the veins with effective compliances and permeabilities derived from the detailed vascular model. These vascular compartments are then linked to other compartments describing the different CSF spaces, the cerebral ventricles and the subarachnoid space. This compartmental model is used to calculate the distribution of fluid in the cranium. Known volumes and flows for normal conditions are used to determine reasonable parameters for the model, which can then be used to help understand pathological behaviour and suggest clinical interventions.Keywords: cerebrovascular, compartmental model, CSF model, vascular network
Procedia PDF Downloads 2751978 Numerical Design and Characterization of MOVPE Grown Nitride Based Semiconductors
Authors: J. Skibinski, P. Caban, T. Wejrzanowski, K. J. Kurzydlowski
Abstract:
In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S are addressed. The aim of this study was to design the optimal fluid flow and thermal conditions for obtaining the most homogeneous product. Since there are many agents influencing reactions on the crystal growth area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. Variations of process pressure and hydrogen mass flow rates have been considered. According to the fact that it’s impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, detailed 3D modeling has been used to get an insight of the process conditions. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in the numerical model allows to calculate the growth rate of the substrate. The present approach has been applied to enhance the performance of AIX-200/4RF-S reactor.Keywords: computational fluid dynamics, finite volume method, epitaxial growth, gallium nitride
Procedia PDF Downloads 4541977 About Multi-Resolution Techniques for Large Eddy Simulation of Reactive Multi-Phase Flows
Authors: Giacomo Rossi, Bernardo Favini, Eugenio Giacomazzi, Franca Rita Picchia, Nunzio Maria Salvatore Arcidiacono
Abstract:
A numerical technique for mesh refinement in the HeaRT (Heat Release and Transfer) numerical code is presented. In the CFD framework, Large Eddy Simulation (LES) approach is gaining in importance as a tool for simulating turbulent combustion processes, also if this approach has an high computational cost due to the complexity of the turbulent modeling and the high number of grid points necessary to obtain a good numerical solution. In particular, when a numerical simulation of a big domain is performed with a structured grid, the number of grid points can increase so much that the simulation becomes impossible: this problem can be overcame with a mesh refinement technique. Mesh refinement technique developed for HeaRT numerical code (a staggered finite difference code) is based on an high order reconstruction of the variables at the grid interfaces by means of a least square quasi-ENO interpolation: numerical code is written in modern Fortran (2003 standard of newer) and is parallelized using domain decomposition and message passing interface (MPI) standard.Keywords: LES, multi-resolution, ENO, fortran
Procedia PDF Downloads 3661976 Comparison of Johnson-Cook and Barlat Material Model for 316L Stainless Steel
Authors: Yiğit Gürler, İbrahim Şimşek, Müge Savaştaer, Ayberk Karakuş, Alper Taşdemirci
Abstract:
316L steel is frequently used in the industry due to its easy formability and accessibility in sheet metal forming processes. Numerical and experimental studies are frequently encountered in the literature to examine the mechanical behavior of 316L stainless steel during the forming process. 316L stainless steel is the most common material used in the production of plate heat exchangers and plate heat exchangers are produced by plastic deformation of the stainless steel. The motivation in this study is to determine the appropriate material model during the simulation of the sheet metal forming process. For this reason, two different material models were examined and Ls-Dyna material cards were created using material test data. These are MAT133_BARLAT_YLD2000 and MAT093_SIMPLIFIED_JOHNSON_COOK. In order to compare results of the tensile test & hydraulic bulge test performed both numerically and experimentally. The obtained results were evaluated comparatively and the most suitable material model was selected for the forming simulation. In future studies, this material model will be used in the numerical modeling of the sheet metal forming process.Keywords: 316L, mechanical characterization, metal forming, Ls-Dyna
Procedia PDF Downloads 3341975 The Impact of Nurse-Physician Interprofessional Relationship on Nurses' Willingness to Engage in Leadership Roles: A Multilevel Modelling Approach
Authors: Sulaiman D. Al Sabei, Amy M. Ross, Christopher S. Lee
Abstract:
Nurse leaders play a fundamental role in transforming healthcare system and improving quality of patient care. Several healthcare organizations have called to increase the number of nurse leaders across all levels and in every practice setting. Identification of factors influencing nurses’ willingness to lead can inform healthcare leaders and policy makers of potentially illuminating strategies for establishing favorable work environments that motivate nurses to engage in leadership roles. The aim of this study was to investigate determinants of nurses’ willingness to engage in future leadership roles. The study was conducted at a public hospital in the Sultanate of Oman. A total of 171 registered nurses participated. A multilevel modeling was conducted. Findings revealed that 80% of nurses were likely to seek out opportunities to engage in leadership roles. The quality of the nurse-physician collegial relationships was a significant predictor of nurses’ willingness to lead. Establishing a work environment’s culture of positive nurse-physician relationships is critical to enhance nurses’ work attitude and engage them in leadership roles.Keywords: interprofessional relationship, leadership, motivation, nurses
Procedia PDF Downloads 1921974 Developing a Toolkit of Undergraduate Nursing Student’ Desirable Characteristics (TNDC) : An application Item Response Theory
Authors: Parinyaporn Thanaboonpuang, Siridej Sujiva, Shotiga Pasiphul
Abstract:
The higher education reform that integration of nursing programmes into the higher education system. Learning outcomes represent one of the essential building blocks for transparency within higher education systems and qualifications. The purpose of this study is to develop a toolkit of undergraduate nursing student’desirable characteristics assessment on Thai Qualifications Framework for Higher education and to test psychometric property for this instrument. This toolkit seeks to improve on the Computer Multimedia test. There are three skills to be examined: Cognitive skill, Responsibility and Interpersonal Skill, and Information Technology Skill. The study was conduct in 4 phases. In Phase 1. Based on developed a measurement model and Computer Multimedia test. Phase 2 two round focus group were conducted, to determine the content validity of measurement model and the toolkit. In Phase 3, data were collected using a multistage random sampling of 1,156 senior undergraduate nursing student were recruited to test psychometric property. In Phase 4 data analysis was conducted by descriptive statistics, item analysis, inter-rater reliability, exploratory factor analysis and confirmatory factor analysis. The resulting TNDC consists of 74 items across the following four domains: Cognitive skill, Interpersonal Skill, Responsibility and Information Technology Skill. The value of Cronbach’ s alpha for the four domains were .781, 807, .831, and .865, respectively. The final model in confirmatory factor analysis fit quite well with empirical data. The TNDC was found to be appropriate, both theoretically and statistically. Due to these results, it is recommended that the toolkit could be used in future studies for Nursing Program in Thailand.Keywords: toolkit, nursing student’ desirable characteristics, Thai qualifications framework
Procedia PDF Downloads 5351973 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion
Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang
Abstract:
Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.Keywords: roads, defect detection, visualization, deep learning
Procedia PDF Downloads 111972 A Bivariate Inverse Generalized Exponential Distribution and Its Applications in Dependent Competing Risks Model
Authors: Fatemah A. Alqallaf, Debasis Kundu
Abstract:
The aim of this paper is to introduce a bivariate inverse generalized exponential distribution which has a singular component. The proposed bivariate distribution can be used when the marginals have heavy-tailed distributions, and they have non-monotone hazard functions. Due to the presence of the singular component, it can be used quite effectively when there are ties in the data. Since it has four parameters, it is a very flexible bivariate distribution, and it can be used quite effectively for analyzing various bivariate data sets. Several dependency properties and dependency measures have been obtained. The maximum likelihood estimators cannot be obtained in closed form, and it involves solving a four-dimensional optimization problem. To avoid that, we have proposed to use an EM algorithm, and it involves solving only one non-linear equation at each `E'-step. Hence, the implementation of the proposed EM algorithm is very straight forward in practice. Extensive simulation experiments and the analysis of one data set have been performed. We have observed that the proposed bivariate inverse generalized exponential distribution can be used for modeling dependent competing risks data. One data set has been analyzed to show the effectiveness of the proposed model.Keywords: Block and Basu bivariate distributions, competing risks, EM algorithm, Marshall-Olkin bivariate exponential distribution, maximum likelihood estimators
Procedia PDF Downloads 1431971 Quantum Decision Making with Small Sample for Network Monitoring and Control
Authors: Tatsuya Otoshi, Masayuki Murata
Abstract:
With the development and diversification of applications on the Internet, applications that require high responsiveness, such as video streaming, are becoming mainstream. Application responsiveness is not only a matter of communication delay but also a matter of time required to grasp changes in network conditions. The tradeoff between accuracy and measurement time is a challenge in network control. We people make countless decisions all the time, and our decisions seem to resolve tradeoffs between time and accuracy. When making decisions, people are known to make appropriate choices based on relatively small samples. Although there have been various studies on models of human decision-making, a model that integrates various cognitive biases, called ”quantum decision-making,” has recently attracted much attention. However, the modeling of small samples has not been examined much so far. In this paper, we extend the model of quantum decision-making to model decision-making with a small sample. In the proposed model, the state is updated by value-based probability amplitude amplification. By analytically obtaining a lower bound on the number of samples required for decision-making, we show that decision-making with a small number of samples is feasible.Keywords: quantum decision making, small sample, MPEG-DASH, Grover's algorithm
Procedia PDF Downloads 791970 Artificial Intelligence in the Design of High-Strength Recycled Concrete
Authors: Hadi Rouhi Belvirdi, Davoud Beheshtizadeh
Abstract:
The increasing demand for sustainable construction materials has led to a growing interest in high-strength recycled concrete (HSRC). Utilizing recycled materials not only reduces waste but also minimizes the depletion of natural resources. This study explores the application of artificial intelligence (AI) techniques to model and predict the properties of HSRC. In the past two decades, the production levels in various industries and, consequently, the amount of waste have increased significantly. Continuing this trend will undoubtedly cause irreparable damage to the environment. For this reason, engineers have been constantly seeking practical solutions for recycling industrial waste in recent years. This research utilized the results of the compressive strength of 90-day high-strength recycled concrete. The method for creating recycled concrete involved replacing sand with crushed glass and using glass powder instead of cement. Subsequently, a feedforward artificial neural network was employed to model the compressive strength results for 90 days. The regression and error values obtained indicate that this network is suitable for modeling the compressive strength data.Keywords: high-strength recycled concrete, feedforward artificial neural network, regression, construction materials
Procedia PDF Downloads 141969 Extending Theory of Planned Behavior to Modelling Chronic Patients’ Acceptance of Health Information: An Information Overload Perspective
Authors: Shu-Lien Chou, Chung-Feng Liu
Abstract:
Self-health management of chronic illnesses plays an important part in chronic illness treatments. However, various kinds of health information (health education materials) which government or healthcare institutions provide for patients may not achieve the expected outcome. One of the critical reasons affecting patients’ use intention could be patients’ perceived Information overload regarding the health information. This study proposed an extended model of Theory of Planned Behavior, which integrating perceived information overload as another construct to explore patients’ use intention of the health information for self-health management. The independent variables are attitude, subject norm, perceived behavior control and perceived information overload while the dependent variable is behavior intention to use the health information. The cross-sectional study used a structured questionnaire for data collection, focusing on the chronic patients with coronary artery disease (CAD), who are the potential users of the health information, in a medical center in Taiwan. Data were analyzed using descriptive statistics of the basic information distribution of the questionnaire respondents, and the Partial Least Squares (PLS) structural equation model to study the reliability and construct validity for testing our hypotheses. A total of 110 patients were enrolled in this study and 106 valid questionnaires were collected. The PLS analysis result indicates that the patients’ perceived information overload of health information contributes the most critical factor influencing the behavioral intention. Subjective norm and perceived behavioral control of TPB constructs had significant effects on patients’ intentions to use health information also, whereas the attitude construct did not. This study demonstrated a comprehensive framework, which extending perceived information overload into TPB model to predict patients’ behavioral intention of using heath information. We expect that the results of this study will provide useful insights for studying health information from the perspectives of academia, governments, and healthcare providers.Keywords: chronic patients, health information, information overload, theory of planned behavior
Procedia PDF Downloads 436