Search results for: numerical range
6012 Data Hiding in Gray Image Using ASCII Value and Scanning Technique
Authors: R. K. Pateriya, Jyoti Bharti
Abstract:
This paper presents an approach for data hiding methods which provides a secret communication between sender and receiver. The data is hidden in gray-scale images and the boundary of gray-scale image is used to store the mapping information. In this an approach data is in ASCII format and the mapping is in between ASCII value of hidden message and pixel value of cover image, since pixel value of an image as well as ASCII value is in range of 0 to 255 and this mapping information is occupying only 1 bit per character of hidden message as compared to 8 bit per character thus maintaining good quality of stego image.Keywords: ASCII value, cover image, PSNR, pixel value, stego image, secret message
Procedia PDF Downloads 4166011 Numerical Investigation of Poling Vector Angle on Adaptive Sandwich Plate Deflection
Authors: Alireza Pouladkhan, Mohammad Yavari Foroushani, Ali Mortazavi
Abstract:
This paper presents a finite element model for a sandwich plate containing a piezoelectric core. A sandwich plate with a piezoelectric core is constructed using the shear mode of piezoelectric materials. The orientation of poling vector has a significant effect on deflection and stress induced in the piezo-actuated adaptive sandwich plate. In the present study, the influence of this factor for a clamped-clamped-free-free and simple-simple-free-free square sandwich plate is investigated using Finite Element Method. The study uses ABAQUS (v.6.7) software to derive the finite element model of the sandwich plate. By using this model, the study gives the influences of the poling vector angle on the response of the smart structure and determines the maximum transverse displacement and maximum stress induced.Keywords: finite element method, sandwich plate, poling vector, piezoelectric materials, smart structure, electric enthalpy
Procedia PDF Downloads 2336010 Parameterized Lyapunov Function Based Robust Diagonal Dominance Pre-Compensator Design for Linear Parameter Varying Model
Authors: Xiaobao Han, Huacong Li, Jia Li
Abstract:
For dynamic decoupling of linear parameter varying system, a robust dominance pre-compensator design method is given. The parameterized pre-compensator design problem is converted into optimal problem constrained with parameterized linear matrix inequalities (PLMI); To solve this problem, firstly, this optimization problem is equivalently transformed into a new form with elimination of coupling relationship between parameterized Lyapunov function (PLF) and pre-compensator. Then the problem was reduced to a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a newly constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator was achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation of a turbofan engine PLPV model.Keywords: linear parameter varying (LPV), parameterized Lyapunov function (PLF), linear matrix inequalities (LMI), diagonal dominance pre-compensator
Procedia PDF Downloads 3996009 Nematodes, Rotifers, Tardigrades and Diatoms as Vehicles for the Panspermic Transfer of Microbes
Authors: Sulamain Alharbi, Mohammad Khiyami, Reda Amasha, Bassam Al-Johny, Hesham Khalil, Milton Wainwrigh
Abstract:
Nematodes, Rotifers and Tardigrades (NRT) are extreme-tolerant invertebrates which can survive long periods of stasis brought about by extreme drying and cold. They can also resist the effects of UV radiation, and as a result could act as vehicles for the panspermic transfer of microorganisms. Here we show that NRT contain a variety of bacteria and fungi within their bodies in which environment they could be protected from the extremes of the space and released into new cosmic environments. Diatoms were also shown to contain viable alga and Escherichia coli and so could also act as panspermic vehicles for the transfer of these and perhaps other microbes through space. Although not studied here, NRT, and possibly diatoms, also carry protozoa and viruses within their bodies and could act as vehicles for the panspermic transfer of an even wider range of microbes than shown here.Keywords: extromophiles, diatoms, panspermia, survival in space
Procedia PDF Downloads 5596008 Three-Stage Mining Metals Supply Chain Coordination and Product Quality Improvement with Revenue Sharing Contract
Authors: Hamed Homaei, Iraj Mahdavi, Ali Tajdin
Abstract:
One of the main concerns of miners is to increase the quality level of their products because the mining metals price depends on their quality level; however, increasing the quality level of these products has different costs at different levels of the supply chain. These costs usually increase after extractor level. This paper studies the coordination issue of a decentralized three-level supply chain with one supplier (extractor), one mineral processor and one manufacturer in which the increasing product quality level cost at the processor level is higher than the supplier and at the level of the manufacturer is more than the processor. We identify the optimal product quality level for each supply chain member by designing a revenue sharing contract. Finally, numerical examples show that the designed contract not only increases the final product quality level but also provides a win-win condition for all supply chain members and increases the whole supply chain profit.Keywords: three-stage supply chain, product quality improvement, channel coordination, revenue sharing
Procedia PDF Downloads 1836007 Transient Current Investigations in Liquid Crystalline Polyurethane
Authors: Jitendra Kumar Quamara, Sohan Lal, Pushkar Raj
Abstract:
Electrical conduction behavior of liquid crystalline polyurethane (LCPU) has been investigated under transient conditions in the operating temperature range 50-220°C at various electric fields of 4.35-43.45 kV/cm. The transient currents show the hyperbolic decay character and the decay exponent ∆t (one tenth decay time) dependent on field as well as on temperature. The increase in I0/Is values (where I0 represents the current observed immediately after applying the voltage and Is represents the steady state current) and the variation of mobility at high operating temperatures shows the appearance of mesophase. The origin of transient currents has been attributed to the dipolar nature of carbonyl (C=O) groups in the main chain of LCPU and the trapping charge carriers.Keywords: electrical conduction, transient current, liquid crystalline polymers, mesophase
Procedia PDF Downloads 2806006 Image Transform Based on Integral Equation-Wavelet Approach
Authors: Yuan Yan Tang, Lina Yang, Hong Li
Abstract:
Harmonic model is a very important approximation for the image transform. The harmanic model converts an image into arbitrary shape; however, this mode cannot be described by any fixed functions in mathematics. In fact, it is represented by partial differential equation (PDE) with boundary conditions. Therefore, to develop an efficient method to solve such a PDE is extremely significant in the image transform. In this paper, a novel Integral Equation-Wavelet based method is presented, which consists of three steps: (1) The partial differential equation is converted into boundary integral equation and representation by an indirect method. (2) The boundary integral equation and representation are changed to plane integral equation and representation by boundary measure formula. (3) The plane integral equation and representation are then solved by a method we call wavelet collocation. Our approach has two main advantages, the shape of an image is arbitrary and the program code is independent of the boundary. The performance of our method is evaluated by numerical experiments.Keywords: harmonic model, partial differential equation (PDE), integral equation, integral representation, boundary measure formula, wavelet collocation
Procedia PDF Downloads 5586005 Recurrent Anterior Gleno-Humeral Instability Management by Modified Latarjet Procedure
Authors: Tarek Aly
Abstract:
The shoulder is the most mobile joint whose stability requires the interaction of both dynamic and static stabilizers. Its wide range of movement predisposes to a high susceptibility to dislocation, accounting for nearly 50% of all dislocations. This trauma typically results in ligament injury (e.g., labral tear, capsular strain) or bony fracture (e.g., loss of glenoid or humeral head bone), which frequently causes recurrent instability. Patients with significant glenoid defects may require Latarjet procedure, which involves transferring the coracoid to the antero-inferior glenoid rim. In spite of outstanding results, 15 to 30% of cases suffer complications. In this article, we discuss the diagnosis of recurrent shoulder instability, the surgical technique and various complications of Latarjet procedure.Keywords: recurrent, anterior gleno-humeral instability, latarjet, unstable shoulder
Procedia PDF Downloads 846004 MHD Non-Newtonian Nanofluid Flow over a Permeable Stretching Sheet with Heat Generation and Velocity Slip
Authors: Rama Bhargava, Mania Goyal
Abstract:
The problem of magnetohydrodynamics boundary layer flow and heat transfer on a permeable stretching surface in a second grade nanofluid under the effect of heat generation and partial slip is studied theoretically. The Brownian motion and thermophoresis effects are also considered. The boundary layer equations governed by the PDE’s are transformed into a set of ODE’s with the help of local similarity transformations. The differential equations are solved by variational finite element method. The effects of different controlling parameters on the flow field and heat transfer characteristics are examined. The numerical results for the dimensionless velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically. The comparison confirmed excellent agreement. The present study is of great interest in coating and suspensions, cooling of metallic plate, oils and grease, paper production, coal water or coal-oil slurries, heat exchangers technology, materials processing exploiting.Keywords: viscoelastic nanofluid, partial slip, stretching sheet, heat generation/absorption, MHD flow, FEM
Procedia PDF Downloads 3136003 A Fault Analysis Cracked-Rotor-to-Stator Rub and Unbalance by Vibration Analysis Technique
Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu
Abstract:
An analytical 4-DOF nonlinear model of a de Laval rotor-stator system based on Energy Principles has been used theoretically and experimentally to investigate fault symptoms in a rotating system. The faults, namely rotor-stator-rub, crack and unbalance are modelled as excitations on the rotor shaft. Mayes steering function is used to simulate the breathing behaviour of the crack. The fault analysis technique is based on waveform signal, orbits and Fast Fourier Transform (FFT) derived from simulated and real measured signals. Simulated and experimental results manifest considerable mutual resemblance of elliptic-shaped orbits and FFT for a same range of test data.Keywords: a breathing crack, fault, FFT, nonlinear, orbit, rotor-stator rub, vibration analysis
Procedia PDF Downloads 3086002 A Numerical Method to Evaluate the Elastoplastic Material Properties of Fiber Reinforced Composite
Authors: M. Palizvan, M. H. Sadr, M. T. Abadi
Abstract:
The representative volume element (RVE) plays a central role in the mechanics of random heterogeneous materials with a view to predicting their effective properties. In this paper, a computational homogenization methodology, developed to determine effective linear elastic properties of composite materials, is extended to predict the effective nonlinear elastoplastic response of long fiber reinforced composite. Finite element simulations of volumes of different sizes and fiber volume fractures are performed for calculation of the overall response RVE. The dependencies of the overall stress-strain curves on the number of fibers inside the RVE are studied in the 2D cases. Volume averaged stress-strain responses are generated from RVEs and compared with the finite element calculations available in the literature at moderate and high fiber volume fractions. For these materials, the existence of an RVE is demonstrated for the sizes of RVE corresponding to 10–100 times the diameter of the fibers. In addition, the response of small size RVE is found anisotropic, whereas the average of all large ones leads to recover the isotropic material properties.Keywords: homogenization, periodic boundary condition, elastoplastic properties, RVE
Procedia PDF Downloads 1536001 Stochastic Simulation of Random Numbers Using Linear Congruential Method
Authors: Melvin Ballera, Aldrich Olivar, Mary Soriano
Abstract:
Digital computers nowadays must be able to have a utility that is capable of generating random numbers. Usually, computer-generated random numbers are not random given predefined values such as starting point and end points, making the sequence almost predictable. There are many applications of random numbers such business simulation, manufacturing, services domain, entertainment sector and other equally areas making worthwhile to design a unique method and to allow unpredictable random numbers. Applying stochastic simulation using linear congruential algorithm, it shows that as it increases the numbers of the seed and range the number randomly produced or selected by the computer becomes unique. If this implemented in an environment where random numbers are very much needed, the reliability of the random number is guaranteed.Keywords: stochastic simulation, random numbers, linear congruential algorithm, pseudorandomness
Procedia PDF Downloads 3166000 Charge Transport in Biological Molecules
Authors: E. L. Albuquerque, U. L. Fulco, G. S. Ourique
Abstract:
The focus of this work is on the numerical investigation of the charge transport properties of the de novo-designed alpha3 polypeptide, as well as in its variants, all of them probed by gene engineering. The theoretical framework makes use of a tight-binding model Hamiltonian, together with ab-initio calculations within quantum chemistry simulation. The alpha3 polypeptide is a 21-residue with three repeats of the seven-residue amino acid sequence Leu-Glu-Thr-Leu-Ala-Lys-Ala, forming an alpha–helical bundle structure. Its variants are obtained by Ala→Gln substitution at the e (5th) and g (7th) position, respectively, of the alpha3 polypeptide amino acid sequence. Using transmission electron microscopy and atomic force microscopy, it was observed that the alpha3 polypeptide and one of its variant do have the ability to form fibrous assemblies, while the other does not. Our main aim is to investigate whether or not the biased alpha3 polypeptide and its variants can be also identified by quantum charge transport measurements through current-voltage (IxV) curves as a pattern to characterize their fibrous assemblies. It was observed that each peptide has a characteristic current pattern, which may be distinguished by charge transport measurements, suggesting that it might be a useful tool for the development of biosensors.Keywords: charge transport properties, electronic transmittance, current-voltage characteristics, biological sensor
Procedia PDF Downloads 6655999 An Elasto-Viscoplastic Constitutive Model for Unsaturated Soils: Numerical Implementation and Validation
Authors: Maria Lazari, Lorenzo Sanavia
Abstract:
Mechanics of unsaturated soils has been an active field of research in the last decades. Efficient constitutive models that take into account the partial saturation of soil are necessary to solve a number of engineering problems e.g. instability of slopes and cuts due to heavy rainfalls. A large number of constitutive models can now be found in the literature that considers fundamental issues associated with the unsaturated soil behaviour, like the volume change and shear strength behaviour with suction or saturation changes. Partially saturated soils may either expand or collapse upon wetting depending on the stress level, and it is also possible that a soil might experience a reversal in the volumetric behaviour during wetting. Shear strength of soils also changes dramatically with changes in the degree of saturation, and a related engineering problem is slope failures caused by rainfall. There are several states of the art reviews over the last years for studying the topic, usually providing a thorough discussion of the stress state, the advantages, and disadvantages of specific constitutive models as well as the latest developments in the area of unsaturated soil modelling. However, only a few studies focused on the coupling between partial saturation states and time effects on the behaviour of geomaterials. Rate dependency is experimentally observed in the mechanical response of granular materials, and a viscoplastic constitutive model is capable of reproducing creep and relaxation processes. Therefore, in this work an elasto-viscoplastic constitutive model for unsaturated soils is proposed and validated on the basis of experimental data. The model constitutes an extension of an existing elastoplastic strain-hardening constitutive model capable of capturing the behaviour of variably saturated soils, based on energy conjugated stress variables in the framework of superposed continua. The purpose was to develop a model able to deal with possible mechanical instabilities within a consistent energy framework. The model shares the same conceptual structure of the elastoplastic laws proposed to deal with bonded geomaterials subject to weathering or diagenesis and is capable of modelling several kinds of instabilities induced by the loss of hydraulic bonding contributions. The novelty of the proposed formulation is enhanced with the incorporation of density dependent stiffness and hardening coefficients in order to allow the modeling of the pycnotropy behaviour of granular materials with a single set of material constants. The model has been implemented in the commercial FE platform PLAXIS, widely used in Europe for advanced geotechnical design. The algorithmic strategies adopted for the stress-point algorithm had to be revised to take into account the different approach adopted by PLAXIS developers in the solution of the discrete non-linear equilibrium equations. An extensive comparison between models with a series of experimental data reported by different authors is presented to validate the model and illustrate the capability of the newly developed model. After the validation, the effectiveness of the viscoplastic model is displayed by numerical simulations of a partially saturated slope failure of the laboratory scale and the effect of viscosity and degree of saturation on slope’s stability is discussed.Keywords: PLAXIS software, slope, unsaturated soils, Viscoplasticity
Procedia PDF Downloads 2255998 A Stokes Optimal Control Model of Determining Cellular Interaction Forces during Gastrulation
Authors: Yuanhao Gao, Ping Lin, Kees Weijer
Abstract:
An optimal control system model is proposed for the cell flow in the process of chick embryo gastrulation in this paper. The target is to determine the cellular interaction forces which are hard to measure. This paper will take an approach to investigate the forces with the idea of the inverse problem. By choosing the forces as the control variable and regarding the cell flow as Stokes fluid, an objective functional will be established to match the numerical result of cell velocity with the experimental data. So that the forces could be determined by minimizing the objective functional. The Lagrange multiplier method is utilized to derive the state and adjoint equations consisting the optimal control system, which specifies the first-order necessary conditions. Finite element method is used to discretize and approximate equations. A conjugate gradient algorithm is given for solving the minimum solution of the system and determine the forces.Keywords: optimal control model, Stokes equation, conjugate gradient method, finite element method, chick embryo gastrulation
Procedia PDF Downloads 2595997 Crack Width Evaluation for Flexural RC Members with Axial Tension
Authors: Sukrit Ghorai
Abstract:
Proof of controlling crack width is a basic condition for securing suitable performance in serviceability limit state. The cracking in concrete can occur at any time from the casting of time to the years after the concrete has been set in place. Most codes struggle with offering procedure for crack width calculation. There is lack in availability of design charts for designers to compute crack width with ease. The focus of the study is to utilize design charts and parametric equations in calculating crack width with minimum error. The paper contains a simplified procedure to calculate crack width for reinforced concrete (RC) sections subjected to bending with axial tensile force following the guidelines of Euro code [DS EN-1992-1-1 & DS EN-1992-1-2]. Numerical examples demonstrate the application of the suggested procedure. Comparison with parallel analytical tools support the validity of result and show the percentage deviation of crack width in both the procedures. The technique is simple, user-friendly and ready to evolve for a greater spectrum of section sizes and materials.Keywords: concrete structures, crack width calculation, serviceability limit state, structural design, bridge engineering
Procedia PDF Downloads 3835996 Numerical Simulation of External Flow Around D-Shaped Cylinders
Authors: Ouldouz Nourani Zonouz, Mehdi Salmanpour
Abstract:
Investigation and analysis of flow behavior around different shapes bluff bodies is one of the reputed topics for several years. The importance of these researches is about the unwanted phenomena called flow separation. The location of separation and the size of the wake region should be considered in different industrial designs. In this research a bluff body with D-shaped cross section has been analyzed. In circular cylinder flow separation point changes with Reynolds number but in D-Shaped cylinder there is fix flow separation point. So there is more wake steadiness in D-Shaped cylinder as compared to Circular cylinder and drag reduction because of wake steadiness. In the present work CFD simulation is carried out for flow past a D-Shaped cylinder to see the wake behavior. The Reynolds number regime currently studied corresponds to low Reynolds number and nominally two-dimensional wake. Also the effect of D-Shaped cylinders on the rate of heat transfer has been considered. Various results such as velocity, pressure and temperature contours and also some dimensionless numbers like drag coefficient, pressure coefficient and Nusselt number calculated for different cases.Keywords: D-shaped, CFD, external flow, low Reynolds number, square cylinder
Procedia PDF Downloads 4605995 Numerical Simulation of Flow Past Inline Tandem Cylinders in Uniform Shear Flow
Authors: Rajesh Bhatt, Dilip Kumar Maiti
Abstract:
The incompressible shear flow past a square cylinder placed parallel to a plane wall of side length A in presence of upstream rectangular cylinder of height 0.5A and width 0.25A in an inline tandem arrangement are numerically investigated using finite volume method. The discretized equations are solved by an implicit, time-marching, pressure correction based SIMPLE algorithm. This study provides the qualitative insight in to the dependency of basic structure (i.e. vortex shedding or suppression) of flow over the downstream square cylinder and the upstream rectangular cylinder (and hence the aerodynamic characteristics) on inter-cylinder spacing (S) and Reynolds number (Re). The spacing between the cylinders is varied systematically from S = 0.5A to S = 7.0A so the sensitivity of the flow structure between the cylinders can be inspected. A sudden jump in strouhal number is observed, which shows the transition of flow pattern in the wake of the cylinders. The results are presented at Re = 100 and 200 in term of Strouhal number, RMS and mean of lift and drag coefficients and contour plots for different spacing.Keywords: square cylinder, vortex shedding, isolated, tandem arrangement, spacing distance
Procedia PDF Downloads 5495994 An Active Rectifier with Time-Domain Delay Compensation to Enhance the Power Conversion Efficiency
Authors: Shao-Ku Kao
Abstract:
This paper presents an active rectifier with time-domain delay compensation to enhance the efficiency. A delay calibration circuit is designed to convert delay time to voltage and adaptive control on/off delay in variable input voltage. This circuit is designed in 0.18 mm CMOS process. The input voltage range is from 2 V to 3.6 V with the output voltage from 1.8 V to 3.4 V. The efficiency can maintain more than 85% when the load from 50 Ω ~ 1500 Ω for 3.6 V input voltage. The maximum efficiency is 92.4 % at output power to be 38.6 mW for 3.6 V input voltage.Keywords: wireless power transfer, active diode, delay compensation, time to voltage converter, PCE
Procedia PDF Downloads 2825993 Applying Renowned Energy Simulation Engines to Neural Control System of Double Skin Façade
Authors: Zdravko Eškinja, Lovre Miljanić, Ognjen Kuljača
Abstract:
This paper is an overview of simulation tools used to model specific thermal dynamics that occurs while controlling double skin façade. Research has been conducted on simplified construction with single zone where one side is glazed. Heat flow and temperature responses are simulated in three different simulation tools: IDA-ICE, EnergyPlus and HAMBASE. The excitation of observed system, used in all simulations, was a temperature step of exterior environment. Air infiltration, insulation and other disturbances are excluded from this research. Although such isolated behaviour is not possible in reality, experiments are carried out to gain novel information about heat flow transients which are not observable under regular conditions. Results revealed new possibilities for adapting the parameters of the neural network regulator. Along numerical simulations, the same set-up has been also tested in a real-time experiment with a 1:18 scaled model and thermal chamber. The comparison analysis brings out interesting conclusion about simulation accuracy in this particular case.Keywords: double skin façade, experimental tests, heat control, heat flow, simulated tests, simulation tools
Procedia PDF Downloads 2315992 Effects of X and + Tail-Body Configurations on Hydrodynamic Performance and Stability of an Underwater Vehicle
Authors: Kadri Koçer, Sezer Kefeli
Abstract:
This paper proposes a comparison of hydrodynamic performance and stability characteristic for an underwater vehicle which has two type of tail design, namely X and +tail-body configurations. The effects of these configurations on the underwater vehicle’s hydrodynamic performance and maneuvering characteristic will be investigated comprehensively. Hydrodynamic damping coefficients for modeling the motion of the underwater vehicles will be predicted. Additionally, forces and moments due to control surfaces will be compared using computational fluid dynamics methods. In the aviation, the X tail-body configuration is widely used for high maneuverability requirements. However, in the underwater, the + tail-body configuration is more commonly used than the X tail-body configuration for its stability characteristics. Thus it is important to see the effect and differences of the tail designs in the underwater world. For CFD analysis, the incompressible, three-dimensional, and steady Navier-Stokes equations will be used to simulate the flows. Also, k-ε Realizable turbulence model with enhanced wall treatment will be taken. Numerical results is verified with experimental results for verification. The overall goal of this study is to present the advantages and disadvantages of hydrodynamic performance and stability characteristic for X and + tail-body configurations of the underwater vehicle.Keywords: maneuverability, stability, CFD, tail configuration, hydrodynamic design
Procedia PDF Downloads 1845991 Compressible Lattice Boltzmann Method for Turbulent Jet Flow Simulations
Authors: K. Noah, F.-S. Lien
Abstract:
In Computational Fluid Dynamics (CFD), there are a variety of numerical methods, of which some depend on macroscopic model representatives. These models can be solved by finite-volume, finite-element or finite-difference methods on a microscopic description. However, the lattice Boltzmann method (LBM) is considered to be a mesoscopic particle method, with its scale lying between the macroscopic and microscopic scales. The LBM works well for solving incompressible flow problems, but certain limitations arise from solving compressible flows, particularly at high Mach numbers. An improved lattice Boltzmann model for compressible flow problems is presented in this research study. A higher-order Taylor series expansion of the Maxwell equilibrium distribution function is used to overcome limitations in LBM when solving high-Mach-number flows. Large eddy simulation (LES) is implemented in LBM to simulate turbulent jet flows. The results have been validated with available experimental data for turbulent compressible free jet flow at subsonic speeds.Keywords: compressible lattice Boltzmann method, multiple relaxation times, large eddy simulation, turbulent jet flows
Procedia PDF Downloads 2745990 Movement of Metallic Inclusions in the Volume of Synthetic Diamonds at High Pressure and High Temperature in the Temperature Gradient Field
Authors: P. I. Yachevskaya, S. A. Terentiev, M. S. Kuznetsov
Abstract:
Several synthetic HPHT diamonds with metal inclusions have been studied. To have possibility of investigate the movement and transformation of the inclusions in the volume of the diamond the samples parallele-piped like shape has been made out of diamond crystals. The calculated value of temperature gradient in the samples of diamond which was placed in high-pressure cell was about 5-10 grad/mm. Duration of the experiments was in range 2-16 hours. All samples were treated several times. It has been found that the volume (dimensions) of inclusions, temperature, temperature gradient and the crystallographic orientation of the samples in the temperature field affects the movement speed of inclusions. Maximum speed of inclusions’ movement reached a value 150 µm/h.Keywords: diamond, inclusions, temperature gradient, HPHT
Procedia PDF Downloads 5105989 A Review: Recycled Materials Used in Construction
Authors: Oghenerukome Akponovo, Lynda I. Onyebuchukwu
Abstract:
Construction waste, along with that of many other industries, contributes significantly to the world's annual solid waste totals. Most of these materials, such as ash from rice hulls, slags, cement kiln dust, tire ash, plastic waste (PW), and silica fumes, end up in landfills or waterways. Some of them might even end up polluting the air from high in the atmosphere. It's sustainable, cheap, and environmentally friendly to recycle these items into new building supplies. When constructing a "Green" structure, the materials employed have the potential to either exacerbate environmental imbalance or maintain a stable ecosystem. The purpose of this research is to take stock of what is already known about recycling's potential in the construction industry and to identify its deficiencies. Therefore, this study systematically reviews the wide range of recycled materials that go into building construction. Recognizing that the construction industry's use of recycled materials has an influence on the environment and that investigating these materials may have a substantial economic impact if they were discoveredKeywords: building, construction, recycled materials, waste management
Procedia PDF Downloads 1075988 The Reliability and Shape of the Force-Power-Velocity Relationship of Strength-Trained Males Using an Instrumented Leg Press Machine
Authors: Mark Ashton Newman, Richard Blagrove, Jonathan Folland
Abstract:
The force-velocity profile of an individual has been shown to influence success in ballistic movements, independent of the individuals' maximal power output; therefore, effective and accurate evaluation of an individual’s F-V characteristics and not solely maximal power output is important. The relatively narrow range of loads typically utilised during force-velocity profiling protocols due to the difficulty in obtaining force data at high velocities may bring into question the accuracy of the F-V slope along with predictions pertaining to the maximum force that the system can produce at a velocity of null (F₀) and the theoretical maximum velocity against no load (V₀). As such, the reliability of the slope of the force-velocity profile, as well as V₀, has been shown to be relatively poor in comparison to F₀ and maximal power, and it has been recommended to assess velocity at loads closer to both F₀ and V₀. The aim of the present study was to assess the relative and absolute reliability of an instrumented novel leg press machine which enables the assessment of force and velocity data at loads equivalent to ≤ 10% of one repetition maximum (1RM) through to 1RM during a ballistic leg press movement. The reliability of maximal and mean force, velocity, and power, as well as the respective force-velocity and power-velocity relationships and the linearity of the force-velocity relationship, were evaluated. Sixteen male strength-trained individuals (23.6 ± 4.1 years; 177.1 ± 7.0 cm; 80.0 ± 10.8 kg) attended four sessions; during the initial visit, participants were familiarised with the leg press, modified to include a mounted force plate (Type SP3949, Force Logic, Berkshire, UK) and a Micro-Epsilon WDS-2500-P96 linear positional transducer (LPT) (Micro-Epsilon, Merseyside, UK). Peak isometric force (IsoMax) and a dynamic 1RM, both from a starting position of 81% leg length, were recorded for the dominant leg. Visits two to four saw the participants carry out the leg press movement at loads equivalent to ≤ 10%, 30%, 50%, 70%, and 90% 1RM. IsoMax was recorded during each testing visit prior to dynamic F-V profiling repetitions. The novel leg press machine used in the present study appears to be a reliable tool for measuring F and V-related variables across a range of loads, including velocities closer to V₀ when compared to some of the findings within the published literature. Both linear and polynomial models demonstrated good to excellent levels of reliability for SFV and F₀ respectively, with reliability for V₀ being good using a linear model but poor using a 2nd order polynomial model. As such, a polynomial regression model may be most appropriate when using a similar unilateral leg press setup to predict maximal force production capabilities due to only a 5% difference between F₀ and obtained IsoMax values with a linear model being best suited to predict V₀.Keywords: force-velocity, leg-press, power-velocity, profiling, reliability
Procedia PDF Downloads 585987 Influence of Confined Acoustic Phonons on the Shubnikov – de Haas Magnetoresistance Oscillations in a Doped Semiconductor Superlattice
Authors: Pham Ngoc Thang, Le Thai Hung, Nguyen Quang Bau
Abstract:
The influence of confined acoustic phonons on the Shubnikov – de Haas magnetoresistance oscillations in a doped semiconductor superlattice (DSSL), subjected in a magnetic field, DC electric field, and a laser radiation, has been theoretically studied based on quantum kinetic equation method. The analytical expression for the magnetoresistance in a DSSL has been obtained as a function of external fields, DSSL parameters, and especially the quantum number m characterizing the effect of confined acoustic phonons. When m goes to zero, the results for bulk phonons in a DSSL could be achieved. Numerical calculations are also achieved for the GaAs:Si/GaAs:Be DSSL and compared with other studies. Results show that the Shubnikov – de Haas magnetoresistance oscillations amplitude decrease as the increasing of phonon confinement effect.Keywords: Shubnikov–de Haas magnetoresistance oscillations, quantum kinetic equation, confined acoustic phonons, laser radiation, doped semiconductor superlattices
Procedia PDF Downloads 3175986 Modeling of Transformer Winding for Transients: Frequency-Dependent Proximity and Skin Analysis
Authors: Yazid Alkraimeen
Abstract:
Precise prediction of dielectric stresses and high voltages of power transformers require the accurate calculation of frequency-dependent parameters. A lack of accuracy can result in severe damages to transformer windings. Transient conditions is stuided by digital computers, which require the implementation of accurate models. This paper analyzes the computation of frequency-dependent skin and proximity losses included in the transformer winding model, using analytical equations and Finite Element Method (FEM). A modified formula to calculate the proximity and the skin losses is presented. The results of the frequency-dependent parameter calculations are verified using the Finite Element Method. The time-domain transient voltages are obtained using Numerical Inverse Laplace Transform. The results show that the classical formula for proximity losses is overestimating the transient voltages when compared with the results obtained from the modified method on a simple transformer geometry.Keywords: fast front transients, proximity losses, transformer winding modeling, skin losses
Procedia PDF Downloads 1395985 Weighted Rank Regression with Adaptive Penalty Function
Authors: Kang-Mo Jung
Abstract:
The use of regularization for statistical methods has become popular. The least absolute shrinkage and selection operator (LASSO) framework has become the standard tool for sparse regression. However, it is well known that the LASSO is sensitive to outliers or leverage points. We consider a new robust estimation which is composed of the weighted loss function of the pairwise difference of residuals and the adaptive penalty function regulating the tuning parameter for each variable. Rank regression is resistant to regression outliers, but not to leverage points. By adopting a weighted loss function, the proposed method is robust to leverage points of the predictor variable. Furthermore, the adaptive penalty function gives us good statistical properties in variable selection such as oracle property and consistency. We develop an efficient algorithm to compute the proposed estimator using basic functions in program R. We used an optimal tuning parameter based on the Bayesian information criterion (BIC). Numerical simulation shows that the proposed estimator is effective for analyzing real data set and contaminated data.Keywords: adaptive penalty function, robust penalized regression, variable selection, weighted rank regression
Procedia PDF Downloads 4765984 A Spectrophotometric Method for the Determination of Folic Acid - A Vitamin B9 in Pharmaceutical Dosage Samples
Authors: Chand Pasha, Yasser Turki Alharbi, Krasamira Stancheva
Abstract:
A simple spectrophotometric method for the determination of folic acid in pharmaceutical dosage samples was developed. The method is based on the diazotization reaction of thiourea with sodium nitrite in acidic medium yields diazonium compounds, which is then coupled with folic acid in basic medium yields yellow coloured azo dyes. Beer’s Lamberts law is observed in the range 0.5 – 16.2 μgmL-1 at a maximum wavelength of 416nm. The molar absorbtivity, sandells sensitivity, linear regression equation and detection limit and quantitation limit were found to be 5.695×104 L mol-1cm-1, 7.752×10-3 g cm-2, y= 0.092x - 0.018, 0.687 g mL-1 and 2.083 g mL-1. This method successfully determined Folate in Pharmaceutical formulations.Keywords: folic acid determination, spectrophotometry, diazotization, thiourea, pharmaceutical dosage samples
Procedia PDF Downloads 765983 Numerical Study for Examination of Flow Characteristics in Fractured Gas Reservoirs
Authors: M. K. Kim, C. H. Shin, W. G. Park
Abstract:
Recently, natural gas resources are issued due to alternative and eco-friendly energy policies, and development of even unconventional gas resources including tight gas, coal bed methane and shale gas is being rapidly expanded from North America all over the world. For developing these gas reservoirs, it is necessary to investigate reservoir characteristics by using reservoir simulation. In reservoir simulation, calculation of permeability of fractured zone is very important to predict the gas production. However, it is difficult to accurately calculate the permeability by using conventional methods which use analytic solution for laminar flow. The flow in gas reservoirs exhibits complex flow behavior such as slip around the wall roughness effect and turbulence because the size of the apertures of fractures is ranged over various scales from nano-scale to centi-scale. Therefore, it is required to apply new reservoir flow analysis methods which can accurately consider complex gas flow owing to the geometric characteristics and distributions of various pores and flow paths within gas reservoirs. Hence, in this study, the flow characteristics and the relation between each characteristic variable was investigated and multi-effect was quantified when the fractures are compounded for devising a new calculation model of permeability of fractured zone in gas reservoirs by using CFD.Keywords: fractured zone, gas reservoir, permeability, CFD
Procedia PDF Downloads 251