Search results for: waste sustainability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4874

Search results for: waste sustainability

1154 Software-Defined Architecture and Front-End Optimization for DO-178B Compliant Distance Measuring Equipment

Authors: Farzan Farhangian, Behnam Shakibafar, Bobda Cedric, Rene Jr. Landry

Abstract:

Among the air navigation technologies, many of them are capable of increasing aviation sustainability as well as accuracy improvement in Alternative Positioning, Navigation, and Timing (APNT), especially avionics Distance Measuring Equipment (DME), Very high-frequency Omni-directional Range (VOR), etc. The integration of these air navigation solutions could make a robust and efficient accuracy in air mobility, air traffic management and autonomous operations. Designing a proper RF front-end, power amplifier and software-defined transponder could pave the way for reaching an optimized avionics navigation solution. In this article, the possibility of reaching an optimum front-end to be used with single low-cost Software-Defined Radio (SDR) has been investigated in order to reach a software-defined DME architecture. Our software-defined approach uses the firmware possibilities to design a real-time software architecture compatible with a Multi Input Multi Output (MIMO) BladeRF to estimate an accurate time delay between a Transmission (Tx) and the reception (Rx) channels using the synchronous scheduled communication. We could design a novel power amplifier for the transmission channel of the DME to pass the minimum transmission power. This article also investigates designing proper pair pulses based on the DO-178B avionics standard. Various guidelines have been tested, and the possibility of passing the certification process for each standard term has been analyzed. Finally, the performance of the DME was tested in the laboratory environment using an IFR6000, which showed that the proposed architecture reached an accuracy of less than 0.23 Nautical mile (Nmi) with 98% probability.

Keywords: avionics, DME, software defined radio, navigation

Procedia PDF Downloads 79
1153 Farmers' Perspective on Soil Health in the Indian Punjab: A Quantitative Analysis of Major Soil Parameters

Authors: Sukhwinder Singh, Julian Park, Dinesh Kumar Benbi

Abstract:

Although soil health, which is recognized as one of the key determinants of sustainable agricultural development, can be measured by a range of physical, chemical and biological parameters, the widely used parameters include pH, electrical conductivity (EC), organic carbon (OC), plant available phosphorus (P) and potassium (K). Soil health is largely affected by the occurrence of natural events or human activities and can be improved by various land management practices. A database of 120 soil samples collected from farmers’ fields spread across three major agro-climatic zones of Punjab suggested that the average pH, EC, OC, P and K was 8.2 (SD = 0.75, Min = 5.5, Max = 9.1), 0.27 dS/m (SD = 0.17, Min = 0.072 dS/m, Max = 1.22 dS/m), 0.49% (SD = 0.20, Min = 0.06%, Max = 1.2%), 19 mg/kg soil (SD = 22.07, Min = 3 mg/kg soil, Max = 207 mg/kg soil) and 171 mg/kg soil (SD = 47.57, Min = 54 mg/kg soil, Max = 288 mg/kg soil), respectively. Region-wise, pH, EC and K were the highest in south-western district of Ferozpur whereas farmers in north-eastern district of Gurdaspur had the best soils in terms of OC and P. The soils in the central district of Barnala had lower OC, P and K than the respective overall averages while its soils were normal but skewed towards alkalinity. Besides agro-climatic conditions, the size of landholding and farmer education showed a significant association with Soil Fertility Index (SFI), a composite index calculated using the aforementioned parameters’ normalized weightage. All the four stakeholder groups cited the current cropping patterns, burning of rice crop residue, and imbalanced use of chemical fertilizers for change in soil health. However, the current state of soil health in Punjab is unclear, which needs further investigation based on temporal data collected from the same field to see the short and long-term impacts of various crop combinations and varied cropping intensity levels on soil health.

Keywords: soil health, punjab agriculture, sustainability, soil fertility index

Procedia PDF Downloads 362
1152 Strategic Management Education: A Driver of Architectural Career Development in a Changing Environment

Authors: Rigved Chandrashekhar Nimkhedkar, Rajat Agrawal, Vinay Sharma

Abstract:

Architects need help with a demand for an expanded skill set to effectively navigate a landscape of evolving opportunities and challenges in the dynamic realm of the architectural profession. This literature and survey-based study investigates the reasons behind architects’ choices of careers, as well as the effects of the evolving architectural scenario. The traditional role of architects in construction projects evolves as they explore diverse career motivations, face financial constraints due to an oversupply of professionals, and experience specialisation and upskilling trends. Architects inherently derive numerous value chains as more and more disciplines have been introduced into the design-construction-operation supply chain. This insight emphasizes the importance of integrating management and entrepreneurial education into architectural education rather than keeping them separate entities. The study reveals the complex nature of the entrepreneurially challenging architectural profession, including cash flow management, market competition, environmental sustainability, and innovation opportunities. Loyal to their professional identity, architects express dissatisfaction while envisioning a future in which they play a more significant role in shaping reputable brands and contributing to education. The study emphasizes the importance of dovetailing management and entrepreneurial education in architecture education in preparing graduates for the industry’s changing nature, emphasising the need for real-world skills. This research contributes insights into the architectural profession’s transformative trajectory, emphasising adaptability, upskilling, and educational enhancements as critical success factors.

Keywords: architects, career path, education, management, specialisation

Procedia PDF Downloads 66
1151 Assessing Native Plant Presence and Maintenance Resource Allocations in New Zealand Backyards: A Nationwide Online Questionnaire

Authors: Megan Burfoot, Shanta Budha-Magar, Ali Ghaffarianhoseini, Amirhoseini Ghaffarianhoseini

Abstract:

Domestic backyards offer a valuable opportunity to contribute to biodiversity conservation efforts and promote ecological sustainability by cultivating native plant species. This study focuses on assessing the presence and maintenance of native plants in New Zealand's residential gardens through an online questionnaire. The survey was designed to collect data on the presence of native, exotic, and lawn plants in New Zealand backyards, alongside the allocation of maintenance resources for each category. Targeting a diverse range of residents and property sizes from different regions of New Zealand, this study sought to gain essential insights into practices related to native plant cultivation. Results reveal there is a collective inclination to reduce lawn coverage and introduce a higher abundance of native and exotic species. A thorough analysis of maintenance practices reveals a significant portion of respondents embracing environmentally friendly gardening, characterized by low-intensity fertilizer usage. Homeowners, especially those residing in their properties, demonstrate proactive engagement in backyard maintenance. Native plants were found to require more time, money and fertilizer for maintenance than those of exotic and lawn species. The insights gained from this study can guide targeted efforts to enhance urban biodiversity, making a significant contribution to the preservation and enrichment of New Zealand's unique biodiversity and ecological heritage in urban settings.

Keywords: biodiversity, backyards, planting behaviour, backyard maintenance, native planting

Procedia PDF Downloads 69
1150 Effect of Printing Process on Mechanical Properties of Interface between 3D Printed Concrete Strips

Authors: Wei Chen, Jinlong Pan

Abstract:

3D concrete printing technology is a novel and highly efficient construction method that holds significant promise for advancing low-carbon initiatives within the construction industry. In contrast to traditional construction practices, 3D printing offers a manual and formwork-free approach, resulting in a transformative shift in labor requirements and fabrication techniques. This transition yields substantial reductions in carbon emissions during the construction phase, as well as decreased on-site waste generation. Furthermore, when compared to conventionally printed concrete, 3D concrete exhibits mechanical anisotropy due to its layer-by-layer construction methodology. Therefore, it becomes imperative to investigate the influence of the printing process on the mechanical properties of 3D printed strips and to optimize the mechanical characteristics of these coagulated strips. In this study, we conducted three-dimensional reconstructions of printed blocks using both circular and directional print heads, incorporating various overlap distances between strips, and employed CT scanning for comprehensive analysis. Our research focused on assessing mechanical properties and micro-pore characteristics under different loading orientations. Our findings reveal that increasing the overlap degree between strips leads to enhanced mechanical properties of the strips. However, it's noteworthy that once full overlap is achieved, further increases in the degree of coincidence do not lead to a decrease in porosity between strips. Additionally, due to its superior printing cross-sectional area, the square printing head exhibited the most favorable impact on mechanical properties.

Keywords: 3D printing concrete, mechanical anisotropy, micro-pore structure, printing technology

Procedia PDF Downloads 94
1149 A Glycerol-Free Process of Biodiesel Production through Chemical Interesterification of Jatropha Oil

Authors: Ratna Dewi Kusumaningtyas, Riris Pristiyani, Heny Dewajani

Abstract:

Biodiesel is commonly produced via the two main routes, i.e. the transesterification of triglycerides and the esterification of free fatty acid (FFA) using short-chain alcohols. Both the two routes have drawback in term of the side product yielded during the reaction. Transesterification reaction of triglyceride results in glycerol as side product. On the other hand, FFA esterification brings in water as side product. Both glycerol and water in the biodiesel production are managed as waste. Hence, a separation process is necessary to obtain a high purity biodiesel. Meanwhile, separation processes is generally the most capital and energy intensive part in industrial process. Therefore, to reduce the separation process, it is essential to produce biodiesel via an alternative route eliminating glycerol or water side-products. In this work, biodiesel synthesis was performed using a glycerol-free process through chemical interesterification of jatropha oil with ethyl acetate in the presence on sodium acetate catalyst. By using this method, triacetine, which is known as fuel bio-additive, is yielded instead of glycerol. This research studied the effects of catalyst concentration on the jatropha oil interesterification process in the range of 0.5 – 1.25% w/w oil. The reaction temperature and molar ratio of oil to ethyl acetate were varied at 50, 60, and 70°C, and 1:6, 1:9, 1:15, 1:30, and 1:60, respectively. The reaction time was evaluated from 0 to 8 hours. It was revealed that the best yield was obtained with the catalyst concentration of 0.5%, reaction temperature of 70 °C, molar ratio of oil to ethyl acetate at 1:60, at 6 hours reaction time.

Keywords: biodiesel, interesterification, glycerol-free, triacetine, jatropha oil

Procedia PDF Downloads 425
1148 Identification of Environmental Damage Due to Mining Area Bangka Islands in Indonesia

Authors: Aroma Elmina Martha

Abstract:

Environment affects the continuity of life and human well-being and the bodies of other living. Environmental quality is very closely related to the quality of life. Sustainability must be protected from damage due to the use of natural resources, such as tin mining in Bangka island. This research is a descriptive study, which identifies the environmental damage caused by mining land and sea in Bangka district. The approach used is juridical, social and economic. The study uses primary legal materials, secondary, and tertiary, equipped with field research. The analysis technique used is qualitative analysis. The impacts of mining on land among other physical and chemical damage, erosion and widening the depth of the river, a pool of micro-climate, the quality and feasibility, vegetation, wildlife and biodiversity, land values, social and economic. This mining causes damage to the soil structure, and puddles in the former digs which were not backfilled again. The impact of mining on the ocean such as changes in current surge, erosion and abrasion basic coastal waters, shoreline change, marine water quality changes, and changes in marine communities. The findings of the research show that tin mining in the sea also potentially have a significant impact on the life of the reef, populations of marine organisms. However, mining on land needs to consider the impact of the damage, so that the damage can be minimized. In the recovery process needs to be pursued by exploiting the rest of the pile of tin. Thus, mining activities should take into account the distance of beach sediment size, wave height, wave length, wave period, and the acceleration of gravity. The process of the tin washing should be done in a fairly safe area, thus avoiding damage to the coral reefs that will eventually reduce the population of marine life.

Keywords: abration, environmental damage, mining, shoreline

Procedia PDF Downloads 322
1147 A Study on Employer Branding and Its Impact on Employee

Authors: Kvnkc Sharma

Abstract:

Globalization, coupled with increase in competition is compelling organizations to adopt innovative strategies and identify core competencies in order to distinguish themselves from the competition. The capability of an organization is no longer determined by their products or services alone. The intellectual assets and quality of the human resource are fast emerging as key differentiators. Corporations are now positioning themselves as ‘brands’ not solely to market their products and services, but also to lure and to retain the best talent in the business. This paper identifies leadership as the ‘key element’ in developing an organization’s brand, which has a significant influence on the employee’s eventual perception of this external brand as portrayed by the organization. External branding incorporates innovation, consumer concern, trust, quality and sustainability. The paper contends that employees are indeed an organization’s ‘brand ambassadors. Internal branding involves taking care of these ambassadors of corporate brand i.e. human resource. If employees of an organization are not exposed to the organization’s branding (an ongoing process that functionally aligns, motivates and empower employees at all levels to consistently provide a satisfying customer experience), the external brand could be jeopardized. Internal branding, on the other hand, refers to employee’s perception of the organization’s brand. The current business environment can at best, be termed as volatile. Employees with the right technical and behavioral skills remain a scarce resource and the employers need to be ready to capture the attention, interest and commitment of the best and brightest candidates. This paper attempts to review and understand the relationship between employer branding and employee retention. The paper also seeks to identify potential impact of employer branding across all the factors affecting employees.

Keywords: external branding, human resource, internal branding, leadership

Procedia PDF Downloads 248
1146 Exploring the Potential of Phase Change Materials in Construction Environments

Authors: A. Ait Ahsene F., B. Boughrara S.

Abstract:

The buildings sector accounts for a significant portion of global energy consumption, with much of this energy used to heat and cool indoor spaces. In this context, the integration of innovative technologies such as phase change materials (PCM) holds promising potential to improve the energy efficiency and thermal comfort of buildings. This research topic explores the benefits and challenges associated with the use of PCMs in buildings, focusing on their ability to store and release thermal energy to regulate indoor temperature. We investigated the different types of PCM available, their thermal properties, and their potential applications in various climate zones and building types. To evaluate and compare the performance of PCMs, our methodology includes a series of laboratory and field experiments. In the laboratory, we measure the thermal storage capacity, melting and solidification temperatures, latent heat, and thermal conductivity of various PCMs. These measurements make it possible to quantify the capacity of each PCM to store and release thermal energy, as well as its capacity to transfer this energy through the construction materials. Additionally, field studies are conducted to evaluate the performance of PCMs in real-world environments. We install PCM systems in real buildings and monitor their operation over time, measuring energy savings, occupant thermal comfort, and material durability. These empirical data allow us to compare the effectiveness of different types of PCMs under real-world use conditions. By combining the results of laboratory and field experiments, we provide a comprehensive analysis of the advantages and limitations of PCMs in buildings, as well as recommendations for their effective application in practice.

Keywords: energy saving, phase change materials, material sustainability, buildings sector

Procedia PDF Downloads 41
1145 Building Information Modelling Based Value for Money Assessment in Public-Private Partnership

Authors: Guoqian Ren, Haijiang Li, Jisong Zhang

Abstract:

Over the past 40 years, urban development has undergone large-scale, high-speed expansion, beyond what was previously considered normal and in a manner not proportionally related to population growth or physical considerations. With more scientific and refined decision-making in the urban construction process, new urbanization approaches, aligned with public-private partnerships (PPPs) which evolved in the early 1990s, have become acceptable and, in some situations, even better solutions to outstanding urban municipal construction projects, especially in developing countries. However, as the main driving force to deal with urban public services, PPPs are still problematic regarding value for money (VFM) process in most large-scale construction projects. This paper therefore reviews recent PPP articles in popular project management journals and relevant toolkits, published in the last 10 years, to identify the indicators that influence VFM within PPPs across regions. With increasing concerns about profitability and environmental and social impacts, the current PPP structure requires a more integrated platform to manage multi-performance project life cycles. Building information modelling (BIM), a popular approach to the procurement process in AEC sectors, provides the potential to ensure VFM while also working in tandem with the semantic approach to holistically measure life cycle costs (LCC) and achieve better sustainability. This paper suggests that BIM applied to the entire PPP life cycle could support holistic decision-making regarding VFM processes and thus meet service targets.

Keywords: public-private partnership, value for money, building information modelling, semantic approach

Procedia PDF Downloads 209
1144 Identification and Characterization of Groundwater Recharge Sites in Kuwait

Authors: Dalal Sadeqi

Abstract:

Groundwater is an important component of Kuwait’s water resources. Although limited in quantity and often poor in quality, the significance of this natural source of water cannot be overemphasized. Recharge of groundwater in Kuwait occurs during periodical storm events, especially in open desert areas. Runoff water dissolves accumulated surficial meteoric salts and subsequently leaches them into the groundwater following a period of evaporative enrichment at or near the soil surface. Geochemical processes governing groundwater recharge vary in time and space. Stable isotope (18O and 2H) and geochemical signatures are commonly used to gain some insight into recharge processes and groundwater salinization mechanisms, particularly in arid and semiarid regions. This article addresses the mechanism used in identifying and characterizing the main water shed areas in Kuwait using stable isotopes in an attempt to determine favorable groundwater recharge sites in the country. Stable isotopes of both rainwater and groundwater were targeted in different hydrogeological settings. Additionally, data and information obtained from subsurface logs in the study area were collected and analyzed to develop a better understanding of the lateral and vertical extent of the groundwater aquifers. Geographic Information System (GIS) and RockWorks 3D modelling software were used to map out the hydrogeomorphology of the study area and the subsurface lithology of the investigated aquifers. The collected data and information, including major ion chemistry, isotopes, subsurface characteristics, and hydrogeomorphology, were integrated in a GIS platform to identify and map out suitable natural recharge areas as part of an integrated water resources management scheme that addresses the challenges of the sustainability of the groundwater reserves in the country.

Keywords: scarcity, integrated, recharge, isotope

Procedia PDF Downloads 115
1143 Initiative Strategies on How to Increase Value Add of the Recycling Business

Authors: Yananda Siraphatthada

Abstract:

The current study was the succession of a previous study on value added of recycling business management. Its aims are to 1) explore conditions on how to increasing value add of Thai recycling business, and 2) exam the implementation of the 3-staged plan (short, medium, and long term), suggested by the former study, to increase value added of the recycling business as immediate mechanisms to accelerate government operation. Quantitative and qualitative methods were utilized in this research. A qualitative research consisted of in-depth interviews and focus group discussions. Responses were obtained from owners of the waste separation plants, and recycle shops, as well as officers in relevant governmental agencies. They were randomly selected via Quota Sampling. Data was analyzed via content analysis. The sample used for quantitative method consisted of 1,274 licensed recycling operators in eight provinces. The operators were randomly stratified via sampling method. Data were analyzed via descriptive statistics frequency, percentage, average (mean), and standard deviation. The study recommended three-staged plan: short, medium, and long terms. The plan included the development of logistics, the provision of quality market/plants, the amendment of recycling rules/regulation, the restructuring recycling business, the establishment of green-purchasing recycling center, support for the campaigns run by the International Green Purchasing Network (IGPN), conferences/workshops as a public forum to share insights among experts/concern people.

Keywords: strategies, value added, recycle, business

Procedia PDF Downloads 244
1142 Technical Non-Destructive Evaluation of Burnt Bridge at CH. 57+450 Along Abuja-Abaji-Lokoja Road, Nigeria

Authors: Abraham O. Olaniyi, Oluyemi Oke, Atilade Otunla

Abstract:

The structural performance of bridges decreases progressively throughout their service life due to many contributing factors (fatigue, carbonation, fire incidents etc.). Around the world, numerous bridges have attained their estimated service life and many have approached this limit. The structural integrity assessment of the burnt composite bridge located at CH57+450, Koita village along Abuja-Abaji-Lokoja road, Nigeria, is presented as a case study and shall be forthwith referred to as the 'Koita bridge' in this paper. From the technical evaluation, the residual compressive strength of the concrete piers was found to be below 16.0 N/mm2. This value is very low compared to the expected design value of 30.0 N/mm2. The pier capping beam at pier location 1 has a very low residual compressive strength. The cover to the reinforcement of certain capping beams has an outline of reinforcement which signifies poor concrete cover and the mean compressive strength is also less than 20.0 N/mm2. The steel girder indicated black colouration as a result of the fire incident without any significant structural defect like buckling or warping of the steel section. This paper reviews the structural integrity assessment and repair methodology of the Koita bridge; a composite bridge damaged by fire, highlighting the various challenges of limited obtainable guidance documents about the bridge. The objectives are to increase the understanding of processes and versatile equipment required to test and assess a fire-damaged bridge in order to improve the quality of structural appraisal and rehabilitation; thus, eliminating the prejudice associated with current visual inspection techniques.

Keywords: assessment, bridge, rehabilitation, sustainability

Procedia PDF Downloads 366
1141 Application of Electrochemical Impedance Spectroscopy to Monitor the Steel/Soil Interface During Cathodic Protection of Steel in Simulated Soil Solution

Authors: Mandlenkosi George Robert Mahlobo, Tumelo Seadira, Major Melusi Mabuza, Peter Apata Olubambi

Abstract:

Cathodic protection (CP) has been widely considered a suitable technique for mitigating corrosion of buried metal structures. Plenty of efforts have been made in developing techniques, in particular non-destructive techniques, for monitoring and quantifying the effectiveness of CP to ensure the sustainability and performance of buried steel structures. The aim of this study was to investigate the evolution of the electrochemical processes at the steel/soil interface during the application of CP on steel in simulated soil. Carbon steel was subjected to electrochemical tests with NS4 solution used as simulated soil conditions for 4 days before applying CP for a further 11 days. A previously modified non-destructive voltammetry technique was applied before and after the application of CP to measure the corrosion rate. Electrochemical impedance spectroscopy (EIS), in combination with mathematical modeling through equivalent electric circuits, was applied to determine the electrochemical behavior at the steel/soil interface. The measured corrosion rate was found to have decreased from 410 µm/yr to 8 µm/yr between days 5 and 14 because of the applied CP. Equivalent electrical circuits were successfully constructed and used to adequately model the EIS results. The modeling of the obtained EIS results revealed the formation of corrosion products via a mixed activation-diffusion mechanism during the first 4 days, while the activation mechanism prevailed in the presence of CP, resulting in a protective film. The x-ray diffraction analysis confirmed the presence of corrosion products and the predominant protective film corresponding to the calcareous deposit.

Keywords: carbon steel, cathodic protection, NS4 solution, voltammetry, EIS

Procedia PDF Downloads 64
1140 Advancing Sustainable Development in the Construction Industry: A Theoretical Framework for Integrating Sustainable Project Management

Authors: Francis Kwesi Bondinuba, Seidu Abdullah, Nelly Bondinuba

Abstract:

Purpose: The study proposes a theoretical framework for integrating sustainable project management in the construction sector, addressing the need for sustainable development practices. Methodology: The study adopts a theoretical approach by reviewing existing literature on sustainable development and project management in the construction industry. It analyses various concepts, theories, and frameworks to develop a comprehensive theoretical framework for integrating sustainable project management. Findings: The study emphasizes the importance of incorporating sustainable development practices into construction project management, focusing on collaboration, stakeholder engagement, and continuous improvement to achieve environmental conservation, social responsibility, and economic viability. Conclusion: Sustainable Project Management (SPM) in Ghana's construction industry is challenging due to lack of awareness, regulatory frameworks, financial constraints, and skill shortages, despite its benefits in promoting social inclusivity, job creation, and environmental resilience. Recommendation: The construction industry in Ghana should adopt a comprehensive approach involving local communities, government bodies, and environmental organizations. It should utilize green materials and technologies and effectively manage waste. Originality: This study presents a theoretical framework for sustainable project management in construction. It emphasizes collaboration and stakeholder engagement for long-term sustainable outcomes and considers environmental, social, and economic aspects.

Keywords: construction industry, theoretical framework, integration, project management, sustainable development

Procedia PDF Downloads 32
1139 Lateritic Soils from Ceara, Brazil: Sustainable Use in Constructive Blocks for Social Housing

Authors: Ivelise M. Strozberg, Juliana Sales Frota, Lucas de Oliveira Vale

Abstract:

The state of Ceara, located in the northeast region of Brazil, is abundant in lateritic soil which has been usually discarded due to its lack of agricultural potential while materials of similar nature have been used as constituents of housing constructive elements in many parts of the world, such as India and Portugal, for decades. Since many of the semi-arid housing conditions in the state of Ceara fail to meet the minimum criteria regarding comfort and safety requirements, this research proposed to study the Ceara lateritic soil and the possibility of its use as a sustainable building block constituent for social housings, collaborating to the improvement of the region living conditions. In order to achieve this objective, soil samples were collected from five different locations within the specific region, three of which presented lateritic nature, being characterized according to the Unified Soil Classification System and the MCT methodology, which is a Brazilian methodology developed during the 80’s that aimed to better describe and approach tropical soils, its characterization and behavior. Two of these samples were used to build two different miniature block prototypes, which were manually molded, heated at low temperatures -( < 300 ºC) in order to save energy and lessen the CO₂ high emission rate common in traditional burning methods- and then submitted to load tests. Among the soils tested, the one with the highest degree of laterization and greater presence of fines constituted the block with the best performance in terms of flexural strength tensions, presenting resistance gains when heated at increasing temperatures, which can indicate that this type of soil has potential towards being used as constructing material.

Keywords: constructive blocks, lateritic soil, MCT methodology, sustainability

Procedia PDF Downloads 126
1138 Green Public Procurement in Open Access and Traditional Journals: A Comparative Bibliometric Analysis

Authors: Alonso-Cañadas J., Galán-Valdivieso F., Saraite-Sariene L., García-Tabuyo M., Alonso-Morales N.

Abstract:

Green Public Procurement (GPP) has recently gained attention in the academic and policy arenas since climate change has shown the need to be addressed by both private companies and public entities. Such growing interest motivates this article, aiming to explore the most influential journals, publishers, categories, and topics, as well as the recent trends and future research lines in GPP. Based on the Web of Science database, 578 articles from 2004 to February 2022 devoted to GPP are analyzed using Bibliometrix, an R-tool to perform bibliometric analysis, and Google’s Big Query and Data Studio. This article introduces a variety of findings. First, the most influential journals by far are “Journal of Cleaner Production” and “Sustainability,” differing in that the latter is open access while the former publishes via traditional subscription. This result also occurs regarding the main publishers (Elsevier and MDPI). These features lead us to split the sample into open-access journals and traditional journals to deepen into the similarities and differences between them, confirming that traditional journals exhibit a higher degree of influence in the literature than their open-access counterparts in terms of the number of documents, number of citations and impact (according to the H index). Second, this research also highlights the recent emergence of green-related terms (sustainable, environment) and, parallelly, the increase in categorizing GPP papers in “green” WoS categories, particularly since 2019. Finally, a number of related topics are emerging and will lead the research, such as food security, infrastructures, and implementation barriers of GPP.

Keywords: bibliometric analysis, green public procurement, open access, traditional journals

Procedia PDF Downloads 104
1137 Biochar - A Multi-Beneficial and Cost-Effective Amendment to Clay Soil for Stormwater Runoff Treatment

Authors: Mohammad Khalid, Mariya Munir, Jacelyn Rice Boyaue

Abstract:

Highways are considered a major source of pollution to storm-water, and its runoff can introduce various contaminants, including nutrients, Indicator bacteria, heavy metals, chloride, and phosphorus compounds, which can have negative impacts on receiving waters. This study assessed the ability of biochar for contaminants removal and to improve the water holding capacity of soil biochar mixture. For this, ten commercially available biochar has been strategically selected. Lab scale batch testing was done at 3% and 6% by the weight of the soil to find the preliminary estimate of contaminants removal along with hydraulic conductivity and water retention capacity. Furthermore, from the above-conducted studies, six best performing candidate and an application rate of 6% has been selected for the column studies. Soil biochar mixture was filled in 7.62 cm assembled columns up to a fixed height of 76.2 cm based on hydraulic conductivity. A total of eight column experiments have been conducted for nutrient, heavy metal, and indicator bacteria analysis over a period of one year, which includes a drying as well as a deicing period. The saturated hydraulic conductivity was greatly improved, which is attributed to the high porosity of the biochar soil mixture. Initial data from the column testing shows that biochar may have the ability to significantly remove nutrients, indicator bacteria, and heavy metals. The overall study demonstrates that biochar could be efficiently applied with clay soil to improve the soil's hydraulic characteristics as well as remove the pollutants from the stormwater runoff.

Keywords: biochar, nutrients, indicator bacteria, storm-water treatment, sustainability

Procedia PDF Downloads 121
1136 The Effect of Wool Mulch on Plant Development in the Light of Soil Physical and Soil Biological Conditions

Authors: Katalin Juhos, Enikő Papdi, Flórián Kovács, Vasileios P. Vasileiadis, Andrea Veres

Abstract:

Mulching techniques can be a solution for better utilization of precipitation and irrigation water and for mitigating soil degradation and drought damages. Waste fibres as alternative biodegradable mulch materials are increasingly coming to the fore. The effect of wool mulch (WM) on water use efficiency of pepper seedlings were investigated in different soil types (sand, clay loam, peat) in a pot experiment. Two semi-field experiments were also set up to investigate the effect of WM-plant interaction on sweet pepper yield in comparison with agro-textile and straw mulches. Soil parameters (moisture, temperature, DHA, β-glucosidase enzymes, permanganate-oxidizable carbon) were measured during the growing season. The effect of WM on yield and biomass was more significant with less frequent irrigation and the greater the water capacity of soils. The microbiological activity was significantly higher in the presence of plants, because of the water retention of WM, the metabolic products of roots and the more balanced soil temperature caused by plants. On the sandy soil, the straw mulch had a significantly better effect on microbiological parameters and yields than the agro-textile and WM. WM is a sustainable practice for improving soil biological parameters and water use efficiency on soils with a higher water capacity.

Keywords: β-glucosidase, DHA enzyme activity; labile carbon, straw mulch; plastic mulch, evapotranspira-tion coefficient, soil temperature

Procedia PDF Downloads 76
1135 Decision-Making Strategies on Smart Dairy Farms: A Review

Authors: L. Krpalkova, N. O' Mahony, A. Carvalho, S. Campbell, G. Corkery, E. Broderick, J. Walsh

Abstract:

Farm management and operations will drastically change due to access to real-time data, real-time forecasting, and tracking of physical items in combination with Internet of Things developments to further automate farm operations. Dairy farms have embraced technological innovations and procured vast amounts of permanent data streams during the past decade; however, the integration of this information to improve the whole farm-based management and decision-making does not exist. It is now imperative to develop a system that can collect, integrate, manage, and analyse on-farm and off-farm data in real-time for practical and relevant environmental and economic actions. The developed systems, based on machine learning and artificial intelligence, need to be connected for useful output, a better understanding of the whole farming issue, and environmental impact. Evolutionary computing can be very effective in finding the optimal combination of sets of some objects and, finally, in strategy determination. The system of the future should be able to manage the dairy farm as well as an experienced dairy farm manager with a team of the best agricultural advisors. All these changes should bring resilience and sustainability to dairy farming as well as improving and maintaining good animal welfare and the quality of dairy products. This review aims to provide an insight into the state-of-the-art of big data applications and evolutionary computing in relation to smart dairy farming and identify the most important research and development challenges to be addressed in the future. Smart dairy farming influences every area of management, and its uptake has become a continuing trend.

Keywords: big data, evolutionary computing, cloud, precision technologies

Procedia PDF Downloads 189
1134 Application and Limitation of Heavy Metal Pollution Indicators in Coastal Environment of Pakistan

Authors: Noor Us Saher

Abstract:

Oceans and Marine areas have a great importance, mainly regarding food resources, fishery products and reliance of livelihood. Aquatic pollution is common due to the incorporation of various chemicals mainly entering from urbanization, industrial and commercial facilities, such as oil and chemical spills. Many hazardous wastes and industrial effluents contaminate the nearby areas and initiate to affect the marine environment. These contaminated conditions may become worse in those aquatic environments situated besides the world’s largest cities, which are hubs of various commercial activities. Heavy metal contamination is one of the most important predicaments for marine environments and during past decades this problem has intensified due to an increase in urbanization and industrialization. Coastal regions of Pakistan are facing severe threats from various organic and inorganic pollutants, especially the estuarine and coastal areas of Karachi city, the most populated and industrialized city situated along the coastline. Metal contamination causes severe toxicity in biota resulting the degradation of Marine environments and depletion of fishery resources and sustainability. There are several abiotic (air, water and sediment) and biotic (fauna and flora) indicators that indicate metal contamination. However, all these indicators have certain limitations and complexities, which delay their implementation for rehabilitation and conservation in the marine environment. The inadequate evidences have presented on this significant topic till the time and this study discussed metal pollution and its consequences along the marine environment of Pakistan. This study further helps in identification of possible hazards for the ecological system and allied resources for management strategies and decision making for sustainable approaches.

Keywords: coastal and estuarine environment, heavy metals pollution, pollution indicators, Pakistan

Procedia PDF Downloads 249
1133 Second Generation Biofuels: A Futuristic Green Deal for Lignocellulosic Waste

Authors: Nivedita Sharma

Abstract:

The global demand for fossil fuels is very high, but their use is not sustainable since its reserves are declining. Additionally, fossil fuels are responsible for the accumulation of greenhouse gases. The emission of greenhouse gases from the transport sector can be reduced by substituting fossil fuels by biofuels. Thus, renewable fuels capable of sequestering carbon dioxide are in high demand. Second‐generation biofuels, which require lignocellulosic biomass as a substrate and ultimately producing ethanol, fall largely in this category. Bioethanol is a favorable and near carbon-neutral renewable biofuel leading to reduction in tailpipe pollutant emission and improving the ambient air quality. Lignocellulose consists of three main components: cellulose, hemicellulose and lignin which can be converted to ethanol with the help of microbial enzymes. Enzymatic hydrolysis of lignocellulosic biomass in 1st step is considered as the most efficient and least polluting methods for generating fermentable hexose and pentose sugars which subsequently are fermented to power alcohol by yeasts in 2nd step of the process. In the present technology, a complete bioconversion process i.e. potential hydrolytic enzymes i.e. cellulase and xylanase producing microorganisms have been isolated from different niches, screened for enzyme production, identified using phenotyping and genotyping, enzyme production, purification and application of enzymes for saccharification of different lignocellulosic biomass followed by fermentation of hydrolysate to ethanol with high yield is to be presented in detail.

Keywords: cellulase, xylanase, lignocellulose, bioethanol, microbial enzymes

Procedia PDF Downloads 98
1132 Innovative Food Production and Food Consumption Entrepreneurship: a Recipe for Delivering Global Sustainable Goals in South Africa

Authors: Faith Samkange, Juliet Chipumuro, Henry Wanyama

Abstract:

Business development and entrepreneurship constitute a major part of economic and human development for many countries within the Southern Africa Development Communities (SADC). While a marked increase in entrepreneurship activity has been registered, more than 70% of these business enterprises are still failing particularly in their conceptual years. One of the major reasons for this failure is that project process trends have tended to be fragmented and linear in approach while focusing primarily on isolated articulation of development aspects such as marketing, operations, accounting and human resources management with limited integration. Given the complexity of environmental, economic and human development issues in the SADC region, a multi-disciplinary, transformative, systematic and coordinated approach towards entrepreneurship development may be a more useful approach. This paper develops a proposed conceptual framework for an innovative and sustainable food production and food consumption Agritech entrepreneurship project in the Eastern Cape Province of South Africa based on a systematic review of existing literature. A thematic analysis of the literature reviewed is applied to develop this theoretical contribution to knowledge. The conceptual framework will be tested in a research driven intervention project designed to improve the quality of life for marginalized indigenous African communities by addressing poverty alleviation, unemployment and gender inequality as stipulated in the global sustainable development goals by the United Nations in 2018.

Keywords: innovative entrepreneurship, sustainability, food production and consumption, marginalised communities, poverty alleviation

Procedia PDF Downloads 122
1131 Challenges of Sustainable Development of Small and Medium-Sized Enterprises in Georgia

Authors: Kharaishvili Eteri

Abstract:

The article highlights the importance of small and medium-sized enterprises in achieving the goals of sustainable development of the economy and increasing the well-being of the population. The opinion is put forward that it is necessary to adapt the activities of small and medium-sized firms in Georgia to sustainable business models. Therefore, it is important to identify the challenges that will ensure compliance with the goals and requirements of sustainable development of small and mediumsized enterprises. Objectives. The goal of the study is to reveal the challenges of sustainable development in small and medium-sized enterprises in Georgia and to develop recommendations for strategic development opportunities. Methodologies The challenges of sustainable development of small and medium-sized enterprises are investigated with the following methodology: bibliographic research of scientific works and reports of organizations is carried out; Based on the grouping of sustainable development goals, the performance indicators of these goals are studied; Differences with respect to the corresponding indicators of European countries are determined by the comparison method; The matrix scheme establishes the conditions and tools for sustainable development; Challenges of sustainable development are identified by factor analysis. Contributions Trends in the sustainable development of small and medium-sized enterprises are studied from the point of view of economic, social and environmental factors; To ensure sustainability, the conditions and tools for sustainable development are established (certified supply chains and global markets, allocation of financial resources necessary for sustainable development, proper public procurement, highly qualified workforce, etc.); Several main challenges have been identified in the sustainable development of small and medium-sized enterprises, including: limited internal resources; Institutional factors, especially vague and imperfect regulations, bureaucracy; low level of investments; Low level of qualification of human capital and others.

Keywords: small and medium-sized enterprises, sustainable development, conditions of sustainable development, strategic directions of sustainable development.

Procedia PDF Downloads 105
1130 The Impact of High Labour Turnover on Sustainable Housing Delivery in South Africa

Authors: Azola Agrienette Mayeza, Madifedile Thasi

Abstract:

Due to the contractual nature of jobs and employment opportunities in the construction industry and the seeming surplus of potential employees in South Africa, there is a little interest on the part of employers to put in place policies to retain experienced workers. Ironically these are the workers that the companies have expended significant resources on, in terms of training and capabilities development. The construction industry has been experiencing high materials wastages and health and safety issues to score very low on the sustainability agenda as regards resources management and safety. This study carried out an assessment of the poor retention of experienced workers in the construction industry on the capacity to deliver sustainable housing in South Africa. It highlights the economic, safety and resources conservation and other benefits accruable from a high retention of key employees to the South African construction industry towards the delivery of sustainable housing. It presents data that strongly support the hypothesis that high turnover of skilled employees as a result of the industry belief of zero incentive to retain employees beyond the contractual period, is responsible for the high wastages of resources in the industry and the safety issues. A high turnover of experienced employees in the construction industry was found to impact on the industry performance in terms of timely, cost effective and quality delivery of construction projects, particularly when measured against the government sustainable housing agenda. It also results in unplanned expenses required to train replacing employees during project executions as well as company goodwill which ultimately has a huge impact on sustainable housing delivery in South Africa.

Keywords: labour turnover, construction industry, sustainable housing, materials wastage, housing delivery, South Africa

Procedia PDF Downloads 370
1129 The Study of Tourism Destination Management Factors for Sustainable Tourism: Case Study of Haikou, Hainan Province

Authors: Jiaying Gao, Thammananya Sakcharoen, Wilailuk Niyommaneerat

Abstract:

Haikou is the capital of Hainan, a major tourism province in China with rich ecotourism resources. There is a need to strengthen tourism destination management in Haikou toward sustainable development as a tourism city. The purpose of this study was to investigate the relationship between tourism destination management and sustainable tourism in Haikou. Exploratory factor analysis was used to extract six dimensions of this study. Three dimensions (10 factors) of tourism destination management were analyzed in terms of economic development, social and cultural development, and conservation of ecosystem. Sustainability awareness, tourism development experience, and tourism public infrastructure in three dimensions (12 factors) of sustainable tourism. There were 426 questionnaire respondents, including 225 tourists, 172 residents, 12 tourism agency persons, 10 government persons, 3 self-employed, and 4 others. The Structural equation modeling (SEM) model was finally conducted to test the hypotheses empirically and explore the impact relationship. The study found a significant relationship between tourism destination management and sustainable tourism: social and cultural development had the greatest significant positive impact on the tourism development experience (0.788***). Social and cultural development also showed a significant positive impact and great impetus on tourism public infrastructure (0.561***). A negative effect relationship (-0.096***) emerged between ecosystem conversion and tourism development experience. It showed a positive relationship between economic development and social and cultural development of tourism destination management in promoting sustainable tourism. There are still some gaps for improvement, such as the need for sustainable ecological management to promote local sustainable tourism trends and enhance tourism experience development, which may require a long-term process of mitigation.

Keywords: Haikou (Hainan, China), influence relationship, sustainable tourism, tourism destination management

Procedia PDF Downloads 140
1128 A Study on Employer Branding and Its Impacts on Employee’s

Authors: KVNKC Sharma, Soujanya Pasumarthi

Abstract:

Globalization, coupled with increase in competition is compelling organizations to adopt innovative strategies and identify core competencies in order to distinguish themselves from the competition. The capability of an organization is no longer determined by their products or services alone. The intellectual assets and quality of the human resource are fast emerging as key differentiators. Corporations are now positioning themselves as ‘brands’ not solely to market their products and services, but also to lure and to retain the best talent in the business. This paper identifies leadership as the ‘key element’ in developing an organization’s brand, which has a significant influence on the employee’s eventual perception of this external brand as portrayed by the organization. External branding incorporates innovation, consumer concern, trust, quality and sustainability. The paper contends that employees are indeed an organization’s ‘brand ambassadors. Internal branding involves taking care of these ambassadors of corporate brand i.e. human resource. If employees of an organization are not exposed to the organization’s branding (an ongoing process that functionally aligns, motivates and empower employees at all levels to consistently provide a satisfying customer experience), the external brand could be jeopardized. Internal branding, on the other hand, refers to employee’s perception of the organization’s brand. The current business environment can at best, be termed as volatile. Employees with the right technical and behavioral skills remain a scarce resource and the employers need to be ready to capture the attention, interest and commitment of the best and brightest candidates. This paper attempts to review and understand the relationship between employer branding and employee retention. The paper also seeks to identify potential impact of employer branding across all the factors affecting employees.

Keywords: alignment, external branding, internal branding, leadership

Procedia PDF Downloads 303
1127 Integrated Dynamic Analysis of Semi-Submersible Flap Type Concept

Authors: M. Rafiur Rahman, M. Mezbah Uddin, Mohammad Irfan Uddin, M. Moinul Islam

Abstract:

With a rapid development of offshore renewable energy industry, the research activities in regards of harnessing power from offshore wind and wave energy are increasing day by day. Integration of wind turbines and wave energy converters into one combined semi-submersible platform might be a cost-economy and beneficial option. In this paper, the coupled integrated dynamic analysis in the time domain (TD) of a simplified semi-submersible flap type concept (SFC) is accomplished via state-of-the-art numerical code referred as Simo-Riflex-Aerodyn (SRA). This concept is a combined platform consisting of a semi-submersible floater supporting a 5 MW horizontal axis wind turbine (WT) and three elliptical shaped flap type wave energy converters (WECs) on three pontoons. The main focus is to validate the numerical model of SFC with experimental results and perform the frequency domain (FD) and TD response analysis. The numerical analysis is performed using potential flow theory for hydrodynamics and blade element momentum (BEM) theory for aerodynamics. A variety of environmental conditions encompassing the functional & survival conditions for short-term sea (1-hour simulation) are tested to evaluate the sustainability of the SFC. The numerical analysis is performed in full scale. Finally, the time domain analysis of heave, pitch & surge motions is performed numerically using SRA and compared with the experimental results. Due to the simplification of the model, there are some discrepancies which are discussed in brief.

Keywords: coupled integrated dynamic analysis, SFC, time domain analysis, wave energy converters

Procedia PDF Downloads 222
1126 Towards Printed Green Time-Temperature Indicator

Authors: Mariia Zhuldybina, Ahmed Moulay, Mirko Torres, Mike Rozel, Ngoc-Duc Trinh, Chloé Bois

Abstract:

To reduce the global waste of perishable goods, a solution for monitoring and traceability of their environmental conditions is needed. Temperature is the most controllable environmental parameter determining the kinetics of physical, chemical, and microbial spoilage in food products. To store the time-temperature information, time-temperature indicator (TTI) is a promising solution. Printed electronics (PE) has shown a great potential to produce customized electronic devices using flexible substrates and inks with different functionalities. We propose to fabricate a hybrid printed TTI using environmentally friendly materials. The real-time TTI profile can be stored and transmitted to the smartphone via Near Field Communication (NFC). To ensure environmental performance, Canadian Green Electronics NSERC Network is developing green materials for the ink formulation with different functionalities. In terms of substrate, paper-based electronics has gained the great interest for utilization in a wide area of electronic systems because of their low costs in setup and methodology, as well as their eco-friendly fabrication technologies. The main objective is to deliver a prototype of TTI using small-scale printed techniques under typical printing conditions. All sub-components of the smart labels, including a memristor, a battery, an antenna compatible with NFC protocol, and a circuit compatible with integration performed by an offsite supplier will be fully printed with flexography or flat-bed screen printing.

Keywords: NFC, printed electronics, time-temperature indicator, hybrid electronics

Procedia PDF Downloads 163
1125 Physical, Morphological, and Rheological Properties of Polypropylene Modified Bitumen

Authors: Nioushasadat Haji Seyed Javadi, Ailar Hajimohammadi, Nasser Khalili

Abstract:

The common method to improve the performance of asphalt binders is through modification. The utilization of recycled plastics for asphalt modification has been the subject of research studies due to their environmental and economic benefits over using commercial polymers. Polypropylene (PP) is one of the most available recycled plastics in Australia. Unlike other plastics, its contamination with other plastics during the recycling process is negligible. Therefore, the quality of recycled plastic is high, which makes it a good candidate for road construction applications. To assess its effectiveness for bitumen modification, three different grades of PP were selected. The PP grades were compared for blendability with bitumen, and the best suitable grade was chosen for further studies. The PP-modified bitumen and the base bitumen were then compared through physical and rheological properties. The stability of the PP-modified bitumen at elevated temperatures was measured, and the morphology of the samples before and after the storage stability was characterized by fluorescent microscopy. The results showed that PP had a significant influence on reducing the penetration and increasing the viscosity and the rutting resistance of the virgin bitumen. Storage stability test results indicated that the difference between the softening point of the top and bottom section of the tube sample is below the defined limit, which means the PP-modified bitumen is storage stable. However, the fluorescence microscopy results showed that the distribution of the PP particles in the bitumen matrix in the top and bottom sections of the tube are significantly different, which is an indicator of poor storage stability.

Keywords: polypropylene, waste plastic, bitumen, road pavements, storage stability, fluorescent microscopy, morphology

Procedia PDF Downloads 78