Search results for: panel data method
34890 A Study on Improvement of Straightness of Preform Pulling Process of Hollow Pipe by Finete Element Analysis Method
Authors: Yeon-Jong Jeong, Jun-Hong Park, Hyuk Choi
Abstract:
In this study, we have studied the design of intermediate die in multipass drawing. Research has been continuously studied because of the advantage of better dimensional accuracy, smooth surface and improved mechanical properties in the case of drawing. Among them, multipass drawing, which is a method to realize complicated shape by drawing, was discussed in this study. The most important factor in the multipass drawing is the dimensional accuracy and simplify the process. To accomplish this, a multistage shape drawing was performed using various intermediate die shape designs, and finite element analysis was performed.Keywords: FEM (Finite Element Method), multipass drawing, intermediate die, hollow pipe
Procedia PDF Downloads 31634889 Stabilization of the Bernoulli-Euler Plate Equation: Numerical Analysis
Authors: Carla E. O. de Moraes, Gladson O. Antunes, Mauro A. Rincon
Abstract:
The aim of this paper is to study the internal stabilization of the Bernoulli-Euler equation numerically. For this, we consider a square plate subjected to a feedback/damping force distributed only in a subdomain. An algorithm for obtaining an approximate solution to this problem was proposed and implemented. The numerical method used was the Finite Difference Method. Numerical simulations were performed and showed the behavior of the solution, confirming the theoretical results that have already been proved in the literature. In addition, we studied the validation of the numerical scheme proposed, followed by an analysis of the numerical error; and we conducted a study on the decay of the energy associated.Keywords: Bernoulli-Euler plate equation, numerical simulations, stability, energy decay, finite difference method
Procedia PDF Downloads 41634888 Optimization of a Method of Total RNA Extraction from Mentha piperita
Authors: Soheila Afkar
Abstract:
Mentha piperita is a medicinal plant that contains a large amount of secondary metabolite that has adverse effect on RNA extraction. Since high quality of RNA is the first step to real time-PCR, in this study optimization of total RNA isolation from leaf tissues of Mentha piperita was evaluated. From this point of view, we researched two different total RNA extraction methods on leaves of Mentha piperita to find the best one that contributes the high quality. The methods tested are RNX-plus, modified RNX-plus (1-5 numbers). RNA quality was analyzed by agarose gel 1.5%. The RNA integrity was also assessed by visualization of ribosomal RNA bands on 1.5% agarose gels. In the modified RNX-plus method (number 2), the integrity of 28S and 18S rRNA was highly satisfactory when analyzed in agarose denaturing gel, so this method is suitable for RNA isolation from Mentha piperita.Keywords: Mentha piperita, polyphenol, polysaccharide, RNA extraction
Procedia PDF Downloads 19034887 A Validated High-Performance Liquid Chromatography-UV Method for Determination of Malondialdehyde-Application to Study in Chronic Ciprofloxacin Treated Rats
Authors: Anil P. Dewani, Ravindra L. Bakal, Anil V. Chandewar
Abstract:
Present work demonstrates the applicability of high-performance liquid chromatography (HPLC) with UV detection for the determination of malondialdehyde as malondialdehyde-thiobarbituric acid complex (MDA-TBA) in-vivo in rats. The HPLC-UV method for MDA-TBA was achieved by isocratic mode on a reverse-phase C18 column (250mm×4.6mm) at a flow rate of 1.0mLmin−1 followed by UV detection at 278 nm. The chromatographic conditions were optimized by varying the concentration and pH followed by changes in percentage of organic phase optimal mobile phase consisted of mixture of water (0.2% Triethylamine pH adjusted to 2.3 by ortho-phosphoric acid) and acetonitrile in ratio (80:20 % v/v). The retention time of MDA-TBA complex was 3.7 min. The developed method was sensitive as limit of detection and quantification (LOD and LOQ) for MDA-TBA complex were (standard deviation and slope of calibration curve) 110 ng/ml and 363 ng/ml respectively. The method was linear for MDA spiked in plasma and subjected to derivatization at concentrations ranging from 100 to 1000 ng/ml. The precision of developed method measured in terms of relative standard deviations for intra-day and inter-day studies was 1.6–5.0% and 1.9–3.6% respectively. The HPLC method was applied for monitoring MDA levels in rats subjected to chronic treatment of ciprofloxacin (CFL) (5mg/kg/day) for 21 days. Results were compared by findings in control group rats. Mean peak areas of both study groups was subjected for statistical treatment to unpaired student t-test to find p-values. The p value was < 0.001 indicating significant results and suggesting increased MDA levels in rats subjected to chronic treatment of CFL of 21 days.Keywords: MDA, TBA, ciprofloxacin, HPLC-UV
Procedia PDF Downloads 32534886 A Study on the Effect of Socioeconomic Status on Adolescents' Health Promoting Behaviors: Mediating Effect of Family-Based Activity
Authors: Sue Lynn Kim, Sang-Gyun Lee, Joan P. Yoo
Abstract:
Although adolescents in low socioeconomic status (SES) have been reported to less engage in health promoting behaviors (HPB), the specific mechanism between their SES and HPB has not been extensively studied. Considering the Korean education system which focuses only on college entrance exams while lacking of interest in students’ health, and unique traits of adolescents, such as ego-centric thinking, family members can significantly contribute to develop and enhance adolescents’ HPB. Based on the review of related literature and previous researches, this study examined the mediating effect of family-based activities on the relationship between SES and adolescents' HPB. 636 adolescents (4th graders in elementary and 1st graders in middle school) and their parents from the 1st year survey of Seoul Education & Health Welfare Panel were analyzed by AMOS 19.0 utilizing structural equation modeling. Analytic results show that adolescents in low SES were less likely to engage in family-based activities as well as HPB. This association between SES and HPB was partially mediated by family-based activities. Based on the findings, we suggest that special education programs to enhance HPB should be required in schools and community organizations especially for adolescents in low SES who may have difficulties in doing family-based activities due to parents’ low income and insufficient leisure time. In addition, family-based activities should be encouraged to enhance HPB by raising parents' awareness about the importance of family-based activities on their children's HPB.Keywords: family-based activity, health promoting behaviors, socioeconomic status, HPB
Procedia PDF Downloads 38134885 Experimental and Theoratical Methods to Increase Core Damping for Sandwitch Cantilever Beam
Authors: Iyd Eqqab Maree, Moouyad Ibrahim Abbood
Abstract:
The purpose behind this study is to predict damping effect for steel cantilever beam by using two methods of passive viscoelastic constrained layer damping. First method is Matlab Program, this method depend on the Ross, Kerwin and Unger (RKU) model for passive viscoelastic damping. Second method is experimental lab (frequency domain method), in this method used the half-power bandwidth method and can be used to determine the system loss factors for damped steel cantilever beam. The RKU method has been applied to a cantilever beam because beam is a major part of a structure and this prediction may further leads to utilize for different kinds of structural application according to design requirements in many industries. In this method of damping a simple cantilever beam is treated by making sandwich structure to make the beam damp, and this is usually done by using viscoelastic material as a core to ensure the damping effect. The use of viscoelastic layers constrained between elastic layers is known to be effective for damping of flexural vibrations of structures over a wide range of frequencies. The energy dissipated in these arrangements is due to shear deformation in the viscoelastic layers, which occurs due to flexural vibration of the structures. The theory of dynamic stability of elastic systems deals with the study of vibrations induced by pulsating loads that are parametric with respect to certain forms of deformation. There is a very good agreement of the experimental results with the theoretical findings. The main ideas of this thesis are to find the transition region for damped steel cantilever beam (4mm and 8mm thickness) from experimental lab and theoretical prediction (Matlab R2011a). Experimentally and theoretically proved that the transition region for two specimens occurs at modal frequency between mode 1 and mode 2, which give the best damping, maximum loss factor and maximum damping ratio, thus this type of viscoelastic material core (3M468) is very appropriate to use in automotive industry and in any mechanical application has modal frequency eventuate between mode 1 and mode 2.Keywords: 3M-468 material core, loss factor and frequency, domain method, bioinformatics, biomedicine, MATLAB
Procedia PDF Downloads 27134884 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection
Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada
Abstract:
With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.Keywords: machine learning, imbalanced data, data mining, big data
Procedia PDF Downloads 13034883 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data
Authors: Gayathri Nagarajan, L. D. Dhinesh Babu
Abstract:
Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform
Procedia PDF Downloads 24134882 Analysis of the Suspension Rocker of Formula SAE Prototype by Finite Element Method
Authors: Jessyca A. Bessa, Darlan A. Barroso, Jonas P. Reges, Auzuir R. Alexandria
Abstract:
This work aims to study the rocker. This is a device of the suspension of Formula SAE vehicle that receives efforts from the motion scrolling of the vehicle and transmits them to the chassis frame minimized by a momentum ratio and smoothed by the set spring - damper. A review of parameters used in vehicle dynamics and a geometric analysis of the forces and stresses caused by such was carried out. The main function of the rocker is to reduce the force transmitted to the frame due to movement of rolling and subsequent application of the suspension. This functions is taken as satisfactory, since the force applied to the wheel and which would be transmitted to the chassis is reduced from 3833.9N to 3496.48N. From these values can be further more detailed simulations using the finite element method aimed at mass reduction or even rocker manufacturing feasibility aluminum. Then, the analysis by the finite element method was applied. This analysis uses the theory of discretization of systems and examines the strength of the component based on the distortion energy, determining the maximum straining experienced by the component and the region of higher demand.Keywords: rocker, suspension, the finite element method, mechatronics engineering
Procedia PDF Downloads 54134881 Assessment of Groundwater Quality in Kaltungo Local Government Area of Gombe State
Authors: Rasaq Bello, Grace Akintola Sunday, Yemi Sikiru Onifade
Abstract:
Groundwater is required for the continuity of life and sustainability of the ecosystem. Hence, this research was purposed to assess groundwater quality for domestic use in Kaltungo Local Government Area, Gombe State. The work was also aimed at determining the thickness and resistivity of the topsoil, areas suitable for borehole construction, quality and potentials of groundwater in the study area. The study area extends from latitude N10015’38” - E11008’01” and longitude N10019’29” - E11013’05”. The data was acquired using the Vertical Electrical Sounding (VES) method and processed using IP12win software. Twenty (20) Vertical Electrical Soundings were carried out with a maximum current electrode separation (AB) of 150m. The VES curves generated from the data reveal that all the VES points have five to six subsurface layers. The first layer has a resistivity value of 7.5 to 364.1 Ωm and a thickness ranging from 0.8 to 7.4m, and the second layer has a resistivity value of 1.8 to 600.3 Ωm thickness ranging from 2.6 to 31.4m, the third layer has resistivity value of 23.3 to 564.4 Ωm thickness ranging from 10.3 to 77.8m, the fourth layer has resistivity value of 19.7 to 640.2 Ωm thickness ranging from 8.2m to 120.0m, the fifth layer has resistivity value of 27 to 234 Ωm thickness ranging from 8.2 to 53.7m and the six-layer is the layer that extended beyond the probing depth. The VES curves generated from the data revealed KQHA curve type for VES 1, HKQQ curve for VES 4, HKQ curve for VES 5, KHA curve for VES 11, QQHK curve for VES 12, HAA curve for VES 6 and VES 19, HAKH curve for VES 7, VES 8, VES 10 and VES 18, HKH curve for VES 2, VES 3, VES 9, VES 13, VES 14, VES 15, VES 16, VES 17 and VES 20. Values of the Coefficient of Anisotropy, Reflection Coefficient, and Resistivity Contrast obtained from the Dar-Zarrouk parameters indicated good water prospects for all the VES points in this study, with VES points 4, 9 and 18 having the highest prospects for groundwater exploration.Keywords: formation parameters, groundwater, resistivity, resistivity contrast, vertical electrical sounding
Procedia PDF Downloads 5334880 Vegetables and Fruits Solar Tunnel Dryer for Small-Scale Farmers in Kassala
Authors: Sami Mohamed Sharif
Abstract:
The current study focuses on the design and construction of a solar tunnel dryer intended for small-scale farmers in Kassala, Sudan. To determine the appropriate dimensions of the dryer, the heat and mass balance equations are used, taking into account factors such as the target agricultural product, climate conditions, solar irradiance, and desired drying time. In Kassala, a dryer with a width of 88 cm, length of 600 cm, and height of 25 cm has been built, capable of drying up to 40 kg of vegetables or fruits. The dryer is divided into two chambers of different lengths. The air passing through is heated to the desired drying temperature in a separate heating chamber that is 200 cm long. From there, the heated air enters the drying chamber, which is 400 cm long. In this section, the agricultural product is placed on a slightly elevated net. The tunnel dryer was constructed using materials from the local market. The paper also examines the solar irradiance in Kassala, finding an average of 23.6 MJ/m2/day, with a maximum of 26.6 MJ/m2/day in April and a minimum of 20.2 MJ/m2/day in December. A DC fan powered by a 160Wp solar panel is utilized to circulate air within the tunnel. By connecting the fan and three 12V, 60W bulbs in series, four different speeds can be achieved using a speed controller. Temperature and relative humidity measurements were taken hourly over three days, from 10:00 a.m. to 3:00 p.m. The results demonstrate the promising technology and sizing techniques of solar tunnel dryers, which can significantly increase the temperature within the tunnel by more than 90%.Keywords: tunnel dryer, solar drying, moisture content, fruits drying modeling, open sun drying
Procedia PDF Downloads 5534879 Mobile Phones in Saudi Arabian EFL Classrooms
Authors: Srinivasa Rao Idapalapati, Manssour Habbash
Abstract:
As mobile connectedness continues to sweep across the landscape, the value of deploying mobile technology to the service of learning and teaching appears to be both self-evident and unavoidable. To this end, this study explores the reasons for the reluctance of teachers in Saudi Arabia to use mobiles in EFL (English as a Foreign Language) classes for teaching and learning purposes. The main objective of this study is a qualitative analysis of the responses of the views of the teachers at a university in Saudi Arabia about the use of mobile phones in classrooms for educational purposes. Driven by the hypothesis that the teachers in Saudi Arabian universities aren’t prepared well enough to use mobile phones in classrooms for educational purposes, this study examines the data obtained through a questionnaire provided to about hundred teachers working at a university in Saudi Arabia through convenient sampling method. The responses are analyzed by qualitative interpretive method and found that teachers and the students are in confusion whether to use mobiles, and need some training sessions on the use of mobile phones in classrooms for educational purposes. The outcome of the analysis is discussed in light of the concerns bases adoption model and the inferences are provided in a descriptive mode.Keywords: mobile assisted language learning, technology adoption, classroom instruction, concerns based adoption model
Procedia PDF Downloads 36434878 Optimal Scheduling for Energy Storage System Considering Reliability Constraints
Authors: Wook-Won Kim, Je-Seok Shin, Jin-O Kim
Abstract:
This paper propose the method for optimal scheduling for battery energy storage system with reliability constraint of energy storage system in reliability aspect. The optimal scheduling problem is solved by dynamic programming with proposed transition matrix. Proposed optimal scheduling method guarantees the minimum fuel cost within specific reliability constraint. For evaluating proposed method, the timely capacity outage probability table (COPT) is used that is calculated by convolution of probability mass function of each generator. This study shows the result of optimal schedule of energy storage system.Keywords: energy storage system (ESS), optimal scheduling, dynamic programming, reliability constraints
Procedia PDF Downloads 40734877 Landslide Susceptibility Analysis in the St. Lawrence Lowlands Using High Resolution Data and Failure Plane Analysis
Authors: Kevin Potoczny, Katsuichiro Goda
Abstract:
The St. Lawrence lowlands extend from Ottawa to Quebec City and are known for large deposits of sensitive Leda clay. Leda clay deposits are responsible for many large landslides, such as the 1993 Lemieux and 2010 St. Jude (4 fatalities) landslides. Due to the large extent and sensitivity of Leda clay, regional hazard analysis for landslides is an important tool in risk management. A 2018 regional study by Farzam et al. on the susceptibility of Leda clay slopes to landslide hazard uses 1 arc second topographical data. A qualitative method known as Hazus is used to estimate susceptibility by checking for various criteria in a location and determine a susceptibility rating on a scale of 0 (no susceptibility) to 10 (very high susceptibility). These criteria are slope angle, geological group, soil wetness, and distance from waterbodies. Given the flat nature of St. Lawrence lowlands, the current assessment fails to capture local slopes, such as the St. Jude site. Additionally, the data did not allow one to analyze failure planes accurately. This study majorly improves the analysis performed by Farzam et al. in two aspects. First, regional assessment with high resolution data allows for identification of local locations that may have been previously identified as low susceptibility. This then provides the opportunity to conduct a more refined analysis on the failure plane of the slope. Slopes derived from 1 arc second data are relatively gentle (0-10 degrees) across the region; however, the 1- and 2-meter resolution 2022 HRDEM provided by NRCAN shows that short, steep slopes are present. At a regional level, 1 arc second data can underestimate the susceptibility of short, steep slopes, which can be dangerous as Leda clay landslides behave retrogressively and travel upwards into flatter terrain. At the location of the St. Jude landslide, slope differences are significant. 1 arc second data shows a maximum slope of 12.80 degrees and a mean slope of 4.72 degrees, while the HRDEM data shows a maximum slope of 56.67 degrees and a mean slope of 10.72 degrees. This equates to a difference of three susceptibility levels when the soil is dry and one susceptibility level when wet. The use of GIS software is used to create a regional susceptibility map across the St. Lawrence lowlands at 1- and 2-meter resolutions. Failure planes are necessary to differentiate between small and large landslides, which have so far been ignored in regional analysis. Leda clay failures can only retrogress as far as their failure planes, so the regional analysis must be able to transition smoothly into a more robust local analysis. It is expected that slopes within the region, once previously assessed at low susceptibility scores, contain local areas of high susceptibility. The goal is to create opportunities for local failure plane analysis to be undertaken, which has not been possible before. Due to the low resolution of previous regional analyses, any slope near a waterbody could be considered hazardous. However, high-resolution regional analysis would allow for more precise determination of hazard sites.Keywords: hazus, high-resolution DEM, leda clay, regional analysis, susceptibility
Procedia PDF Downloads 7734876 Advancing the Analysis of Physical Activity Behaviour in Diverse, Rapidly Evolving Populations: Using Unsupervised Machine Learning to Segment and Cluster Accelerometer Data
Authors: Christopher Thornton, Niina Kolehmainen, Kianoush Nazarpour
Abstract:
Background: Accelerometers are widely used to measure physical activity behavior, including in children. The traditional method for processing acceleration data uses cut points, relying on calibration studies that relate the quantity of acceleration to energy expenditure. As these relationships do not generalise across diverse populations, they must be parametrised for each subpopulation, including different age groups, which is costly and makes studies across diverse populations difficult. A data-driven approach that allows physical activity intensity states to emerge from the data under study without relying on parameters derived from external populations offers a new perspective on this problem and potentially improved results. We evaluated the data-driven approach in a diverse population with a range of rapidly evolving physical and mental capabilities, namely very young children (9-38 months old), where this new approach may be particularly appropriate. Methods: We applied an unsupervised machine learning approach (a hidden semi-Markov model - HSMM) to segment and cluster the accelerometer data recorded from 275 children with a diverse range of physical and cognitive abilities. The HSMM was configured to identify a maximum of six physical activity intensity states and the output of the model was the time spent by each child in each of the states. For comparison, we also processed the accelerometer data using published cut points with available thresholds for the population. This provided us with time estimates for each child’s sedentary (SED), light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA). Data on the children’s physical and cognitive abilities were collected using the Paediatric Evaluation of Disability Inventory (PEDI-CAT). Results: The HSMM identified two inactive states (INS, comparable to SED), two lightly active long duration states (LAS, comparable to LPA), and two short-duration high-intensity states (HIS, comparable to MVPA). Overall, the children spent on average 237/392 minutes per day in INS/SED, 211/129 minutes per day in LAS/LPA, and 178/168 minutes in HIS/MVPA. We found that INS overlapped with 53% of SED, LAS overlapped with 37% of LPA and HIS overlapped with 60% of MVPA. We also looked at the correlation between the time spent by a child in either HIS or MVPA and their physical and cognitive abilities. We found that HIS was more strongly correlated with physical mobility (R²HIS =0.5, R²MVPA= 0.28), cognitive ability (R²HIS =0.31, R²MVPA= 0.15), and age (R²HIS =0.15, R²MVPA= 0.09), indicating increased sensitivity to key attributes associated with a child’s mobility. Conclusion: An unsupervised machine learning technique can segment and cluster accelerometer data according to the intensity of movement at a given time. It provides a potentially more sensitive, appropriate, and cost-effective approach to analysing physical activity behavior in diverse populations, compared to the current cut points approach. This, in turn, supports research that is more inclusive across diverse populations.Keywords: physical activity, machine learning, under 5s, disability, accelerometer
Procedia PDF Downloads 21034875 Development of Method for Detecting Low Concentration of Organophosphate Pesticides in Vegetables Using near Infrared Spectroscopy
Authors: Atchara Sankom, Warapa Mahakarnchanakul, Ronnarit Rittiron, Tanaboon Sajjaanantakul, Thammasak Thongket
Abstract:
Vegetables are frequently contaminated with pesticides residues resulting in the most food safety concern among agricultural products. The objective of this work was to develop a method to detect the organophosphate (OP) pesticides residues in vegetables using Near Infrared (NIR) spectroscopy technique. Low concentration (ppm) of OP pesticides in vegetables were investigated. The experiment was divided into 2 sections. In the first section, Chinese kale spiked with different concentrations of chlorpyrifos pesticide residues (0.5-100 ppm) was chosen as the sample model to demonstrate the appropriate conditions of sample preparation, both for a solution or solid sample. The spiked samples were extracted with acetone. The sample extracts were applied as solution samples, while the solid samples were prepared by the dry-extract system for infrared (DESIR) technique. The DESIR technique was performed by embedding the solution sample on filter paper (GF/A) and then drying. The NIR spectra were measured with the transflectance mode over wavenumber regions of 12,500-4000 cm⁻¹. The QuEChERS method followed by gas chromatography-mass spectrometry (GC-MS) was performed as the standard method. The results from the first section showed that the DESIR technique with NIR spectroscopy demonstrated good accurate calibration result with R² of 0.93 and RMSEP of 8.23 ppm. However, in the case of solution samples, the prediction regarding the NIR-PLSR (partial least squares regression) equation showed poor performance (R² = 0.16 and RMSEP = 23.70 ppm). In the second section, the DESIR technique coupled with NIR spectroscopy was applied to the detection of OP pesticides in vegetables. Vegetables (Chinese kale, cabbage and hot chili) were spiked with OP pesticides (chlorpyrifos ethion and profenofos) at different concentrations ranging from 0.5 to 100 ppm. Solid samples were prepared (based on the DESIR technique), then samples were scanned by NIR spectrophotometer at ambient temperature (25+2°C). The NIR spectra were measured as in the first section. The NIR- PLSR showed the best calibration equation for detecting low concentrations of chlorpyrifos residues in vegetables (Chinese kale, cabbage and hot chili) according to the prediction set of R2 and RMSEP of 0.85-0.93 and 8.23-11.20 ppm, respectively. For ethion residues, the best calibration equation of NIR-PLSR showed good indexes of R² and RMSEP of 0.88-0.94 and 7.68-11.20 ppm, respectively. As well as the results for profenofos pesticide, the NIR-PLSR also showed the best calibration equation for detecting the profenofos residues in vegetables according to the good index of R² and RMSEP of 0.88-0.97 and 5.25-11.00 ppm, respectively. Moreover, the calibration equation developed in this work could rapidly predict the concentrations of OP pesticides residues (0.5-100 ppm) in vegetables, and there was no significant difference between NIR-predicted values and actual values (data from GC-MS) at a confidence interval of 95%. In this work, the proposed method using NIR spectroscopy involving the DESIR technique has proved to be an efficient method for the screening detection of OP pesticides residues at low concentrations, and thus increases the food safety potential of vegetables for domestic and export markets.Keywords: NIR spectroscopy, organophosphate pesticide, vegetable, food safety
Procedia PDF Downloads 15034874 Community Adaptation of Drought Disaster in Grobogan District, Central Java Province, Indonesia
Authors: Chatarina Muryani, Sarwono, Sugiyanto Heribentus
Abstract:
Major part of Grobogan District, Central Java Province, Indonesia, always suffers from drought every year. The drought has implications toward almost all of the community activities, both domestic, agriculture, livestock, and industrial. The aim of this study was to determine (1) the drought distribution area in Grobogan District in 2015; (2) the impact of drought; and (3) the community adaptation toward the drought. The subject of the research was people who were impacted by the drought, purposive sampling technique was used to draw the sample. The data collection method was using field observation and in-depth interview while the data analysis was using descriptive analysis. The results showed that (1) in 2015, there were 14 districts which were affected by the drought and only 5 districts which do not suffer from drought, (2) the drought impacted to the reduction of water for domestic compliance, reduction of agricultural production, reduction of public revenue, (3) community adaptation to meet domestic water need was by making collective deep-wells and building water storages, adaptation in agriculture was done by setting the cropping pattern, while adaptation on economics was by allocating certain amount of funds for the family in anticipation of drought, which was mostly to purchase water.Keywords: adaptation, distribution, drought, impacts
Procedia PDF Downloads 37834873 Intermittent Demand Forecast in Telecommunication Service Provider by Using Artificial Neural Network
Authors: Widyani Fatwa Dewi, Subroto Athor
Abstract:
In a telecommunication service provider, quantity and interval of customer demand often difficult to predict due to high dependency on customer expansion strategy and technological development. Demand arrives when a customer needs to add capacity to an existing site or build a network in a new site. Because demand is uncertain for each period, and sometimes there is a null demand for several equipments, it is categorized as intermittent. This research aims to improve demand forecast quality in Indonesia's telecommunication service providers by using Artificial Neural Network. In Artificial Neural Network, the pattern or relationship within data will be analyzed using the training process, followed by the learning process as validation stage. Historical demand data for 36 periods is used to support this research. It is found that demand forecast by using Artificial Neural Network outperforms the existing method if it is reviewed on two criteria: the forecast accuracy, using Mean Absolute Deviation (MAD), Mean of the sum of the Squares of the Forecasting Error (MSE), Mean Error (ME) and service level which is shown through inventory cost. This research is expected to increase the reference for a telecommunication demand forecast, which is currently still limited.Keywords: artificial neural network, demand forecast, forecast accuracy, intermittent, service level, telecommunication
Procedia PDF Downloads 16534872 Life Cycle Analysis of the Antibacterial Gel Product Using Iso 14040 and Recipe 2016 Method
Authors: Pablo Andres Flores Siguenza, Noe Rodrigo Guaman Guachichullca
Abstract:
Sustainable practices have received increasing attention from academics and companies in recent decades due to, among many factors, the market advantages they generate, global commitments, and policies aimed at reducing greenhouse gas emissions, addressing resource scarcity, and rethinking waste management. The search for ways to promote sustainability leads industries to abandon classical methods and resort to the use of innovative strategies, which in turn are based on quantitative analysis methods and tools such as life cycle analysis (LCA), which is the basis for sustainable production and consumption, since it is a method that analyzes objectively, methodically, systematically, and scientifically the environmental impact caused by a process/product during its entire life cycle. The objective of this study is to develop an LCA of the antibacterial gel product throughout its entire supply chain (SC) under the methodology of ISO 14044 with the help of Gabi software and the Recipe 2016 method. The selection of the case study product was made based on its relevance in the current context of the COVID-19 pandemic and its exponential increase in production. For the development of the LCA, data from a Mexican company are used, and 3 scenarios are defined to obtain the midpoint and endpoint environmental impacts both by phases and globally. As part of the results, the most outstanding environmental impact categories are climate change, fossil fuel depletion, and terrestrial ecotoxicity, and the stage that generates the most pollution in the entire SC is the extraction of raw materials. The study serves as a basis for the development of different sustainability strategies, demonstrates the usefulness of an LCA, and agrees with different authors on the role and importance of this methodology in sustainable development.Keywords: sustainability, sustainable development, life cycle analysis, environmental impact, antibacterial gel
Procedia PDF Downloads 5534871 Examining the Relationship between Family Functioning and Perceived Self-Efficacy
Authors: Fenni Sim
Abstract:
Objectives: The purpose of the study is to examine the relationship between family functioning and level of self-efficacy: how family functioning can potentially affect self-efficacy which will eventually lead to better clinical outcomes. The hypothesis was ‘Patients on haemodialysis with perceived higher family functioning are more likely to have higher perceived level of self-efficacy’. Methods: The study was conducted with a mixed methodology of quantitative and qualitative data collection of survey and semi-structured interview respectively. The General Self-Efficacy scale and SCORE-15 were self-administered by participants. The data will be analysed with correlation analysis method using Microsoft Excel. 79 patients were recruited for the study through random sampling. 6 participants whose results did not reflect the hypothesis were then recruited for the qualitative study. Interpretive phemenological analysis was then used to analyse the qualitative data. Findings: The hypothesis was accepted that higher family functioning leads to higher perceived self-efficacy. The correlation coefficient of -0.21 suggested a mild correlation between the two variables. However, only 4.6% of the variation in perceived self-efficacy is accounted by the variation in family functioning. The qualitative study extrapolated three themes that might explain the variations in the outliers: (1) level of physical functioning affects perceived self-efficacy, (2) instrumental support from family influenced perceived level of family functioning, and self-efficacy, (3) acceptance of illness reflects higher level of self-efficacy. Conclusion: While family functioning does have an impact on perceived self-efficacy, there are many intrapersonal and physical factors that may affect self-efficacy. The concepts of family functioning and self-efficacy are more appropriately seen as complementing each other to help a patient in managing his illness. Healthcare social workers can look at how family functioning is supporting the individual needs of patients with different trajectory of ESRD and the support we can provide to improve one’s self-efficacy.Keywords: chronic kidney disease, coping of illness, family functioning, self efficacy
Procedia PDF Downloads 17334870 Dynamic Economic Load Dispatch Using Quadratic Programming: Application to Algerian Electrical Network
Authors: A. Graa, I. Ziane, F. Benhamida, S. Souag
Abstract:
This paper presents a comparative analysis study of an efficient and reliable quadratic programming (QP) to solve economic load dispatch (ELD) problem with considering transmission losses in a power system. The proposed QP method takes care of different unit and system constraints to find optimal solution. To validate the effectiveness of the proposed QP solution, simulations have been performed using Algerian test system. Results obtained with the QP method have been compared with other existing relevant approaches available in literatures. Experimental results show a proficiency of the QP method over other existing techniques in terms of robustness and its optimal search.Keywords: economic dispatch, quadratic programming, Algerian network, dynamic load
Procedia PDF Downloads 56534869 Characteization and Optimization of S-Parameters of Microwave Circuits
Authors: N. Ourabia, M. Boubaker Ourabia
Abstract:
An approach for modeling and numerical simulation of passive planar structures using the edge line concept is developed. With this method, we develop an efficient modeling technique for microstrip discontinuities. The technique obtains closed form expressions for the equivalent circuits which are used to model these discontinuities. Then, it would be easy to handle and to characterize complicated structures like T and Y junctions, truncated junctions, arbitrarily shaped junctions, cascading junctions and more generally planar multiport junctions. Another advantage of this method is that the edge line concept for arbitrary shape junctions operates with real parameters circuits. The validity of the method was further confirmed by comparing our results for various discontinuities (bend, filters) with those from HFSS as well as from other published sources.Keywords: optimization, CAD analysis, microwave circuits, S-parameters
Procedia PDF Downloads 45434868 Physically Informed Kernels for Wave Loading Prediction
Authors: Daniel James Pitchforth, Timothy James Rogers, Ulf Tyge Tygesen, Elizabeth Jane Cross
Abstract:
Wave loading is a primary cause of fatigue within offshore structures and its quantification presents a challenging and important subtask within the SHM framework. The accurate representation of physics in such environments is difficult, however, driving the development of data-driven techniques in recent years. Within many industrial applications, empirical laws remain the preferred method of wave loading prediction due to their low computational cost and ease of implementation. This paper aims to develop an approach that combines data-driven Gaussian process models with physical empirical solutions for wave loading, including Morison’s Equation. The aim here is to incorporate physics directly into the covariance function (kernel) of the Gaussian process, enforcing derived behaviors whilst still allowing enough flexibility to account for phenomena such as vortex shedding, which may not be represented within the empirical laws. The combined approach has a number of advantages, including improved performance over either component used independently and interpretable hyperparameters.Keywords: offshore structures, Gaussian processes, Physics informed machine learning, Kernel design
Procedia PDF Downloads 19334867 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism
Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li
Abstract:
Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.Keywords: keypoint detection, feature fusion, attention, semantic segmentation
Procedia PDF Downloads 11934866 A Novel Method for Face Detection
Authors: H. Abas Nejad, A. R. Teymoori
Abstract:
Facial expression recognition is one of the open problems in computer vision. Robust neutral face recognition in real time is a major challenge for various supervised learning based facial expression recognition methods. This is due to the fact that supervised methods cannot accommodate all appearance variability across the faces with respect to race, pose, lighting, facial biases, etc. in the limited amount of training data. Moreover, processing each and every frame to classify emotions is not required, as the user stays neutral for the majority of the time in usual applications like video chat or photo album/web browsing. Detecting neutral state at an early stage, thereby bypassing those frames from emotion classification would save the computational power. In this work, we propose a light-weight neutral vs. emotion classification engine, which acts as a preprocessor to the traditional supervised emotion classification approaches. It dynamically learns neutral appearance at Key Emotion (KE) points using a textural statistical model, constructed by a set of reference neutral frames for each user. The proposed method is made robust to various types of user head motions by accounting for affine distortions based on a textural statistical model. Robustness to dynamic shift of KE points is achieved by evaluating the similarities on a subset of neighborhood patches around each KE point using the prior information regarding the directionality of specific facial action units acting on the respective KE point. The proposed method, as a result, improves ER accuracy and simultaneously reduces the computational complexity of ER system, as validated on multiple databases.Keywords: neutral vs. emotion classification, Constrained Local Model, procrustes analysis, Local Binary Pattern Histogram, statistical model
Procedia PDF Downloads 33934865 An Analysis of Iranian Social Media Users’ Perceptions of Published Images of Coronavirus Deaths
Authors: Ali Gheshmi
Abstract:
The highest rate of death, after World War II, is due to the Coronavirus epidemic and more than 2 million people have died since the epidemic outbreak in December 2019, so the word “death” is one of the highest frequency words in social media; moreover, the use of social media has grown due to quarantine and successive restrictions and lockdowns. The most important aspects of the approach used by this study include the analysis of Iranian social media users’ reactions to the images of those who died due to Coronavirus, investigating if seeing such images via social media is effective on the users’ perception of the closeness of death, and evaluating the extent to which the fear of Coronavirus death is instrumental in persuading users to observe health protocols or causing mental problems in social media users. Since the goal of this study is to discover how social media users perceive and react to the images of people who died of Coronavirus, the cultural studies approach is used Receipt analysis method and in-depth interviews will be used for collecting data from Iranian users; also, snowball sampling is used in this study. The probable results would show that cyberspace users experience the closeness of “death” more than any time else and to cope with these annoying images, avoid viewing them or if they view, it will lead them to suffer from mental problems.Keywords: death, receipt analysis method, mental health, social media, Covid-19
Procedia PDF Downloads 15534864 A Named Data Networking Stack for Contiki-NG-OS
Authors: Sedat Bilgili, Alper K. Demir
Abstract:
The current Internet has become the dominant use with continuing growth in the home, medical, health, smart cities and industrial automation applications. Internet of Things (IoT) is an emerging technology to enable such applications in our lives. Moreover, Named Data Networking (NDN) is also emerging as a Future Internet architecture where it fits the communication needs of IoT networks. The aim of this study is to provide an NDN protocol stack implementation running on the Contiki operating system (OS). Contiki OS is an OS that is developed for constrained IoT devices. In this study, an NDN protocol stack that can work on top of IEEE 802.15.4 link and physical layers have been developed and presented.Keywords: internet of things (IoT), named-data, named data networking (NDN), operating system
Procedia PDF Downloads 17134863 The Role of Temporary Migration as Coping Mechanism of Weather Shock: Evidence from Selected Semi-Arid Tropic Villages in India
Authors: Kalandi Charan Pradhan
Abstract:
In this study, we investigate does weather variation determine temporary labour migration using 210 sample households from six Semi-Arid Tropic (SAT) villages for the period of 2005-2014 in India. The study has made an attempt to examine how households use temporary labour migration as a coping mechanism to minimise the risk rather than maximize the utility of the households. The study employs panel Logit regression model to predict the probability of household having at least one temporary labour migrant. As per as econometrics result, it is found that along with demographic and socioeconomic factors; weather variation plays an important role to determine the decision of migration at household level. In order to capture the weather variation, the study uses mean crop yield deviation over the study periods. Based on the random effect logit regression result, the study found that there is a concave relationship between weather variation and decision of temporary labour migration. This argument supports the theory of New Economics of Labour Migration (NELM), which highlights the decision of labour migration not only maximise the households’ utility but it helps to minimise the risks.Keywords: temporary migration, socioeconomic factors, weather variation, crop yield, logit estimation
Procedia PDF Downloads 22334862 Simultaneous Extraction and Estimation of Steroidal Glycosides and Aglycone of Solanum
Authors: Karishma Chester, Sarvesh Paliwal, Sayeed Ahmad
Abstract:
Solanumnigrum L. (Family: Solanaceae), is an important Indian medicinal plant and have been used in various traditional formulations for hepato-protection. It has been reported to contain significant amount of steroidal glycosides such as solamargine and solasonine as well as their aglycone part solasodine. Being important pharmacologically active metabolites of several members of Solanaceae these markers have been attempted various times for their extraction and quantification but separately for glycoside and aglycone part because of their opposite polarity. Here, we propose for the first time simultaneous extraction and quantification of aglycone (solasodine)and glycosides (solamargine and solasonine) inleaves and berries of S.nigrumusing solvent extraction followed by HPTLC analysis. Simultaneous extraction was carried out by sonication in mixture of chloroform and methanol as solvent. The quantification was done using silica gel 60F254HPTLC plates as stationary phase and chloroform: methanol: acetone: 0.5 % ammonia (7: 2.5: 1: 0.4 v/v/v/v) as mobile phaseat 400 nm, after derivatization with an isaldehydesul furic acid reagent. The method was validated as per ICH guideline for calibration, linearity, precision, recovery, robustness, specificity, LOD, and LOQ. The statistical data obtained for validation showed that method can be used routinely for quality control of various solanaceous drugs reported for these markers as well as traditional formulations containing those plants as an ingredient.Keywords: solanumnigrum, solasodine, solamargine, solasonine, quantification
Procedia PDF Downloads 33034861 Formulation and in vitro Evaluation of Sustained Release Matrix Tablets of Levetiracetam for Better Epileptic Treatment
Authors: Nagasamy Venkatesh Dhandapani
Abstract:
The objective of the present study was to develop sustained release oral matrix tablets of anti epileptic drug levetiracetam. The sustained release matrix tablets of levetiracetam were prepared using hydrophilic matrix hydroxypropyl methylcellulose (HPMC) as a release retarding polymer by wet granulation method. Prior to compression, FTIR studies were performed to understand the compatibility between the drug and excipients. The study revealed that there was no chemical interaction between drug and excipients used in the study. The tablets were characterized by physical and chemical parameters and results were found in acceptable limits. In vitro release study was carried out for the tablets using 0.1 N HCl for 2 hours and in phosphate buffer pH 7.4 for remaining time up to 12 hours. The effect of polymer concentration was studied. Different dissolution models were applied to drug release data in order to evaluate release mechanisms and kinetics. The drug release data fit well to zero order kinetics. Drug release mechanism was found as a complex mixture of diffusion, swelling and erosion.Keywords: levetiracetam, sustained-release, hydrophilic matrix tablet, HPMC grade K 100 MCR, wet granulation, zero order release kinetics
Procedia PDF Downloads 316