Search results for: variable renewable energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10419

Search results for: variable renewable energy

6729 On Musical Information Geometry with Applications to Sonified Image Analysis

Authors: Shannon Steinmetz, Ellen Gethner

Abstract:

In this paper, a theoretical foundation is developed for patterned segmentation of audio using the geometry of music and statistical manifold. We demonstrate image content clustering using conic space sonification. The algorithm takes a geodesic curve as a model estimator of the three-parameter Gamma distribution. The random variable is parameterized by musical centricity and centric velocity. Model parameters predict audio segmentation in the form of duration and frame count based on the likelihood of musical geometry transition. We provide an example using a database of randomly selected images, resulting in statistically significant clusters of similar image content.

Keywords: sonification, musical information geometry, image, content extraction, automated quantification, audio segmentation, pattern recognition

Procedia PDF Downloads 223
6728 Physical Properties of New Perovskite Kgex3 (X = F, Cl and Br) for Photovoltaic Applications

Authors: B. Bouadjemia, M. Houaria, S. Haida, Y. B. Idriss, A, Akham, M. Matouguia, A. Gasmia, T. Lantria, S. Bentataa

Abstract:

It have investigated the structural, optoelectronic, elastic and thermodynamic properties of KGeX₃ (X = F, Cl and Br) using the density functional theory (DFT) with generalized gradient approximation (GGA) for potential exchange correlation. The modified Becke-Johnson (mBJ-GGA) potential approximation is also used for calculating the optoelectronic properties of the material.The results show that the band structure of the metalloid halide perovskites KGeX₃ (X = F, Cl and Br) have a semiconductor behavior with direct band gap at R-R direction, the gap energy values for each compound as following: 2.83, 1.27 and 0.79eV respectively. The optical properties, such as real and imaginary parts of the dielectric functions, refractive index, reflectivity and absorption coefficient, are investigated. As results, these compounds are competent candidates for optoelectronic and photovoltaic devices in this range of the energy spectrum.

Keywords: density functional theory (DFT), semiconductor behavior, metalloid halide perovskites, optical propertie and photovoltaic devices

Procedia PDF Downloads 58
6727 The BNCT Project Using the Cf-252 Source: Monte Carlo Simulations

Authors: Marta Błażkiewicz-Mazurek, Adam Konefał

Abstract:

The project can be divided into three main parts: i. modeling the Cf-252 neutron source and conducting an experiment to verify the correctness of the obtained results, ii. design of the BNCT system infrastructure, iii. analysis of the results from the logical detector. Modeling of the Cf-252 source included designing the shape and size of the source as well as the energy and spatial distribution of emitted neutrons. Two options were considered: a point source and a cylindrical spatial source. The energy distribution corresponded to various spectra taken from specialized literature. Directionally isotropic neutron emission was simulated. The simulation results were compared with experimental values determined using the activation detector method using indium foils and cadmium shields. The relative fluence rate of thermal and resonance neutrons was compared in the chosen places in the vicinity of the source. The second part of the project related to the modeling of the BNCT infrastructure consisted of developing a simulation program taking into account all the essential components of this system. Materials with moderating, absorbing, and backscattering properties of neutrons were adopted into the project. Additionally, a gamma radiation filter was introduced into the beam output system. The analysis of the simulation results obtained using a logical detector located at the beam exit from the BNCT infrastructure included neutron energy and their spatial distribution. Optimization of the system involved changing the size and materials of the system to obtain a suitable collimated beam of thermal neutrons.

Keywords: BNCT, Monte Carlo, neutrons, simulation, modeling

Procedia PDF Downloads 22
6726 Sliding Mode Controlled Quadratic Boost Converter

Authors: Viji Vijayakumar, R. Divya, A. Vivek

Abstract:

This paper deals with a quadratic boost converter which belongs to cascade boost family, controlled by sliding mode controller. In the cascade boost family, quadratic boost converter is the best trade-off when circuit complexity and modulator saturation is considered. Sliding mode control being a nonlinear control results in a robust and stable system when applied to switching converters which are inherently variable structured systems. The stability of this system is analyzed through Lyapunov’s approach. Analysis is done for load regulation, line regulation and step response of the system. Also these results are compared with that of PID controller based system.

Keywords: DC-DC converter, quadratic boost converter, sliding mode control, PID control

Procedia PDF Downloads 984
6725 Engineering Microstructural Evolution during Arc Wire Directed Energy Deposition of Magnesium Alloy (AZ31)

Authors: Nivatha Elangovan, Lakshman Neelakantan, Murugaiyan Amirthalingam

Abstract:

Magnesium and its alloys are widely used for various lightweight engineering and biomedical applications as they render high strength to low weight ratio and excellent corrosion resistance. These alloys possess good bio-compatibility and similar mechanical properties to natural bone. However, manufacturing magnesium alloy components by conventional formative and subtractive methods is challenging due to their poor castability, oxidation potential, and machinability. Therefore, efforts are made to produce complex-design containing magnesium alloy components by additive manufacturing (AM). Arc-wire directed energy deposition (AW-DED), also known as wire arc additive manufacturing (WAAM), is more attractive to produce large volume components with increased productivity than any other AM technique. In this research work, efforts were made to optimise the deposition parameters to build thick-walled (about 10 mm) AZ31 magnesium alloy components by a gas metal arc (GMA) based AW-DED process. By using controlled dip short-circuiting metal transfer in a GMA process, depositions were carried out without defects and spatter formation. Current and voltage waveforms were suitably modified to achieve stable metal transfer. Moreover, the droplet transfer behaviour was analysed using high-speed image analysis and correlated with arc energy. Optical and scanning electron microscopy analyses were carried out to correlate the influence of deposition parameters with the microstructural evolution during deposition. The investigation reveals that by carefully controlling the current-voltage waveform and droplet transfer behaviour, it is possible to stabilise equiaxed grain microstructures in the deposited AZ31 components. The printed component exhibited an improved mechanical property as equiaxed grains improve the ductility and enhance the toughness. The equiaxed grains in the component improved the corrosion-resistant behaviour of other conventionally manufactured components.

Keywords: arc wire directed energy deposition, AZ31 magnesium alloy, equiaxed grain, corrosion

Procedia PDF Downloads 116
6724 InfoMiracles in the Qur’an and a Mathematical Proof to the Existence of God

Authors: Mohammad Mahmoud Mandurah

Abstract:

The existence of InfoMiracles in scripture is evidence that the scripture has a divine origin. It is also evidence to the existence of God. An InfoMiracle is an information-based miracle. The basic component of an InfoMiracle is a piece of information that could not be obtained by a human except through a divine channel. The existence of a sufficient number of convincing InfoMiracles in a scripture necessitates the existence of the divine source to these InfoMiracles. A mathematical equation is developed to prove that the Qur’an has a divine origin, and hence, prove the existence of God. The equation depends on a single variable only, which is the number of InfoMiracles in the Qur’an. The Qur’an is rich with InfoMiracles. It is shown that the existence of less than 30 InfoMiracles in the Qur’an is sufficient proof to the existence of God and that the Qur’an is a revelation from God.

Keywords: InfoMiracle, God, mathematical proof, miracle, probability

Procedia PDF Downloads 209
6723 CFD Analysis of Solar Floor Radiant Heating System with ‎PCM

Authors: Mohammad Nazififard, Reihane Faghihi

Abstract:

This paper is aimed at understanding convective heat transfer of enclosed phase change material (PCM) in the solar and low-temperature hot water radiant floor heating geometry. In order to obtain the best performance of PCM, a radiant heating structure of the energy storage floor is designed which places heat pipes in the enclosed phase change material (PCM) layer, without concrete in it. The governing equations are numerically solved. The PCM thermal storage time is considered in relation to the floor surface temperature under different hot water temperatures. Moreover the PCM thermal storage time is numerically estimated under different supply water temperatures and flow rate. Results show the PCM floor heating system has a potential of making use of the daytime solar energy for heating at night efficiently.

Keywords: solar floor, heating system, phase change material, computational fluid dynamics

Procedia PDF Downloads 240
6722 Co-Pyrolysis Characteristics of Waste Polyolefins

Authors: Si̇nem Uğuz, Yuksel Ardali

Abstract:

Nowadays rapid population growth causes a mandatory increase in consumption. As a result of production activities which meet this consumption, energy sources decrease rapidly on our world. As well as with this production activities various waste occurs. At the end of the production and accumulation of this waste need a mandatory disposal. In this context, copyrolysis of waste polyolefins were investigated. In this study for pyrolysis process, polyethylene and polyprophylene are selected as polyolefins. The pyrolysis behavior (efficiency of solid, liquid and gas production) of selected materials were examined at the different temperatures and different mixtures. Pyrolysis process was carried out at 550 °C and 600 °C without air in a fixed bed pyrolysis oven solid under the nitrogen flow to provide inertness of medium. Elemental analyses (C, H, O, N, S) of this solid and liquid (bitumen) products were made and the calorific value was calculated. The availability of liquid product as a fuel was investigated. In addition different products’ amounts formed like solid, liquid and gas at different temperatures were evaluated.

Keywords: alternative energy, elemental analysis, pyrolysis, waste reduction

Procedia PDF Downloads 307
6721 Estimation of Population Mean under Random Non-Response in Two-Phase Successive Sampling

Authors: M. Khalid, G. N. Singh

Abstract:

In this paper, we have considered the problem of estimation for population mean, on current (second) occasion in the presence of random non response in two-occasion successive sampling under two phase set-up. Modified exponential type estimators have been proposed, and their properties are studied under the assumptions that numbers of sampling units follow a distribution due to random non response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners.

Keywords: successive sampling, random non-response, auxiliary variable, bias, mean square error

Procedia PDF Downloads 513
6720 Increased Efficiency during Oxygen Carrier Aided Combustion of Municipal Solid Waste in an Industrial Scaled Circulating Fluidized Bed-Boiler

Authors: Angelica Corcoran, Fredrik Lind, Pavleta Knutsson, Henrik Thunman

Abstract:

Solid waste volumes are at current predominately deposited on landfill. Furthermore, the impending climate change requires new solutions for a sustainable future energy mix. Currently, solid waste is globally utilized to small extent as fuel during combustion for heat and power production. Due to its variable composition and size, solid waste is considered difficult to combust and requires a technology with high fuel flexibility. One of the commercial technologies used for combustion of such difficult fuels is circulating fluidized beds (CFB). In a CFB boiler, fine particles of a solid material are used as 'bed material', which is accelerated by the incoming combustion air that causes the bed material to fluidize. The chosen bed material has conventionally been silica sand with the main purpose of being a heat carrier, as it transfers heat released by the combustion to the heat-transfer surfaces. However, the release of volatile compounds occurs rapidly in comparison with the lateral mixing in the combustion chamber. To ensure complete combustion a surplus of air is introduced, which decreases the total efficiency of the boiler. In recent years, the concept of partly or entirely replacing the silica sand with an oxygen carrier as bed material has been developed. By introducing an oxygen carrier to the combustion chamber, combustion can be spread out both temporally and spatially in the boiler. Specifically, the oxygen carrier can take up oxygen from the combustion air where it is in abundance and release it to combustible gases where oxygen is in deficit. The concept is referred to as oxygen carrier aided combustion (OCAC) where the natural ore ilmenite (FeTiO3) has been the oxygen carrier used. The authors have validated the oxygen buffering ability of ilmenite during combustion of biomass in Chalmers 12-MWth CFB boiler in previous publications. Furthermore, the concept has been demonstrated on full industrial scale during combustion of municipal solid waste (MSW) in E.ON’s 75 MWth CFB boiler. The experimental campaigns have showed increased mass transfer of oxygen inside the boiler when combustion both biomass and MSW. As a result, a higher degree of burnout is achieved inside the combustion chamber and the plant can be operated at a lower surplus of air. Moreover, the buffer of oxygen provided by the oxygen carrier makes the system less sensitive to disruptions in operation. In conclusion, combusting difficult fuels with OCAC results in higher operation stability and an increase in boiler efficiency.

Keywords: OCAC, ilmenite, combustion, CFB

Procedia PDF Downloads 234
6719 Latent Heat Storage Using Phase Change Materials

Authors: Debashree Ghosh, Preethi Sridhar, Shloka Atul Dhavle

Abstract:

The judicious and economic consumption of energy for sustainable growth and development is nowadays a thing of primary importance; Phase Change Materials (PCM) provide an ingenious option of storing energy in the form of Latent Heat. Energy storing mechanism incorporating phase change material increases the efficiency of the process by minimizing the difference between supply and demand; PCM heat exchangers are used to storing the heat or non-convectional energy within the PCM as the heat of fusion. The experimental study evaluates the effect of thermo-physical properties, variation in inlet temperature, and flow rate on charging period of a coiled heat exchanger. Secondly, a numerical study is performed on a PCM double pipe heat exchanger packed with two different PCMs, namely, RT50 and Fatty Acid, in the annular region. In this work, the simulation of charging of paraffin wax (RT50) using water as high-temperature fluid (HTF) is performed. Commercial software Ansys-Fluent 15 is used for simulation, and hence charging of PCM is studied. In the Enthalpy-porosity model, a single momentum equation is applicable to describe the motion of both solid and liquid phases. The details of the progress of phase change with time are presented through the contours of melt-fraction, temperature. The velocity contour is shown to describe the motion of the liquid phase. The experimental study revealed that paraffin wax melts with almost the same temperature variation at the two Intermediate positions. Fatty acid, on the other hand, melts faster owing to greater thermal conductivity and low melting temperature. It was also observed that an increase in flow rate leads to a reduction in the charging period. The numerical study also supports some of the observations found in the experimental study like the significant dependence of driving force on the process of melting. The numerical study also clarifies the melting pattern of the PCM, which cannot be observed in the experimental study.

Keywords: latent heat storage, charging period, discharging period, coiled heat exchanger

Procedia PDF Downloads 112
6718 Al-Ti-W Metallic Glass Thin Films Deposited by Magnetron Sputtering Technology to Protect Steel Against Hydrogen Embrittlement

Authors: Issam Lakdhar, Akram Alhussein, Juan Creus

Abstract:

With the huge increase in world energy consumption, researchers are working to find other alternative sources of energy instead of fossil fuel one causing many environmental problems as the production of greenhouse effect gases. Hydrogen is considered a green energy source, which its combustion does not cause environmental pollution. The transport and the storage of the gas molecules or the other products containing this smallest chemical element in metallic structures (pipelines, tanks) are crucial issues. The dissolve and the permeation of hydrogen into the metal lattice lead to the formation of hydride phases and the embrittlement of structures. To protect the metallic structures, a surface treatment could be a good solution. Among the different techniques, magnetron sputtering is used to elaborate micrometric coatings capable of slowing down or stop hydrogen permeation. In the plasma environment, the deposition parameters of new thin-film metallic glasses Al-Ti-W were optimized and controlled in order to obtain, hydrogen barrier. Many characterizations were carried out (SEM, XRD and Nano-indentation…) to control the composition and understand the influence of film microstructure and chemical composition on the hydrogen permeation through the coatings. The coating performance was evaluated under two hydrogen production methods: chemical and electrochemical (cathodic protection) techniques. The hydrogen quantity absorbed was experimentally determined using the Thermal-Desorption Spectroscopy method (TDS)). An ideal ATW thin film was developed and showed excellent behavior against the diffusion of hydrogen.

Keywords: thin films, hydrogen, PVD, plasma technology, electrochemical properties

Procedia PDF Downloads 180
6717 Reliability Analysis of Partial Safety Factor Design Method for Slopes in Granular Soils

Authors: K. E. Daryani, H. Mohamad

Abstract:

Uncertainties in the geo-structure analysis and design have a significant impact on the safety of slopes. Traditionally, uncertainties in the geotechnical design are addressed by incorporating a conservative factor of safety in the analytical model. In this paper, a risk-based approach is adopted to assess the influence of the geotechnical variable uncertainties on the stability of infinite slopes in cohesionless soils using the “partial factor of safety on shear strength” approach as stated in Eurocode 7. Analyses conducted using Monte Carlo simulation show that the same partial factor can have very different levels of risk depending on the degree of uncertainty of the mean values of the soil friction angle and void ratio.

Keywords: Safety, Probability of Failure, Reliability, Infinite Slopes, Sand.

Procedia PDF Downloads 570
6716 Seismic Behavior of Short Core Buckling Restrained Braces

Authors: Nader Hoveidae

Abstract:

This paper investigates the seismic behavior of a new type of buckling restrained braces (BRBs) called "Short Core BRBs" in which a shorter core segment is used as an energy dissipating part and an elastic part is serially connected to the core. It seems that a short core BRB is easy to be fabricated, inspected and replaced after a severe earthquake. In addition, the energy dissipating capacity in a short core BRB is higher because of larger core strains. However, higher core strain demands result in high potential of low-cycle fatigue fracture. In this paper, a strategy is proposed to estimate the minimum core length in a short core BRBs. The seismic behavior of short core buckling restrained brace is experimentally examined. The results revealed that the short core buckling restrained brace is able to sustain large inelastic strains without any significant instability or strength degradation.

Keywords: short core, Buckling Restrained Brace, finite element analysis, cyclic test

Procedia PDF Downloads 352
6715 The Impact of Window Opening Occupant Behavior Models on Building Energy Performance

Authors: Habtamu Tkubet Ebuy

Abstract:

Purpose Conventional dynamic energy simulation tools go beyond the static dimension of simplified methods by providing better and more accurate prediction of building performance. However, their ability to forecast actual performance is undermined by a low representation of human interactions. The purpose of this study is to examine the potential benefits of incorporating information on occupant diversity into occupant behavior models used to simulate building performance. The co-simulation of the stochastic behavior of the occupants substantially increases the accuracy of the simulation. Design/methodology/approach In this article, probabilistic models of the "opening and closing" behavior of the window of inhabitants have been developed in a separate multi-agent platform, SimOcc, and implemented in the building simulation, TRNSYS, in such a way that the behavior of the window with the interconnectivity can be reflected in the simulation analysis of the building. Findings The results of the study prove that the application of complex behaviors is important to research in predicting actual building performance. The results aid in the identification of the gap between reality and existing simulation methods. We hope this study and its results will serve as a guide for researchers interested in investigating occupant behavior in the future. Research limitations/implications Further case studies involving multi-user behavior for complex commercial buildings need to more understand the impact of the occupant behavior on building performance. Originality/value This study is considered as a good opportunity to achieve the national strategy by showing a suitable tool to help stakeholders in the design phase of new or retrofitted buildings to improve the performance of office buildings.

Keywords: occupant behavior, co-simulation, energy consumption, thermal comfort

Procedia PDF Downloads 96
6714 An Exploration of the Technical and Economic Feasibility of a Stand Alone Solar PV Generated DC Distribution System over AC Distribution System for Use in the Modern as Well as Future Houses of Isolated Areas

Authors: Alpesh Desai, Indrajit Mukhopadhyay

Abstract:

Standalone Photovoltaic (PV) systems are designed and sized to supply certain AC and/or DC electrical loads. In computers, consumer electronics and many small appliances as well as LED lighting the actual power consumed is DC. The DC system, which requires only voltage control, has many advantages such as feasible connection of the distributed energy sources and reduction of the conversion losses for DC-based loads. Also by using the DC power directly the cost of the size of the Inverter and Solar panel reduced hence the overall cost of the system reduced. This paper explores the technical and economic feasibility of supplying electrical power to homes/houses using DC voltage mains within the house. Theoretical calculated results are presented to demonstrate the advantage of DC system over AC system with PV on sustainable rural/isolated development.

Keywords: distribution system, energy efficiency, off-grid, stand-alone PV system, sustainability, techno-socio-economic

Procedia PDF Downloads 257
6713 Heat and Humidity Induced Plastic Changes in Body Lipids and Starvation Resistance in the Tropical Zaprionus indianus of Wet-Dry Seasons

Authors: T. N. Girish, B. E. Pradeep, Ravi Parkash

Abstract:

Insects from tropical wet or dry seasons are likely to cope starvation stress through seasonal phenotypic plasticity in energy metabolites. Accordingly, we analyzed such plastic changes in Zaprionus indianus flies reared under wet or dry season-specific conditions; and also after adult acclimation at 32℃ for 1 to 6 days; and to low (40% RH) or high (70% RH) humidity. Both thermal or humidity acclimation revealed significant accumulation of body lipids for wet season flies but low humidity acclimation did not change the level of body lipids in dry season flies. Developmental and adult acclimation showed sex specific differences i.e., starvation resistance and body lipids were higher in the males of dry season but in females of wet season. We found seasonal and sex specific differences in the relative level for body lipids at death; and in the rates of accumulation or utilization of energy metabolites (body lipids, carbohydrates and proteins). Body lipids constitute the preferred energy source under starvation for flies of both the seasons. However, utilization of carbohydrates (~20% to 30%) and proteins (~20% to 25%) was evident only in dry season flies. Higher starvation resistance after thermal or humidity acclimation is achieved by increased accumulation of lipids. Adult acclimation of wet or dry season flies revealed plastic changes in mean daily fecundity despite reduction in fecundity under starvation. Thus, thermal or humidity induced plastic responses in body lipids support starvation resistance under wet or dry seasons.

Keywords: heat or humidity acclimation, plastic changes in body lipids and starvation resistance, tropical drosophilid, Wet- or Dry seasons, Zaprionus indianus

Procedia PDF Downloads 151
6712 Improvement of Energy Efficiency and Cost Management for Household Refrigerators Under Different Climate Classes and Examination of Effect of VIP Ageing and Usage of Electronic Expansion Valve Technology

Authors: Yesim Guzel, Mert Akbiyik

Abstract:

Energy consumption (EC) and costs due to the usage of refrigerators are increasing continuously. This creates a disadvantage not only on the budget of customers but also to global warming. This study aims to decrease EC and cost due to refrigerator EC all around the world. Research about the effect of climate classes on industrial cabinets, supermarket refrigerators or room air conditioning systems can be found in open literature; however, to the best of authors' knowledge, there is no study that includes the effect of climate classes, vacuum insulation panels (VIP) and polyurethane (PU) aging, and electronic expansion valve (EEV) technology for home refrigerators. For this purpose, 4 configurations are examined for household refrigerators for ST (subtropical) and T (tropical) climates. The aging of VIP and PU and the annual interest rate of electricity cost (%5) are considered to obtain more accurate results in calculations. Heat gain (Q), EC, and CO₂ emission are calculated. Config. 1, 2, 3 and 4 are with NO VIP, FULL VIP, NO VIP+ EEV, and FULL VIP+EEV, respectively. As a result, it is observed that Q for Config. 1 and 2 increase as Temp increases. Moreover, from ST to T climates, for all the configurations, EC increases. Additionally, the payback period (t) is based on reference cabinet Config. 1 is calculated. It is considered that annual electricity cost as constant for every climate. When ts are compared with Config. 1 for both climates, it is seen that the minimum t of 2 years is Config. 3. This study shows not only is EEV a better alternative option than VIPs. Hence, EEVs are way cheaper than VIPs and have shorter t, but it also allows us to compare Ec, Q, CO₂ emissions, and cost.

Keywords: energy, thermodynamics, ageing, VIP, polyurethane, expansion valve, EEV, PU, climate, refrigerating, cooling, efficiency

Procedia PDF Downloads 41
6711 Investigation on Properties and Applications of Graphene as Single Layer of Carbon Atoms

Authors: Ali Ashjaran

Abstract:

Graphene is undoubtedly emerging as one of the most promising materials because of its unique combination of superb properties, which opens a way for its exploitation in a wide spectrum of applications ranging from electronics to optics, sensors, and biodevices. In addition, Graphene-based nanomaterials have many promising applications in energy-related areas. Graphene a single layer of carbon atoms, combines several exceptional properties, which makes it uniquely suited as a coating material: transparency, excellent mechanical stability, low chemical reactivity, Optical, impermeability to most gases, flexibility, and very high thermal and electrical conductivity. Graphene is a material that can be utilized in numerous disciplines including, but not limited to: bioengineering, composite materials, energy technology and nanotechnology, biological engineering, optical electronics, ultrafiltration, photovoltaic cells. This review aims to provide an overiew of graphene structure, properties and some applications.

Keywords: graphene, carbon, anti corrosion, optical and electrical properties, sensors

Procedia PDF Downloads 272
6710 The Effect of Gender and Resources on Entrepreneurial Activity

Authors: Frederick Nyakudya

Abstract:

In this paper, we examine the relationship between human capital, personal wealth and social capital to explain the differential start-up rates between female and male entrepreneurs. Since our dependent variable is dichotomous, we examine the determinants of these using a maximum likelihood logit estimator. We used the Global Entrepreneurship Monitor database covering the period 2006 to 2009 with 421 usable cases drawn from drawn from the Lower Layer Super Output Areas in the East Midlands in the United Kingdom. we found evidence that indicates that a female positively moderate the positive relationships between indicators of human capital, personal wealth and social capital with start-up activity. The findings have implications for programs, policies, and practices to encourage more females to engage in start-up activity.

Keywords: entrepreneurship, star-up, gender, GEM

Procedia PDF Downloads 104
6709 Maximizing the Aerodynamic Performance of Wind and Water Turbines by Utilizing Advanced Flow Control Techniques

Authors: Edwin Javier Cortes, Surupa Shaw

Abstract:

In recent years, there has been a growing emphasis on enhancing the efficiency and performance of wind and water turbines to meet the increasing demand for sustainable energy sources. One promising approach is the utilization of advanced flow control techniques to optimize aerodynamic performance. This paper explores the application of advanced flow control techniques in both wind and water turbines, aiming to maximize their efficiency and output. By manipulating the flow of air or water around the turbine blades, these techniques offer the potential to improve energy capture, reduce drag, and minimize turbulence-induced losses. The paper will review various flow control strategies, including passive and active techniques such as vortex generators, boundary layer suction, and plasma actuators. It will examine their effectiveness in optimizing turbine performance under different operating conditions and environmental factors. Furthermore, the paper will discuss the challenges and opportunities associated with implementing these techniques in practical turbine designs. It will consider factors such as cost-effectiveness, reliability, and scalability, as well as the potential impact on overall turbine efficiency and lifecycle. Through a comprehensive analysis of existing research and case studies, this paper aims to provide insights into the potential benefits and limitations of advanced flow control techniques for wind and water turbines. It will also highlight areas for future research and development, with the ultimate goal of advancing the state-of-the-art in turbine technology and accelerating the transition towards a more sustainable energy future.

Keywords: flow control, efficiency, passive control, active control

Procedia PDF Downloads 64
6708 Virtual Process Hazard Analysis (Pha) Of a Nuclear Power Plant (Npp) Using Failure Mode and Effects Analysis (Fmea) Technique

Authors: Lormaine Anne A. Branzuela, Elysa V. Largo, Monet Concepcion M. Detras, Neil C. Concibido

Abstract:

The electricity demand is still increasing, and currently, the Philippine government is investigating the feasibility of operating the Bataan Nuclear Power Plant (BNPP) to address the country’s energy problem. However, the lack of process safety studies on BNPP focused on the effects of hazardous substances on the integrity of the structure, equipment, and other components, have made the plant operationalization questionable to the public. The three major nuclear power plant incidents – TMI-2, Chernobyl, and Fukushima – have made many people hesitant to include nuclear energy in the energy matrix. This study focused on the safety evaluation of possible operations of a nuclear power plant installed with a Pressurized Water Reactor (PWR), which is similar to BNPP. Failure Mode and Effects Analysis (FMEA) is one of the Process Hazard Analysis (PHA) techniques used for the identification of equipment failure modes and minimizing its consequences. Using the FMEA technique, this study was able to recognize 116 different failure modes in total. Upon computation and ranking of the risk priority number (RPN) and criticality rating (CR), it showed that failure of the reactor coolant pump due to earthquakes is the most critical failure mode. This hazard scenario could lead to a nuclear meltdown and radioactive release, as identified by the FMEA team. Safeguards and recommended risk reduction strategies to lower the RPN and CR were identified such that the effects are minimized, the likelihood of occurrence is reduced, and failure detection is improved.

Keywords: PHA, FMEA, nuclear power plant, bataan nuclear power plant

Procedia PDF Downloads 123
6707 Finite Element Analysis of Hollow Structural Shape (HSS) Steel Brace with Infill Reinforcement under Cyclic Loading

Authors: Chui-Hsin Chen, Yu-Ting Chen

Abstract:

Special concentrically braced frames is one of the seismic load resisting systems, which dissipates seismic energy when bracing members within the frames undergo yielding and buckling while sustaining their axial tension and compression load capacities. Most of the inelastic deformation of a buckling bracing member concentrates in the mid-length region. While experiencing cyclic loading, the region dissipates most of the seismic energy being input into the frame. Such a concentration makes the braces vulnerable to failure modes associated with low-cycle fatigue. In this research, a strategy to improve the cyclic behavior of the conventional steel bracing member is proposed by filling the Hollow Structural Shape (HSS) member with reinforcement. It prevents the local section from concentrating large plastic deformation caused by cyclic loading. The infill helps spread over the plastic hinge region into a wider area hence postpone the initiation of local buckling or even the rupture of the braces. The finite element method is introduced to simulate the complicated bracing member behavior and member-versus-infill interaction under cyclic loading. Fifteen 3-D-element-based models are built by ABAQUS software. The verification of the FEM model is done with unreinforced (UR) HSS bracing members’ cyclic test data and aluminum honeycomb plates’ bending test data. Numerical models include UR and filled HSS bracing members with various compactness ratios based on the specification of AISC-2016 and AISC-1989. The primary variables to be investigated include the relative bending stiffness and the material of the filling reinforcement. The distributions of von Mises stress and equivalent plastic strain (PEEQ) are used as indices to tell the strengths and shortcomings of each model. The result indicates that the change of relative bending stiffness of the infill is much more influential than the change of material in use to increase the energy dissipation capacity. Strengthen the relative bending stiffness of the reinforcement results in additional energy dissipation capacity to the extent of 24% and 46% in model based on AISC-2016 (16-series) and AISC-1989 (89-series), respectively. HSS members with infill show growth in 𝜂Local Buckling, normalized energy cumulated until the happening of local buckling, comparing to UR bracing members. The 89-series infill-reinforced members have more energy dissipation capacity than unreinforced 16-series members by 117% to 166%. The flexural rigidity of infills should be less than 29% and 13% of the member section itself for 16-series and 89-series bracing members accordingly, thereby guaranteeing the spread over of the plastic hinge and the happening of it within the reinforced section. If the parameters are properly configured, the ductility, energy dissipation capacity, and fatigue-life of HSS SCBF bracing members can be improved prominently by the infill-reinforced method.

Keywords: special concentrically braced frames, HSS, cyclic loading, infill reinforcement, finite element analysis, PEEQ

Procedia PDF Downloads 90
6706 Performance Validation of Model Predictive Control for Electrical Power Converters of a Grid Integrated Oscillating Water Column

Authors: G. Rajapakse, S. Jayasinghe, A. Fleming

Abstract:

This paper aims to experimentally validate the control strategy used for electrical power converters in grid integrated oscillating water column (OWC) wave energy converter (WEC). The particular OWC’s unidirectional air turbine-generator output power results in discrete large power pulses. Therefore, the system requires power conditioning prior to integrating to the grid. This is achieved by using a back to back power converter with an energy storage system. A Li-Ion battery energy storage is connected to the dc-link of the back-to-back converter using a bidirectional dc-dc converter. This arrangement decouples the system dynamics and mitigates the mismatch between supply and demand powers. All three electrical power converters used in the arrangement are controlled using finite control set-model predictive control (FCS-MPC) strategy. The rectifier controller is to regulate the speed of the turbine at a set rotational speed to uphold the air turbine at a desirable speed range under varying wave conditions. The inverter controller is to maintain the output power to the grid adhering to grid codes. The dc-dc bidirectional converter controller is to set the dc-link voltage at its reference value. The software modeling of the OWC system and FCS-MPC is carried out in the MATLAB/Simulink software using actual data and parameters obtained from a prototype unidirectional air-turbine OWC developed at Australian Maritime College (AMC). The hardware development and experimental validations are being carried out at AMC Electronic laboratory. The designed FCS-MPC for the power converters are separately coded in Code Composer Studio V8 and downloaded into separate Texas Instrument’s TIVA C Series EK-TM4C123GXL Launchpad Evaluation Boards with TM4C123GH6PMI microcontrollers (real-time control processors). Each microcontroller is used to drive 2kW 3-phase STEVAL-IHM028V2 evaluation board with an intelligent power module (STGIPS20C60). The power module consists of a 3-phase inverter bridge with 600V insulated gate bipolar transistors. Delta standard (ASDA-B2 series) servo drive/motor coupled to a 2kW permanent magnet synchronous generator is served as the turbine-generator. This lab-scale setup is used to obtain experimental results. The validation of the FCS-MPC is done by comparing these experimental results to the results obtained by MATLAB/Simulink software results in similar scenarios. The results show that under the proposed control scheme, the regulated variables follow their references accurately. This research confirms that FCS-MPC fits well into the power converter control of the OWC-WEC system with a Li-Ion battery energy storage.

Keywords: dc-dc bidirectional converter, finite control set-model predictive control, Li-ion battery energy storage, oscillating water column, wave energy converter

Procedia PDF Downloads 109
6705 Use of Microbial Fuel Cell for Metal Recovery from Wastewater

Authors: Surajbhan Sevda

Abstract:

Metal containing wastewater is generated in large quintiles due to rapid industrialization. Generally, the metal present in wastewater is not biodegradable and can be accumulated in living animals, humans and plant tissue, causing disorder and diseases. The conventional metal recovery methods include chemical, physical and biological methods, but these are chemical and energy intensive. The recent development in microbial fuel cell (MFC) technology provides a new approach for metal recovery; this technology offers a flexible platform for both reduction and oxidation reaction oriented process. The use of MFCs will be a new platform for more efficient and low energy approach for metal recovery from the wastewater. So far metal recover was extensively studied using chemical, physical and biological methods. The MFCs present a new and efficient approach for removing and recovering metals from different wastewater, suggesting the use of different electrode for metal recovery can be a new efficient and effective approach.

Keywords: metal recovery, microbial fuel cell, wastewater, bioelectricity

Procedia PDF Downloads 210
6704 Newly Developed Epoxy-Polyol and Epoxy- Polyurethane from Renewable Resources

Authors: Akintayo Emmanuel Temitope, Akintayo Cecilia Olufunke, Ziegler Thomas

Abstract:

Bio-polyols are important components in polyurethane industries. The preliminary studies into the synthesis of bio-polyol products (epoxy-polyol and epoxyl-polyurethanes) from Jatropha curcas were investigated. The reactions were followed by both infrared and nuclear magnetic resonance. Physico-chemical characterisation of the samples for iodine value (IV), acid value (AV), saponification value (SV) and hydroxyl value (HV) were carried out. Thermal transitions of the products were studied by heating 5 mg of the sample from 20ºC to 800ºC and then cooling down to -500ºC on a differential scanning calorimeter (DSC). The preparation of epoxylpolyol and polyurethane from Jatropha curcas oil was smooth and efficient. Results of film and solubility properties revealed that coatings of Jatropha curcas epoxy-polyurethanes performed better with increased loading of toluylene 2, 4-diisocyanate (TDI) up to 2 wt% while their solvent resistance decreased beyond a TDI loading of 1.2 wt%. DSC analysis shows the epoxy-polyurethane to be less stable compared to the epoxy-polyol.

Keywords: synthesis, epoxy-polyol, epoxy-polyurethane, jatropha curcas oil

Procedia PDF Downloads 413
6703 Mg and MgN₃ Cluster in Diamond: Quantum Mechanical Studies

Authors: T. S. Almutairi, Paul May, Neil Allan

Abstract:

The geometrical, electronic and magnetic properties of the neutral Mg center and MgN₃ cluster in diamond have been studied theoretically in detail by means of an HSE06 Hamiltonian that includes a fraction of the exact exchange term; this is important for a satisfactory picture of the electronic states of open-shell systems. Another batch of the calculations by GGA functionals have also been included for comparison, and these support the results from HSE06. The local perturbations in the lattice by introduced Mg defect are restricted in the first and second shell of atoms before eliminated. The formation energy calculated with HSE06 and GGA of single Mg agrees with the previous result. We found the triplet state with C₃ᵥ is the ground state of Mg center with energy lower than the singlet with C₂ᵥ by ~ 0.1 eV. The recent experimental ZPL (557.4 nm) of Mg center in diamond has been discussed in the view of present work. The analysis of the band-structure of the MgN₃ cluster confirms that the MgN₃ defect introduces a shallow donor level in the gap lying within the conduction band edge. This observation is supported by the EMM that produces n-type levels shallower than the P donor level. The formation energy of MgN₂ calculated from a 2NV defect (~ 3.6 eV) is a promising value from which to engineer MgN₃ defects inside the diamond. Ion-implantation followed by heating to about 1200-1600°C might induce migration of N related defects to the localized Mg center. Temperature control is needed for this process to restore the damage and ensure the mobilities of V and N, which demands a more precise experimental study.

Keywords: empirical marker method, generalised gradient approximation, Heyd–Scuseria–Ernzerhof screened hybrid functional, zero phono line

Procedia PDF Downloads 111
6702 An Approach to Electricity Production Utilizing Waste Heat of a Triple-Pressure Cogeneration Combined Cycle Power Plant

Authors: Soheil Mohtaram, Wu Weidong, Yashar Aryanfar

Abstract:

This research investigates the points with heat recovery potential in a triple-pressure cogeneration combined cycle power plant and determines the amount of waste heat that can be recovered. A modified cycle arrangement is then adopted for accessing thermal potentials. Modeling the energy system is followed by thermodynamic and energetic evaluation, and then the price of the manufactured products is also determined using the Total Revenue Requirement (TRR) method and term economic analysis. The results of optimization are then presented in a Pareto chart diagram by implementing a new model with dual objective functions, which include power cost and produce heat. This model can be utilized to identify the optimal operating point for such power plants based on electricity and heat prices in different regions.

Keywords: heat loss, recycling, unused energy, efficient production, optimization, triple-pressure cogeneration

Procedia PDF Downloads 76
6701 Crushing Behaviour of Thin Tubes with Various Corrugated Sections Using Finite Element Modelling

Authors: Shagil Akhtar, Syed Muneeb Iqbal, Mohammed R. Rahim

Abstract:

Common steel tubes with similar confines were used in simulation of tubes with distinctive type of corrugated sections. These corrugated cross-sections were arc-tangent, triangular, trapezoidal and square corrugated sections. The outcome of fluctuating structures of tube cross-section shape on the deformation feedback, collapse form and energy absorption characteristics of tubes under quasi-static axial compression have been prepared numerically. The finite element package of ANSYS Workbench was applied in the current analysis. The axial load-displacement products accompanied by the fold formation of disparate tubes were inspected and compared. Deviation of the initial peak load and the mean crushing force of the tubes with distinctive cross-sections were conscientiously examined.

Keywords: absorbed energy, axial loading, corrugated tubes, finite element, initial peak load, mean crushing force

Procedia PDF Downloads 380
6700 Analysis of Factors Affecting Public Awareness in Paying Zakat

Authors: Roikhan Mochamad Aziz

Abstract:

This study aims to analze the interdependence of several variables simultaneously in order to simplify the form of the relationship between some of the variables studied a number of factors less than the variable studied which means it can also describe the data structure of a research. Based 100 respondents from the public, such as the people of South Tangerang, this study used factor analysis tool. The results of this study indicate that the studied variables being formed into nine factors, namely faith factors, community factors, factors of social care, confidence factor, factor income, educational factors, self-satisfaction factors, factors work, and knowledge factor. Total variance of the 9 factors is 67,30% means that all nine of these factors are factors that can contribute too paying zakat of muzakki consciousness of 67,30% while the remaining 32,70% is supported by other factors outside the 9 factors.

Keywords: zakat, analysis factor, faith, education, knowledge

Procedia PDF Downloads 274