Search results for: data maturity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25387

Search results for: data maturity

21697 Smoking and Alcohol Consumption Predicts Multiple Head and Neck Cancers

Authors: Kim Kennedy, Daren Gibson, Stephanie Flukes, Chandra Diwakarla, Lisa Spalding, Leanne Pilkington, Andrew Redfern

Abstract:

Introduction: It is well known that patients with Head and Neck Cancer (HNC) are at increased risk of subsequent head and neck cancers due to various aetiologies. Aim: We sought to determine the factors contributing to an increased risk of subsequent HNC primaries, and also to evaluate whether Aboriginal patients are at increased risk. Methods: We performed a retrospective cohort analysis of 320 HNC patients from a single centre in Western Australia, identifying 80 Aboriginal patients and 240 non-Aboriginal patients matched on a 1:3 ratio by site, histology, rurality, and age. We collected patient data including smoking and alcohol consumption, tumour and treatment data, and data on subsequent HNC primaries. Results: A subsequent HNC primary was seen in 37 patients (11.6%) overall. There was no significant difference in the rate of second primary HNCs between Aboriginal patients (12.5%) and nonAboriginal patients (11.2%) (p=0.408). Subsequent HNCs, were strongly associated with smoking and alcohol consumption however, with 95% of patients with a second primary being ever-smokers, and 54% of patients with a second primary having a history of excessive alcohol consumption. In the 37 patients with multiple HNC primaries, there were a total of 57 HNCs, with 29 patients having two primaries, six patients having 3 HNC primaries, one patient with four, and one with six. 54 out of the 57 cancers were in ever smokers (94.7%). There were only two multiple HNC primaries in a never smoker, non-drinker, and these cases were of unknown etiology with HPV/p16 status unknown in both cases. In the whole study population, there were 32 HPV-positive HNCs, and 67 p16-positive HNCs, with only two 2 nd HNCs in a p16-positive case, giving a rate of 3% in the p16+ population, which is actually much lower than the rate of second primaries seen in the overall population (11.6%), and was highest in the p16-negative population (15.7%). This suggests that p16-positivity is not a strong risk factor for subsequent primaries, and in fact p16-negativity appeared to be associated with increased risk, however this data is limited by the large number of patients without documented p16 status (45.3% overall, 12% for oropharyngeal, and 59.6% for oral cavity primaries had unknown p16 status). Summary: Subsequent HNC primaries were strongly associated with smoking and alcohol excess. Second and later HNC primaries did not appear to occur at increased rates in Aboriginal patients compared with non-Aboriginal patients, and p16-positivity did not predict increased risk, however p16-negativity was associated with an increased risk of subsequent HNCs.

Keywords: head and neck cancer, multiple primaries, aboriginal, p16 status, smoking, alcohol

Procedia PDF Downloads 69
21696 Interpretation of the Russia-Ukraine 2022 War via N-Gram Analysis

Authors: Elcin Timur Cakmak, Ayse Oguzlar

Abstract:

This study presents the results of the tweets sent by Twitter users on social media about the Russia-Ukraine war by bigram and trigram methods. On February 24, 2022, Russian President Vladimir Putin declared a military operation against Ukraine, and all eyes were turned to this war. Many people living in Russia and Ukraine reacted to this war and protested and also expressed their deep concern about this war as they felt the safety of their families and their futures were at stake. Most people, especially those living in Russia and Ukraine, express their views on the war in different ways. The most popular way to do this is through social media. Many people prefer to convey their feelings using Twitter, one of the most frequently used social media tools. Since the beginning of the war, it is seen that there have been thousands of tweets about the war from many countries of the world on Twitter. These tweets accumulated in data sources are extracted using various codes for analysis through Twitter API and analysed by Python programming language. The aim of the study is to find the word sequences in these tweets by the n-gram method, which is known for its widespread use in computational linguistics and natural language processing. The tweet language used in the study is English. The data set consists of the data obtained from Twitter between February 24, 2022, and April 24, 2022. The tweets obtained from Twitter using the #ukraine, #russia, #war, #putin, #zelensky hashtags together were captured as raw data, and the remaining tweets were included in the analysis stage after they were cleaned through the preprocessing stage. In the data analysis part, the sentiments are found to present what people send as a message about the war on Twitter. Regarding this, negative messages make up the majority of all the tweets as a ratio of %63,6. Furthermore, the most frequently used bigram and trigram word groups are found. Regarding the results, the most frequently used word groups are “he, is”, “I, do”, “I, am” for bigrams. Also, the most frequently used word groups are “I, do, not”, “I, am, not”, “I, can, not” for trigrams. In the machine learning phase, the accuracy of classifications is measured by Classification and Regression Trees (CART) and Naïve Bayes (NB) algorithms. The algorithms are used separately for bigrams and trigrams. We gained the highest accuracy and F-measure values by the NB algorithm and the highest precision and recall values by the CART algorithm for bigrams. On the other hand, the highest values for accuracy, precision, and F-measure values are achieved by the CART algorithm, and the highest value for the recall is gained by NB for trigrams.

Keywords: classification algorithms, machine learning, sentiment analysis, Twitter

Procedia PDF Downloads 73
21695 Occupational Safety and Health in the Wake of Drones

Authors: Hoda Rahmani, Gary Weckman

Abstract:

The body of research examining the integration of drones into various industries is expanding rapidly. Despite progress made in addressing the cybersecurity concerns for commercial drones, knowledge deficits remain in determining potential occupational hazards and risks of drone use to employees’ well-being and health in the workplace. This creates difficulty in identifying key approaches to risk mitigation strategies and thus reflects the need for raising awareness among employers, safety professionals, and policymakers about workplace drone-related accidents. The purpose of this study is to investigate the prevalence of and possible risk factors for drone-related mishaps by comparing the application of drones in construction with manufacturing industries. The chief reason for considering these specific sectors is to ascertain whether there exists any significant difference between indoor and outdoor flights since most construction sites use drones outside and vice versa. Therefore, the current research seeks to examine the causes and patterns of workplace drone-related mishaps and suggest possible ergonomic interventions through data collection. Potential ergonomic practices to mitigate hazards associated with flying drones could include providing operators with professional pieces of training, conducting a risk analysis, and promoting the use of personal protective equipment. For the purpose of data analysis, two data mining techniques, the random forest and association rule mining algorithms, will be performed to find meaningful associations and trends in data as well as influential features that have an impact on the occurrence of drone-related accidents in construction and manufacturing sectors. In addition, Spearman’s correlation and chi-square tests will be used to measure the possible correlation between different variables. Indeed, by recognizing risks and hazards, occupational safety stakeholders will be able to pursue data-driven and evidence-based policy change with the aim of reducing drone mishaps, increasing productivity, creating a safer work environment, and extending human performance in safe and fulfilling ways. This research study was supported by the National Institute for Occupational Safety and Health through the Pilot Research Project Training Program of the University of Cincinnati Education and Research Center Grant #T42OH008432.

Keywords: commercial drones, ergonomic interventions, occupational safety, pattern recognition

Procedia PDF Downloads 209
21694 Analyses for Primary Coolant Pump Coastdown Phenomena for Jordan Research and Training Reactor

Authors: Yazan M. Alatrash, Han-ok Kang, Hyun-gi Yoon, Shen Zhang, Juhyeon Yoon

Abstract:

Flow coastdown phenomena are very important to secure nuclear fuel integrity during loss of off-site power accidents. In this study, primary coolant flow coastdown phenomena are investigated for the Jordan Research and Training Reactor (JRTR) using a simulation software package, Modular Modelling System (MMS). Two MMS models are built. The first one is a simple model to investigate the characteristics of the primary coolant pump only. The second one is a model for a simulation of the Primary Coolant System (PCS) loop, in which all the detailed design data of the JRTR PCS system are modelled, including the geometrical arrangement data. The same design data for a PCS pump are used for both models. Coastdown curves obtained from the two models are compared to study the PCS loop coolant inertia effect on a flow coastdown. Results showed that the loop coolant inertia effect is found to be small in the JRTR PCS loop, i.e., about one second increases in a coastdown half time required to halve the coolant flow rate. The effects of different flywheel inertia on the flow coastdown are also investigated. It is demonstrated that the coastdown half time increases with the flywheel inertia linearly. The designed coastdown half time is proved to be well above the design requirement for the fuel integrity.

Keywords: flow coastdown, loop inertia, modelling, research reactor

Procedia PDF Downloads 503
21693 A Data Driven Methodological Approach to Economic Pre-Evaluation of Reuse Projects of Ancient Urban Centers

Authors: Pietro D'Ambrosio, Roberta D'Ambrosio

Abstract:

The upgrading of the architectural and urban heritage of the urban historic centers almost always involves the planning for the reuse and refunctionalization of the structures. Such interventions have complexities linked to the need to take into account the urban and social context in which the structure and its intrinsic characteristics such as historical and artistic value are inserted. To these, of course, we have to add the need to make a preliminary estimate of recovery costs and more generally to assess the economic and financial sustainability of the whole project of re-socialization. Particular difficulties are encountered during the pre-assessment of costs since it is often impossible to perform analytical surveys and structural tests for both structural conditions and obvious cost and time constraints. The methodology proposed in this work, based on a multidisciplinary and data-driven approach, is aimed at obtaining, at very low cost, reasonably priced economic evaluations of the interventions to be carried out. In addition, the specific features of the approach used, derived from the predictive analysis techniques typically applied in complex IT domains (big data analytics), allow to obtain as a result indirectly the evaluation process of a shared database that can be used on a generalized basis to estimate such other projects. This makes the methodology particularly indicated in those cases where it is expected to intervene massively across entire areas of historical city centers. The methodology has been partially tested during a study aimed at assessing the feasibility of a project for the reuse of the monumental complex of San Massimo, located in the historic center of Salerno, and is being further investigated.

Keywords: evaluation, methodology, restoration, reuse

Procedia PDF Downloads 187
21692 Development of MEMS Based 3-Axis Accelerometer for Hand Movement Monitoring

Authors: Zohra Aziz Ali Manjiyani, Renju Thomas Jacob, Keerthan Kumar

Abstract:

This project develops a hand movement monitoring system, which feeds the data into the computer and gives the 3D image rotation according to the direction of the tilt and hence monitoring the movement of the hand in context to its tilt. Advancement of MEMS Technology has enabled us to get very small and low-cost accelerometer ICs which is based on capacitive principle. Accelerometer based Tilt sensor ADXL335 is used in this paper, based on MEMS technology and the project emphasis on the development of the MEMS-based accelerometer to measure the tilt, interfacing the hardware with the LabVIEW and showing the 3D rotation to the user, which is in his understandable form and tilt data can be saved in the computer. It provides an experience of working on emerging technologies like MEMS and design software like LabVIEW.

Keywords: MEMS accelerometer, tilt sensor ADXL335, LabVIEW simulation, 3D animation

Procedia PDF Downloads 516
21691 Preprocessing and Fusion of Multiple Representation of Finger Vein patterns using Conventional and Machine Learning techniques

Authors: Tomas Trainys, Algimantas Venckauskas

Abstract:

Application of biometric features to the cryptography for human identification and authentication is widely studied and promising area of the development of high-reliability cryptosystems. Biometric cryptosystems typically are designed for patterns recognition, which allows biometric data acquisition from an individual, extracts feature sets, compares the feature set against the set stored in the vault and gives a result of the comparison. Preprocessing and fusion of biometric data are the most important phases in generating a feature vector for key generation or authentication. Fusion of biometric features is critical for achieving a higher level of security and prevents from possible spoofing attacks. The paper focuses on the tasks of initial processing and fusion of multiple representations of finger vein modality patterns. These tasks are solved by applying conventional image preprocessing methods and machine learning techniques, Convolutional Neural Network (SVM) method for image segmentation and feature extraction. An article presents a method for generating sets of biometric features from a finger vein network using several instances of the same modality. Extracted features sets were fused at the feature level. The proposed method was tested and compared with the performance and accuracy results of other authors.

Keywords: bio-cryptography, biometrics, cryptographic key generation, data fusion, information security, SVM, pattern recognition, finger vein method.

Procedia PDF Downloads 150
21690 Ensuring Consistency under the Snapshot Isolation

Authors: Carlos Roberto Valêncio, Fábio Renato de Almeida, Thatiane Kawabata, Leandro Alves Neves, Julio Cesar Momente, Mario Luiz Tronco, Angelo Cesar Colombini

Abstract:

By running transactions under the Snapshot isolation we can achieve a good level of concurrency, specially in databases with high-intensive read workloads. However, Snapshot is not immune to all the problems that arise from competing transactions and therefore no serialization warranty exists. We propose in this paper a technique to obtain data consistency with Snapshot by using some special triggers that we named Daemon Triggers. Besides keeping the benefits of the Snapshot isolation, the technique is specially useful for those database systems that do not have an isolation level that ensures serializability, like Firebird and Oracle. We describe all the anomalies that might arise when using the Snapshot isolation and show how to preclude them with Daemon Triggers. Based on the methodology presented here, it is also proposed the creation of a new isolation level: Daemon Snapshot.

Keywords: data consistency, serialization, snapshot, isolation

Procedia PDF Downloads 329
21689 Examination of the Satisfaction Levels of Pre-Service Teachers Concerning E-Learning Process in Terms of Different Variables

Authors: Agah Tugrul Korucu

Abstract:

Significant changes have taken place for the better in the bulk of information and in the use of technology available in the field of education induced by technological changes in the 21st century. It is mainly the job of the teachers and pre-service teachers to integrate information and communication technologies into education by means of conveying the use of technology to individuals. While the pre-service teachers are conducting lessons by using technology, the methods they have developed are important factors for the requirements of the lesson and for the satisfaction levels of the students. The study of this study is to examine the satisfaction levels of pre-service teachers as regards e-learning in a technological environment in which there are lesson activities conducted through an online learning environment in terms of various variables. The study group of the research is composed of 156 pre-service teachers that were students in the departments of Computer and Teaching Technologies, Art Teaching and Pre-school Teaching in the academic year of 2014 - 2015. The qualitative research method was adopted for this study; the scanning model was employed in collecting the data. “The Satisfaction Scale regarding the E-learning Process”, developed by Gülbahar, and the personal information form, which was developed by the researcher, were used as means of collecting the data. Cronbach α reliability coefficient, which is the internal consistency coefficient of the scale, is 0.91. SPSS computerized statistical package program and the techniques of medium, standard deviation, percentage, correlation, t-test and variance analysis were used in the analysis of the data.

Keywords: online learning environment, integration of information technologies, e-learning, e-learning satisfaction, pre-service teachers

Procedia PDF Downloads 353
21688 International Marketing in Business Practice of Small and Medium-Sized Enterprises

Authors: K. Matušínská, Z. Bednarčík, M. Klepek

Abstract:

This paper examines international marketing in business practice of Czech exporting small and medium-sized enterprises (SMEs) with regard to the strategic perspectives. Research was focused on Czech exporting SMEs from Moravian-Silesia region and their behaviour on international markets. For purpose of collecting data, a questionnaire was given to 262 SMEs involved in international business. Statistics utilized in this research included frequency, mean, percentage, and chi-square test. Data were analysed by Statistical Package for the Social Sciences software. The research analysis disclosed that there is certain space for improvement in strategic marketing especially in marketing research, perception of cultural and social differences, product adaptation and usage of marketing communication tools.

Keywords: international marketing, marketing mix, marketing research, small and medium-sized enterprises, strategic marketing

Procedia PDF Downloads 330
21687 Investigation of Verbal Feedback and Learning Process for Oral Presentation

Authors: Nattawadee Sinpattanawong

Abstract:

Oral presentation has been used mostly in business communication. The business presentation is carrying out through an audio and visual presentation material such as statistical documents, projectors, etc. Common examples of business presentation are intra-organization and sales presentations. The study aims at investigating functions, strategies and contents of assessors’ verbal feedback on presenters’ oral presentations and exploring presenters’ learning process and specific views and expectations concerning assessors’ verbal feedback related to the delivery of the oral presentation. This study is designed as a descriptive qualitative research; four master students and one teacher in English for Business and Industry Presentation Techniques class of public university will be selected. The researcher hopes that any understanding how assessors’ verbal feedback on oral presentations and learning process may illuminate issues for other people. The data from this research may help to expand and facilitate the readers’ understanding of assessors’ verbal feedback on oral presentations and learning process in their own situations. The research instruments include an audio recorder, video recorder and an interview. The students will be interviewing in order to ask for their views and expectations concerning assessors’ verbal feedback related to the delivery of the oral presentation. After finishing data collection, the data will be analyzed and transcribed. The findings of this study are significant because it can provide presenters knowledge to enhance their learning process and provide teachers knowledge about providing verbal feedback on student’s oral presentations on a business context.

Keywords: business context, learning process, oral presentation, verbal feedback

Procedia PDF Downloads 194
21686 [Keynote Talk]: Evidence Fusion in Decision Making

Authors: Mohammad Abdullah-Al-Wadud

Abstract:

In the current era of automation and artificial intelligence, different systems have been increasingly keeping on depending on decision-making capabilities of machines. Such systems/applications may range from simple classifiers to sophisticated surveillance systems based on traditional sensors and related equipment which are becoming more common in the internet of things (IoT) paradigm. However, the available data for such problems are usually imprecise and incomplete, which leads to uncertainty in decisions made based on traditional probability-based classifiers. This requires a robust fusion framework to combine the available information sources with some degree of certainty. The theory of evidence can provide with such a method for combining evidence from different (may be unreliable) sources/observers. This talk will address the employment of the Dempster-Shafer Theory of evidence in some practical applications.

Keywords: decision making, dempster-shafer theory, evidence fusion, incomplete data, uncertainty

Procedia PDF Downloads 425
21685 Solar Energy Applications in Seawater Distillation

Authors: Yousef Abdulaziz Almolhem

Abstract:

Geographically, the most Arabic countries locate in areas confined to arid or semiarid regions. For this reason, most of our countries have adopted the seawater desalination as a strategy to overcome this problem. For example, the water supply of AUE, Kuwait, and Saudi Arabia is almost 100% from the seawater desalination plants. Many areas in Saudia Arabia and other countries in the world suffer from lack of fresh water which hinders the development of these areas, despite the availability of saline water and high solar radiation intensity. Furthermore, most developing countries do not have sufficient meteorological data to evaluate if the solar radiation is enough to meet the solar desalination. A mathematical model was developed to simulate and predict the thermal behavior of the solar still which used direct solar energy for distillation of seawater. Measurement data were measured in the Environment and Natural Resources Department, Faculty of Agricultural and Food sciences, King Faisal University, Saudi Arabia, in order to evaluate the present model. The simulation results obtained from this model were compared with the measured data. The main results of this research showed that there are slight differences between the measured and predicted values of the elements studied, which is resultant from the change of some factors considered constants in the model such as the sky clearance, wind velocity and the salt concentration in the water in the basin of the solar still. It can be concluded that the present model can be used to estimate the average total solar radiation and the thermal behavior of the solar still in any area with consideration to the geographical location.

Keywords: mathematical model, sea water, distillation, solar radiation

Procedia PDF Downloads 283
21684 Assessing the Danger Factors Correlated With Dental Fear: An Observational Study

Authors: Mimoza Canga, Irene Malagnino, Giulia Malagnino, Alketa Qafmolla, Ruzhdie Qafmolla, Vito Antonio Malagnino

Abstract:

The goal of the present study was to analyze the risk factors regarding dental fear. This observational study was conducted during the period of February 2020 - April 2022 in Albania. The sample was composed of 200 participants, of which 40% were males and 60% were females. The participants' age range varied from 35 to 75 years old. We divided them into four age groups: 35-45, 46-55, 56-65, and 66-75 years old. Statistical analysis was performed using IBM SPSS Statistics 23.0. Data were scrutinized by the Post Hoc LSD test in analysis of variance (ANOVA). The P ≤ 0.05 values were considered significant. Data analysis included Confidence Interval (95% CI). The prevailing age range in the sample was mostly from 55 to 65 years old, 35.6% of the patients. In all, 50% of the patients had extreme fear about the fact that the dentist may be infected with Covid-19, 12.2% of them had low dental fear, and 37.8% had extreme dental fear. However, data collected from the current study indicated that a large proportion of patients 49.5% of them had high dental fear regarding the dentist not respecting the quarantine due to COVID-19, in comparison with 37.2% of them who had low dental fear and 13.3% who had extreme dental fear. The present study confirmed that 22.2% of the participants had an extreme fear of poor hygiene practices of the dentist that have been associated with the transmission of COVID-19 infection, 57.8% had high dental fear, and 20% of them had low dental fear. The present study showed that 50% of the patients stated that another factor that causes extreme fear was that the patients feel pain after interventions in the oral cavity. Strong associations were observed between dental fear and pain 95% CI; 0.24-0.52, P-value ˂ .0001. The results of the present study confirmed strong associations between dental fear and the fact that the dentist may be infected with Covid-19 (95% CI; 0.46-0.70, P-value ˂ .0001). Similarly, the analysis of the present study demonstrated that there was a statistically significant correlation between dental fear and poor hygiene practices of the dentist with 95% CI; 0.82-1.02, P-value ˂ .0001. On the basis of our statistical data analysis, the dentist did not respect the quarantine due to COVID-19 having a significant impact on dental fear with a P-value of ˂ .0001. This study shows important risk factors that significantly increase dental fear.

Keywords: Covid-19, dental fear, pain, past dreadful experiences

Procedia PDF Downloads 141
21683 Performance Study of PV Power plants in Algeria

Authors: Razika Ihaddadene, Nabila Ihaddadene

Abstract:

This paper aims to highlight the importance of the application of the IEC 61724 standard in the study of the performance analysis of photovoltaic power plants on a monthly and annual scale. Likewise, the comparison of two photovoltaic power plants with two different climates was carried out in order to determine the effect of climatic parameters on the analysis of photovoltaic performances. All data from the Ain Skhouna and Adrar photovoltaic power plants for 2018 and the data from the Saida1 field for one month in 2019 were used. The results of the performance analysis according to the indicated standard show that the Saida PV power plant performs better than the Adrar PV power plant, which is due to the effect of increasing the ambient temperature. Increasing ambient temperature increases losses decreases system efficiency and performance ratio. It presents a key element in the proper functioning of PV plants.

Keywords: pv power plants, IEC 61724 norm, grid connected pv, algeria

Procedia PDF Downloads 77
21682 Perceptions of Tunisian EFL Students toward Their Writing Difficulties

Authors: Salwa Enneifer

Abstract:

The research is intended to investigate Tunisian students’ own perception of the difficulties they encounter in the writing task. To achieve this objective, a questionnaire was administered to students enrolled in the ‘Faculty of Letters Arts and Humanities’ in Kairouan, in Tunisia. Students were classified into three groups: first-, second-, and third-year students. The researcher used 120 questionnaires filled in by the students as data for this study; moreover, 30 students participated in a semi-structured interview to complete the data. The questionnaire results revealed that Tunisian EFL students faced spelling and grammar difficulties. ANOVA also revealed that the first-year students did not recognise that Arabic and English greatly differ in their respective punctuation systems. The second-year class, however, was fully aware of this difference. Additionally, the interview shed light on other aspects or different difficulties experienced by students in writing: a cruel ‘lack of vocabulary’, Arabic language interference, the organisation of the essay and especially the academic essay, and difficulty with writing an argumentative essay.

Keywords: difficulties, writing, Tunisian, EFL students

Procedia PDF Downloads 241
21681 An Evolutionary Algorithm for Optimal Fuel-Type Configurations in Car Lines

Authors: Charalampos Saridakis, Stelios Tsafarakis

Abstract:

Although environmental concern is on the rise across Europe, current market data indicate that adoption rates of environmentally friendly vehicles remain extremely low. Against this background, the aim of this paper is to a) assess preferences of European consumers for clean-fuel cars and their characteristics and b) design car lines that optimize the combination of fuel types among models in the line-up. In this direction, the authors introduce a new evolutionary mechanism and implement it to stated-preference data derived from a large-scale choice-based conjoint experiment that measures consumer preferences for various factors affecting clean-fuel vehicle (CFV) adoption. The proposed two-step methodology provides interesting insights into how new and existing fuel-types can be combined in a car line that maximizes customer satisfaction.

Keywords: clean-fuel vehicles, product line design, conjoint analysis, choice experiment, differential evolution

Procedia PDF Downloads 279
21680 An Optimal Control Method for Reconstruction of Topography in Dam-Break Flows

Authors: Alia Alghosoun, Nabil El Moçayd, Mohammed Seaid

Abstract:

Modeling dam-break flows over non-flat beds requires an accurate representation of the topography which is the main source of uncertainty in the model. Therefore, developing robust and accurate techniques for reconstructing topography in this class of problems would reduce the uncertainty in the flow system. In many hydraulic applications, experimental techniques have been widely used to measure the bed topography. In practice, experimental work in hydraulics may be very demanding in both time and cost. Meanwhile, computational hydraulics have served as an alternative for laboratory and field experiments. Unlike the forward problem, the inverse problem is used to identify the bed parameters from the given experimental data. In this case, the shallow water equations used for modeling the hydraulics need to be rearranged in a way that the model parameters can be evaluated from measured data. However, this approach is not always possible and it suffers from stability restrictions. In the present work, we propose an adaptive optimal control technique to numerically identify the underlying bed topography from a given set of free-surface observation data. In this approach, a minimization function is defined to iteratively determine the model parameters. The proposed technique can be interpreted as a fractional-stage scheme. In the first stage, the forward problem is solved to determine the measurable parameters from known data. In the second stage, the adaptive control Ensemble Kalman Filter is implemented to combine the optimality of observation data in order to obtain the accurate estimation of the topography. The main features of this method are on one hand, the ability to solve for different complex geometries with no need for any rearrangements in the original model to rewrite it in an explicit form. On the other hand, its achievement of strong stability for simulations of flows in different regimes containing shocks or discontinuities over any geometry. Numerical results are presented for a dam-break flow problem over non-flat bed using different solvers for the shallow water equations. The robustness of the proposed method is investigated using different numbers of loops, sensitivity parameters, initial samples and location of observations. The obtained results demonstrate high reliability and accuracy of the proposed techniques.

Keywords: erodible beds, finite element method, finite volume method, nonlinear elasticity, shallow water equations, stresses in soil

Procedia PDF Downloads 130
21679 EEG Signal Processing Methods to Differentiate Mental States

Authors: Sun H. Hwang, Young E. Lee, Yunhan Ga, Gilwon Yoon

Abstract:

EEG is a very complex signal with noises and other bio-potential interferences. EOG is the most distinct interfering signal when EEG signals are measured and analyzed. It is very important how to process raw EEG signals in order to obtain useful information. In this study, the EEG signal processing techniques such as EOG filtering and outlier removal were examined to minimize unwanted EOG signals and other noises. The two different mental states of resting and focusing were examined through EEG analysis. A focused state was induced by letting subjects to watch a red dot on the white screen. EEG data for 32 healthy subjects were measured. EEG data after 60-Hz notch filtering were processed by a commercially available EOG filtering and our presented algorithm based on the removal of outliers. The ratio of beta wave to theta wave was used as a parameter for determining the degree of focusing. The results show that our algorithm was more appropriate than the existing EOG filtering.

Keywords: EEG, focus, mental state, outlier, signal processing

Procedia PDF Downloads 284
21678 Rule Insertion Technique for Dynamic Cell Structure Neural Network

Authors: Osama Elsarrar, Marjorie Darrah, Richard Devin

Abstract:

This paper discusses the idea of capturing an expert’s knowledge in the form of human understandable rules and then inserting these rules into a dynamic cell structure (DCS) neural network. The DCS is a form of self-organizing map that can be used for many purposes, including classification and prediction. This particular neural network is considered to be a topology preserving network that starts with no pre-structure, but assumes a structure once trained. The DCS has been used in mission and safety-critical applications, including adaptive flight control and health-monitoring in aerial vehicles. The approach is to insert expert knowledge into the DCS before training. Rules are translated into a pre-structure and then training data are presented. This idea has been demonstrated using the well-known Iris data set and it has been shown that inserting the pre-structure results in better accuracy with the same training.

Keywords: neural network, self-organizing map, rule extraction, rule insertion

Procedia PDF Downloads 172
21677 Comparison of Incidence and Risk Factors of Early Onset and Late Onset Preeclampsia: A Population Based Cohort Study

Authors: Sadia Munir, Diana White, Aya Albahri, Pratiwi Hastania, Eltahir Mohamed, Mahmood Khan, Fathima Mohamed, Ayat Kadhi, Haila Saleem

Abstract:

Preeclampsia is a major complication of pregnancy. Prediction and management of preeclampsia is a challenge for obstetricians. To our knowledge, no major progress has been achieved in the prevention and early detection of preeclampsia. There is very little known about the clear treatment path of this disorder. Preeclampsia puts both mother and baby at risk of several short term- and long term-health problems later in life. There is huge health service cost burden in the health care system associated with preeclampsia and its complications. Preeclampsia is divided into two different types. Early onset preeclampsia develops before 34 weeks of gestation, and late onset develops at or after 34 weeks of gestation. Different genetic and environmental factors, prognosis, heritability, biochemical and clinical features are associated with early and late onset preeclampsia. Prevalence of preeclampsia greatly varies all over the world and is dependent on ethnicity of the population and geographic region. To authors best knowledge, no published data on preeclampsia exist in Qatar. In this study, we are reporting the incidence of preeclampsia in Qatar. The purpose of this study is to compare the incidence and risk factors of both early onset and late onset preeclampsia in Qatar. This retrospective longitudinal cohort study was conducted using data from the hospital record of Women’s Hospital, Hamad Medical Corporation (HMC), from May 2014-May 2016. Data collection tool, which was approved by HMC, was a researcher made extraction sheet that included information such as blood pressure during admission, socio demographic characteristics, delivery mode, and new born details. A total of 1929 patients’ files were identified by the hospital information management when they apply codes of preeclampsia. Out of 1929 files, 878 had significant gestational hypertension without proteinuria, 365 had preeclampsia, 364 had severe preeclampsia, and 188 had preexisting hypertension with superimposed proteinuria. In this study, 78% of the data was obtained by hospital electronic system (Cerner) and the remaining 22% was from patient’s paper records. We have gone through detail data extraction from 560 files. Initial data analysis has revealed that 15.02% of pregnancies were complicated with preeclampsia from May 2014-May 2016. We have analyzed difference in the two different disease entities in the ethnicity, maternal age, severity of hypertension, mode of delivery and infant birth weight. We have identified promising differences in the risk factors of early onset and late onset preeclampsia. The data from clinical findings of preeclampsia will contribute to increased knowledge about two different disease entities, their etiology, and similarities/differences. The findings of this study can also be used in predicting health challenges, improving health care system, setting up guidelines, and providing the best care for women suffering from preeclampsia.

Keywords: preeclampsia, incidence, risk factors, maternal

Procedia PDF Downloads 141
21676 Clinical Correlates of Suicide Attempts in Trauma-Exposed Youth

Authors: Sandra Landy

Abstract:

Traumatic experiences in youth are a major risk factor for future suicidality. With suicide steadily increasing over the last 20 years as one of the top three leading causes of death in children and adolescents, it is essential to examine the aspects of trauma that contribute to suicidality. A quantitative secondary data analysis of a prospective, multicenter 24-month observational study of youth who have experienced traumatic experiences was utilized to determine the relationship between bullying and suicide attempts, cyberbullying and suicide attempts, and number of traumas and suicide attempts. Data was analyzed with the Spearman-rank correlation test to determine the relationships. Findings supported past research establishing a relationship between bulling, including cyberbullying, and suicide attempts, as well as increasing number of traumatic experiences and suicide attempts. Further large scale studies may be beneficial to support these findings.

Keywords: adolescent(s), suicide, trauma, bullying, cyberbullying

Procedia PDF Downloads 45
21675 Shock Compressibility of Iron Alloys Calculated in the Framework of Quantum-Statistical Models

Authors: Maxim A. Kadatskiy, Konstantin V. Khishchenko

Abstract:

Iron alloys are widespread components in various types of structural materials which are exposed to intensive thermal and mechanical loads. Various quantum-statistical cell models with the approximation of self-consistent field can be used for the prediction of the behavior of these materials under extreme conditions. The application of these models is even more valid, the higher the temperature and the density of matter. Results of Hugoniot calculation for iron alloys in the framework of three quantum-statistical (the Thomas–Fermi, the Thomas–Fermi with quantum and exchange corrections and the Hartree–Fock–Slater) models are presented. Results of quantum-statistical calculations are compared with results from other reliable models and available experimental data. It is revealed a good agreement between results of calculation and experimental data for terra pascal pressures. Advantages and disadvantages of this approach are shown.

Keywords: alloy, Hugoniot, iron, terapascal pressure

Procedia PDF Downloads 342
21674 Perceptions of Farmers against Liquid Fertilizer Benefits of Beef Cattle Urine

Authors: Sitti Nurani Sirajuddin, Ikrar Moh. Saleh, Kasmiyati Kasim

Abstract:

The aim of this study was to know the perception of livestock farmers on the use of liquid organic fertilizer from urine of cattle at Sinjai Regency, South Sulawesi Province. The choice of location for a farmer group manufactures and markets liquid organic fertilizer from cattle urine. This research was conducted in May to July 2013.The population were all livestock farmers who use organic liquid fertilizer from cattle urine samples while livestock farmers who are directly involved in the manufacture of liquid organic fertilizer totaled 42 people. Data were collected through observation and interview. Data were analyzed descriptively. The results showed that the perception of livestock farmers of using liquid organic fertilizer from cattle urine provide additional revenue benefits, cost minimization farming, reducing environmental pollution which not contrary to the customs.

Keywords: liquid organic fertilizer, perceptions, farmers, beef cattle

Procedia PDF Downloads 474
21673 A Comparative Study of Mental Health and Well-Being between Qugong Practitioners and Non-Practitioners

Authors: Masoumeh Khosravi

Abstract:

Introduction: The complementary therapies and Qigong exercises is important in order to maintain physical and mental health. Objective: This study was done to compare and investigate well-being and mental health's state between practitioners of a Qigong practice (Falun Dafa) and non-practitioners. Method: It was a comparative study with 60 samples (30 practitioners of Falun Dafa, and 30 non-practitioners), who were selected by random sampling from Tehran city of Iran. Data were collected by mental health inventory (SCL90) and well-being questionnaire. Multivariate variance analyzing and t-test were used for analyzing data. Results: Results showed significant differences in most components of mental health including anxiety, aggressiveness, obsessive-compulsion, interpersonal sensitivity, somatization disorder, depression, phobia between practitioners and non-practitioners. Well-being was significantly higher in practitioners than non-practitioners. Conclusion: Accordingly, we concluded Falun Gong exercises have high impact on mental health and well-being in people.

Keywords: mental health, well-being, Qigong, Falun Dafa

Procedia PDF Downloads 380
21672 Comparison of Water Equivalent Ratio of Several Dosimetric Materials in Proton Therapy Using Monte Carlo Simulations and Experimental Data

Authors: M. R. Akbari , H. Yousefnia, E. Mirrezaei

Abstract:

Range uncertainties of protons are currently a topic of interest in proton therapy. Two of the parameters that are often used to specify proton range are water equivalent thickness (WET) and water equivalent ratio (WER). Since WER values for a specific material is nearly constant at different proton energies, it is a more useful parameter to compare. In this study, WER values were calculated for different proton energies in polymethyl methacrylate (PMMA), polystyrene (PS) and aluminum (Al) using FLUKA and TRIM codes. The results were compared with analytical, experimental and simulated SEICS code data obtained from the literature. In FLUKA simulation, a cylindrical phantom, 1000 mm in height and 300 mm in diameter, filled with the studied materials was simulated. A typical mono-energetic proton pencil beam in a wide range of incident energies usually applied in proton therapy (50 MeV to 225 MeV) impinges normally on the phantom. In order to obtain the WER values for the considered materials, cylindrical detectors, 1 mm in height and 20 mm in diameter, were also simulated along the beam trajectory in the phantom. In TRIM calculations, type of projectile, energy and angle of incidence, type of target material and thickness should be defined. The mode of 'detailed calculation with full damage cascades' was selected for proton transport in the target material. The biggest difference in WER values between the codes was 3.19%, 1.9% and 0.67% for Al, PMMA and PS, respectively. In Al and PMMA, the biggest difference between each code and experimental data was 1.08%, 1.26%, 2.55%, 0.94%, 0.77% and 0.95% for SEICS, FLUKA and SRIM, respectively. FLUKA and SEICS had the greatest agreement (≤0.77% difference in PMMA and ≤1.08% difference in Al, respectively) with the available experimental data in this study. It is concluded that, FLUKA and TRIM codes have capability for Bragg curves simulation and WER values calculation in the studied materials. They can also predict Bragg peak location and range of proton beams with acceptable accuracy.

Keywords: water equivalent ratio, dosimetric materials, proton therapy, Monte Carlo simulations

Procedia PDF Downloads 324
21671 Six Sigma Assessment in the Latvian Commercial Banking Sector

Authors: J. Erina, I. Erins

Abstract:

The goals of the present research are to estimate Six Sigma implementation in Latvian commercial banks and to identify the perceived benefits of its implementation. To achieve the goals, the authors used a sequential explanatory method. To obtain empirical data, the authors have developed the questionnaire and adapted it for the employees of Latvian commercial banks. The questions are related to Six Sigma implementation and its perceived benefits. The questionnaire mainly consists of closed questions, the evaluation of which is based on 5 point Likert scale. The obtained empirical data has shown that of the two hypotheses put forward in the present research Hypothesis 1 has to be rejected, while Hypothesis 2 has been partially confirmed. The authors have also faced some research limitations related to the fact that the participants in the questionnaire belong to different rank of the organization hierarchy.

Keywords: six sigma, quality, commercial banking sector, latvian

Procedia PDF Downloads 354
21670 Nurse-Identified Barriers and Facilitators to Delivering End-of-Life Care in a Cardiac Intensive Care Unit: A Qualitative Study

Authors: Elena Ivany, Leanne Aitken

Abstract:

Little is known about the delivery of end-of-life care in cardiac intensive care unit (CICU) settings. The aims of this study were to highlight the nurse-identified barriers and facilitators to delivering end-of-life care in the CICU, and to identify whether any of the barriers and/or facilitators are specific to the CICU setting. This was an exploratory qualitative study utilizing semi-structured individual interviews as the data collection method and inductive thematic analysis to structure the data. Six CICU nurses took part in the study. Five key themes were identified, each theme including both barriers and facilitators. The five key themes are as follows: patient-centered care, emotional challenges, reaching concordance, nursing contribution and the surgical intensive care unit.

Keywords: end-of-life, cardiovascular disease, cardiac surgery, critical care

Procedia PDF Downloads 265
21669 Monte Carlo Estimation of Heteroscedasticity and Periodicity Effects in a Panel Data Regression Model

Authors: Nureni O. Adeboye, Dawud A. Agunbiade

Abstract:

This research attempts to investigate the effects of heteroscedasticity and periodicity in a Panel Data Regression Model (PDRM) by extending previous works on balanced panel data estimation within the context of fitting PDRM for Banks audit fee. The estimation of such model was achieved through the derivation of Joint Lagrange Multiplier (LM) test for homoscedasticity and zero-serial correlation, a conditional LM test for zero serial correlation given heteroscedasticity of varying degrees as well as conditional LM test for homoscedasticity given first order positive serial correlation via a two-way error component model. Monte Carlo simulations were carried out for 81 different variations, of which its design assumed a uniform distribution under a linear heteroscedasticity function. Each of the variation was iterated 1000 times and the assessment of the three estimators considered are based on Variance, Absolute bias (ABIAS), Mean square error (MSE) and the Root Mean Square (RMSE) of parameters estimates. Eighteen different models at different specified conditions were fitted, and the best-fitted model is that of within estimator when heteroscedasticity is severe at either zero or positive serial correlation value. LM test results showed that the tests have good size and power as all the three tests are significant at 5% for the specified linear form of heteroscedasticity function which established the facts that Banks operations are severely heteroscedastic in nature with little or no periodicity effects.

Keywords: audit fee lagrange multiplier test, heteroscedasticity, lagrange multiplier test, Monte-Carlo scheme, periodicity

Procedia PDF Downloads 141
21668 Impact of Capital Structure, Dividend Policy and Sustainability on Value of Firm: A Case Study of Spinning Textile Sector of Pakistan

Authors: Zahid Ahmad, Samia Yousaf

Abstract:

The main purpose of this study is to evaluate and assess the financial position, operating performance, and recent outlook of the companies. This study investigates the impact of capital structure, dividend policy and sustainability on the value of firms of textile spinning sector of Pakistan which is listed on Pakistan stock exchange. The panel data technique has been applied to this group of textile sector which is textile spinning. This study covers the last ten years of time period. All the data related to the variables have been collected from the annual reports and financial statements of the textile sector firms. There are differently related determinants to measure the capital structure which are fixed assets turnover ratio, debt ratio, equity ratio, debt to equity ratio, assets tangibility, and shareholder’s equity. Dividend policy is being measured by two determinants which are earning per share (EPS) and dividend payout ratio. Sustainability is being measured by three suitable factors which are sales growth, gross profit margin ratio and firm size. These are three independent variables and their determinants of this study. Value of firm is measured through the return on asset (ROA). Capital structure is at the top of the list among all the three variables. According to the results of this research work, somewhere all the three variables generates positive and significant effect on the firm’s performance and its growth.

Keywords: capital structure, dividend policy, panel data, sustainability

Procedia PDF Downloads 231