Search results for: fisheries support estimate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8949

Search results for: fisheries support estimate

5289 A Survey on Smart Security Mechanism Using Graphical Passwords

Authors: Aboli Dhanavade, Shweta Bhimnath, Rutuja Jumale, Ajay Nadargi

Abstract:

Security to any of our personal thing is our most basic need. It is not possible to directly apply that standard Human-computer—interaction approaches. Important usability goal for authentication system is to support users in selecting best passwords. Users often select text-passwords that are easy to remember, but they are more open for attackers to guess. The human brain is good in remembering pictures rather than textual characters. So the best alternative is being designed that is Graphical passwords. However, Graphical passwords are still immature. Conventional password schemes are also vulnerable to Shoulder-surfing attacks, many shoulder-surfing resistant graphical passwords schemes have been proposed. Next, we have analyzed the security and usability of the proposed scheme, and show the resistance of the proposed scheme to shoulder-surfing and different accidental logins.

Keywords: shoulder-surfing, security, authentication, text-passwords

Procedia PDF Downloads 362
5288 Investigation of Shear Strength, and Dilative Behavior of Coarse-grained Samples Using Laboratory Test and Machine Learning Technique

Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari

Abstract:

Coarse-grained soils are known and commonly used in a wide range of geotechnical projects, including high earth dams or embankments for their high shear strength. The most important engineering property of these soils is friction angle which represents the interlocking between soil particles and can be applied widely in designing and constructing these earth structures. Friction angle and dilative behavior of coarse-grained soils can be estimated from empirical correlations with in-situ testing and physical properties of the soil or measured directly in the laboratory performing direct shear or triaxial tests. Unfortunately, large-scale testing is difficult, challenging, and expensive and is not possible in most soil mechanic laboratories. So, it is common to remove the large particles and do the tests, which cannot be counted as an exact estimation of the parameters and behavior of the original soil. This paper describes a new methodology to simulate particles grading distribution of a well-graded gravel sample to a smaller scale sample as it can be tested in an ordinary direct shear apparatus to estimate the stress-strain behavior, friction angle, and dilative behavior of the original coarse-grained soil considering its confining pressure, and relative density using a machine learning method. A total number of 72 direct shear tests are performed in 6 different sizes, 3 different confining pressures, and 4 different relative densities. Multivariate Adaptive Regression Spline (MARS) technique was used to develop an equation in order to predict shear strength and dilative behavior based on the size distribution of coarse-grained soil particles. Also, an uncertainty analysis was performed in order to examine the reliability of the proposed equation.

Keywords: MARS, coarse-grained soil, shear strength, uncertainty analysis

Procedia PDF Downloads 162
5287 International Service Learning 3.0: Using Technology to Improve Outcomes and Sustainability

Authors: Anthony Vandarakis

Abstract:

Today’s International Service Learning practices require an update: modern technologies, fresh educational frameworks, and a new operating system to accountably prosper. This paper describes a model of International Service Learning (ISL), which combines current technological hardware, electronic platforms, and asynchronous communications that are grounded in inclusive pedagogy. This model builds on the work around collaborative field trip learning, extending the reach to international partnerships across continents. Mobile technology, 21st century skills and summit-basecamp modeling intersect to support novel forms of learning that tread lightly on fragile natural ecosystems, affirm local reciprocal partnership in projects, and protect traveling participants from common yet avoidable cultural pitfalls.

Keywords: International Service Learning, ISL, field experiences, mobile technology, out there in here, summit basecamp pedagogy

Procedia PDF Downloads 172
5286 Comprehensive Analysis and Optimization of Alkaline Water Electrolysis for Green Hydrogen Production: Experimental Validation, Simulation Study, and Cost Analysis

Authors: Umair Ahmed, Muhammad Bin Irfan

Abstract:

This study focuses on designing and optimization of an alkaline water electrolyser for the production of green hydrogen. The aim is to enhance the durability and efficiency of this technology while simultaneously reducing the cost associated with the production of green hydrogen. The experimental results obtained from the alkaline water electrolyser are compared with simulated results using Aspen Plus software, allowing a comprehensive analysis and evaluation. To achieve the aforementioned goals, several design and operational parameters are investigated. The electrode material, electrolyte concentration, and operating conditions are carefully selected to maximize the efficiency and durability of the electrolyser. Additionally, cost-effective materials and manufacturing techniques are explored to decrease the overall production cost of green hydrogen. The experimental setup includes a carefully designed alkaline water electrolyser, where various performance parameters (such as hydrogen production rate, current density, and voltage) are measured. These experimental results are then compared with simulated data obtained using Aspen Plus software. The simulation model is developed based on fundamental principles and validated against the experimental data. The comparison between experimental and simulated results provides valuable insight into the performance of an alkaline water electrolyser. It helps to identify the areas where improvements can be made, both in terms of design and operation, to enhance the durability and efficiency of the system. Furthermore, the simulation results allow cost analysis providing an estimate of the overall production cost of green hydrogen. This study aims to develop a comprehensive understanding of alkaline water electrolysis technology. The findings of this research can contribute to the development of more efficient and durable electrolyser technology while reducing the cost associated with this technology. Ultimately, these advancements can pave the way for a more sustainable and economically viable hydrogen economy.

Keywords: sustainable development, green energy, green hydrogen, electrolysis technology

Procedia PDF Downloads 90
5285 Structure and Dimensions Of Teacher Professional Identity

Authors: Vilma Zydziunaite, Gitana Balezentiene, Vilma Zydziunaite

Abstract:

Teaching is one of most responsible profession, and it is not only a job of an artisan. This profes-sion needs a developed ability to identify oneself with the chosen teaching profession. Research questions: How teachers characterize their authentic individual professional identity? What factors teachers exclude, which support and limit the professional identity? Aim was to develop the grounded theory (GT) about teacher’s professional identity (TPI). Research methodology is based on Charmaz GT version. Data were collected via semi-structured interviews with the he sample of 12 teachers. Findings. 15 extracted categories revealed that the core of TPI is teacher’s professional calling. Premises of TPI are family support, motives for choos-ing teacher’s profession, teacher’s didactic competence. Context of TPI consists of teacher compli-ance with the profession, purposeful preparation for pedagogical studies, professional growth. The strategy of TPI is based on teacher relationship with school community strengthening. The profes-sional frustration limits the TPI. TPI outcome includes teacher recognition, authority; professional mastership, professionalism, professional satisfaction. Dimensions of TPI GT the past (reaching teacher’s profession), present (teacher’s commitment to professional activity) and future (teacher’s profession reconsideration). Conclusions. The substantive GT describes professional identity as complex, changing and life-long process, which develops together with teacher’s personal identity and is connected to professional activity. The professional decision "to be a teacher" is determined by the interaction of internal (professional vocation, personal characteristics, values, self-image, talents, abilities) and external (family, friends, school community, labor market, working condi-tions) factors. The dimensions of the TPI development includes: the past (the pursuit of the teaching profession), the present (the teacher's commitment to professional activity) and the future (the revi-sion of the teaching profession). A significant connection emerged - as the teacher's professional commitment strengthens (creating a self-image, growing the teacher's professional experience, recognition, professionalism, mastery, satisfaction with pedagogical activity), the dimension of re-thinking the teacher's profession weakens. This proves that professional identity occupies an im-portant place in a teacher's life and it affects his professional success and job satisfaction. Teachers singled out the main factors supporting a teacher's professional identity: their own self-image per-ception, professional vocation, positive personal qualities, internal motivation, teacher recognition, confidence in choosing a teaching profession, job satisfaction, professional knowledge, professional growth, good relations with the school community, pleasant experiences, quality education process, excellent student achievements.

Keywords: grounded theory, teacher professional identity, semi-structured interview, school, students, school community, family

Procedia PDF Downloads 74
5284 The Role of University in High-Level Human Capital Cultivation in China’s West Greater Bay Area

Authors: Rochelle Yun Ge

Abstract:

University has played an active role in the country’s development in China. There has been an increasing research interest on the development of higher education cooperation, talent cultivation and attraction, and innovation in the regional development. The Triple Helix model, which indicates that regional innovation and development can be engendered by collaboration among university, industry and government, is often adopted as research framework. The research using triple helix model emphasizes the active and often leading role of university in knowledge-based economy. Within this framework, universities are conceptualized as key institutions of knowledge production, transmission and transference potentially making critical contributions to regional development. Recent research almost uniformly consistent in indicating the high-level research labours (i.e., doctoral, post-doctoral researchers and academics) as important actors in the innovation ecosystem with their cross-geographical human capital and resources presented. In 2019, the development of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) was officially launched as an important strategy by the Chinese government to boost the regional development of the Pearl River Delta and to support the realization of “One Belt One Road” strategy. Human Capital formation is at the center of this plan. One of the strategic goals of the GBA development is set to evolve into an international educational hub and innovation center with high-level talents. A number of policies have been issued to attract and cultivate human resources in different GBA cities, in particular for the high-level R&D (research and development) talents such as doctoral and post-doctoral researchers. To better understand the development of high-level talents hub in the GBA, more empirical considerations should be given to explore the approaches of talents cultivation and attraction in the GBA. What remains to explore is the ways to better attract, train, support and retain these talents in the cross-systems context. This paper aims to investigate the role of university in human capital development under China’s national agenda of GBA integration through the lens of universities and actors. Two flagship comprehensive universities are selected to be the cases and 30 interviews with university officials, research leaders, post-doctors and doctoral candidates are used for analysis. In particular, we look at in what ways have universities aligned their strategies and practices to the Chinese government’s GBA development strategy? What strategies and practices have been developed by universities for the cultivation and attraction of high-level research labor? And what impacts the universities have made for the regional development? The main arguments of this research highlights the specific ways in which universities in smaller sub-regions can collaborate in high-level human capital formation and the role policy can play in facilitating such collaborations.

Keywords: university, human capital, regional development, triple-helix model

Procedia PDF Downloads 113
5283 The Unspoken Learning Landscape of Indigenous Peoples (IP) Learners: A Process Documentation and Analysis

Authors: Ailene B. Anonuevo

Abstract:

The aim of the study was to evaluate the quality of life presently available for the IP students in selected schools in the Division of Panabo City. This further explores their future dreams and current status in classes and examines some implications relative to their studies. The study adopted the mixed methodology and used a survey research design as the operational framework for data gathering. Data were collected by self-administered questionnaires and interviews with sixty students from three schools in Panabo City. In addition, this study describes the learners’ background and school climate as variables that might influence their performance in school. The study revealed that an IP student needs extra attention due to their unfavorable learning environment. The study also found out that like any other students, IP learners yearns for a brighter future with the support of our government.

Keywords: IP learners, learning landscape, school climate, quality of life

Procedia PDF Downloads 224
5282 Application of Stochastic Models on the Portuguese Population and Distortion to Workers Compensation Pensioners Experience

Authors: Nkwenti Mbelli Njah

Abstract:

This research was motivated by a project requested by AXA on the topic of pensions payable under the workers compensation (WC) line of business. There are two types of pensions: the compulsorily recoverable and the not compulsorily recoverable. A pension is compulsorily recoverable for a victim when there is less than 30% of disability and the pension amount per year is less than six times the minimal national salary. The law defines that the mathematical provisions for compulsory recoverable pensions must be calculated by applying the following bases: mortality table TD88/90 and rate of interest 5.25% (maybe with rate of management). To manage pensions which are not compulsorily recoverable is a more complex task because technical bases are not defined by law and much more complex computations are required. In particular, companies have to predict the amount of payments discounted reflecting the mortality effect for all pensioners (this task is monitored monthly in AXA). The purpose of this research was thus to develop a stochastic model for the future mortality of the worker’s compensation pensioners of both the Portuguese market workers and AXA portfolio. Not only is past mortality modeled, also projections about future mortality are made for the general population of Portugal as well as for the two portfolios mentioned earlier. The global model was split in two parts: a stochastic model for population mortality which allows for forecasts, combined with a point estimate from a portfolio mortality model obtained through three different relational models (Cox Proportional, Brass Linear and Workgroup PLT). The one-year death probabilities for ages 0-110 for the period 2013-2113 are obtained for the general population and the portfolios. These probabilities are used to compute different life table functions as well as the not compulsorily recoverable reserves for each of the models required for the pensioners, their spouses and children under 21. The results obtained are compared with the not compulsory recoverable reserves computed using the static mortality table (TD 73/77) that is currently being used by AXA, to see the impact on this reserve if AXA adopted the dynamic tables.

Keywords: compulsorily recoverable, life table functions, relational models, worker’s compensation pensioners

Procedia PDF Downloads 164
5281 A Framework for Evaluation of Enterprise Architecture Implementation Methodologies

Authors: Babak Darvish Rouhani, Mohd Naz'ri Mahrin, Fatemeh Nikpay, Maryam Khanian Najafabadi

Abstract:

Enterprise Architecture (EA) Implementation Methodologies have become an important part of EA projects. Several implementation methodologies have been proposed, as a theoretical and practical approach, to facilitate and support the development of EA within an enterprise. A significant question when facing the starting of EA implementation is deciding which methodology to utilize. In order to answer this question, a framework with several criteria is applied in this paper for the comparative analysis of existing EA implementation methodologies. Five EA implementation methodologies including: EAP, TOGAF, DODAF, Gartner, and FEA are selected in order to compare with proposed framework. The results of the comparison indicate that those methodologies have not reached a sufficient maturity as whole due to lack of consideration on requirement management, maintenance, continuum, and complexities in their process. The framework has also ability for the evaluation of any kind of EA implementation methodologies.

Keywords: enterprise architecture, EAIM, evaluating EAIM, framework for evaluation, enterprise architecture implementation methodology

Procedia PDF Downloads 384
5280 Satellite Derived Evapotranspiration and Turbulent Heat Fluxes Using Surface Energy Balance System (SEBS)

Authors: Muhammad Tayyab Afzal, Muhammad Arslan, Mirza Muhammad Waqar

Abstract:

One of the key components of the water cycle is evapotranspiration (ET), which represents water consumption by vegetated and non-vegetated surfaces. Conventional techniques for measurements of ET are point based and representative of the local scale only. Satellite remote sensing data with large area coverage and high temporal frequency provide representative measurements of several relevant biophysical parameters required for estimation of ET at regional scales. The objective is of this research is to exploit satellite data in order to estimate evapotranspiration. This study uses Surface Energy Balance System (SEBS) model to calculate daily actual evapotranspiration (ETa) in Larkana District, Sindh Pakistan using Landsat TM data for clouds-free days. As there is no flux tower in the study area for direct measurement of latent heat flux or evapotranspiration and sensible heat flux, therefore, the model estimated values of ET were compared with reference evapotranspiration (ETo) computed by FAO-56 Penman Monteith Method using meteorological data. For a country like Pakistan, agriculture by irrigation in the river basins is the largest user of fresh water. For the better assessment and management of irrigation water requirement, the estimation of consumptive use of water for agriculture is very important because it is the main consumer of water. ET is yet an essential issue of water imbalance due to major loss of irrigation water and precipitation on cropland. As large amount of irrigated water is lost through ET, therefore its accurate estimation can be helpful for efficient management of irrigation water. Results of this study can be used to analyse surface conditions, i.e. temperature, energy budgets and relevant characteristics. Through this information we can monitor vegetation health and suitable agricultural conditions and can take controlling steps to increase agriculture production.

Keywords: SEBS, remote sensing, evapotranspiration, ETa

Procedia PDF Downloads 333
5279 Radar Track-based Classification of Birds and UAVs

Authors: Altilio Rosa, Chirico Francesco, Foglia Goffredo

Abstract:

In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%).

Keywords: birds, classification, machine learning, UAVs

Procedia PDF Downloads 222
5278 Understanding Sixteen Basic Desires and Modern Approaches to Agile Team Motivation: Case Study

Authors: Anna Suvorova

Abstract:

Classical motivation theories hold that there are two kinds of motivation, intrinsic and extrinsic. Leaders are looking for effective motivation techniques, but frequently external influences do not work or, even worse, reduce team productivity. We see only the tip of the iceberg -human behavior. However, beneath the surface of the water are factors that directly affect our behavior -desires. Believing that employees need to be motivated, companies design a motivation system based on the principle: do it and get a reward. As a matter of fact, we all have basic desires. Everybody is motivated but to different extents. Following the principle "intrinsic motivation over extrinsic rewards", we need to create an environment that will support intrinsic motivation and potential of employees, and team, rather than individual work.

Keywords: motivation profile, motivation techniques, agile HR, basic desires, agile people, human behavior, people management

Procedia PDF Downloads 114
5277 Silencing the Protagonist: Gender and Rape Depiction in Pakistani Dramas

Authors: Saman R. Khan, Najma Sadiq

Abstract:

Silencing of opinions is an important aspect of Spiral of Silence theory however its applicability in rape-themed dramas requires investigation. This study focuses on the portrayal of female rape victim protagonists in Pakistani dramas and the factors influencing their behavior after rape. A quantitative content analysis was conducted on two prime-time dramas which directly dealt with female rape victims. Results indicate that the female protagonists who faced rape are shown as silent and submissive characters who are unable to communicate about their ordeal due to fear of social isolation. These findings lend support to the Spiral of Silence theory and indicate that the theory’s basic elements (inability to express opinions and fear of social isolation) exist in these TV dramas.

Keywords: gender stereotyping, rape victims, the spiral of silence, TV dramas

Procedia PDF Downloads 169
5276 Getting to Know ICU Nurses and Their Duties

Authors: Masih Nikgou

Abstract:

ICU nurses or intensive care nurses are highly specialized and trained healthcare personnel. These nurses provide nursing care for patients with life-threatening illnesses or conditions. They provide the experience, knowledge and specialized skills that patients need to survive and recover. Intensive care nurses (ICU) are trained to make momentary decisions and act quickly when the patient's condition changes. Their primary work environment is in the hospital in intensive care units. Typically, ICU patients require a high level of care. ICU nurses work in challenging and complex fields in their nursing profession. They have the primary duty of caring for and saving patients who are fighting for their lives. Intensive care (ICU) nurses are highly trained to provide exceptional care to patients who depend on 24/7 nursing care. A patient in the ICU is often equipped with a ventilator, intubated and connected to several life support machines and medical equipment. Intensive Care Nurses (ICU) have full expertise in considering all aspects of bringing back their patients. Some of the specific responsibilities of ICU nurses include (a) Assessing and monitoring the patient's progress and identifying any sudden changes in the patient's medical condition. (b) Administration of drugs intravenously by injection or through gastric tubes. (c) Provide regular updates on patient progress to physicians, patients, and their families. (d) According to the clinical condition of the patient, perform the approved diagnostic or treatment methods. (e) In case of a health emergency, informing the relevant doctors. (f) To determine the need for emergency interventions, evaluate laboratory data and vital signs of patients. (g) Caring for patient needs during recovery in the ICU. (h) ICU nurses often provide emotional support to patients and their families. (i) Regulating and monitoring medical equipment and devices such as medical ventilators, oxygen delivery devices, transducers, and pressure lines. (j) Assessment of pain level and sedation needs of patients. (k) Maintaining patient reports and records. As the name suggests, critical care nurses work primarily in ICU health care units. ICUs are completely healthy and have proper lighting with strict adherence to health and safety from medical centers. ICU nurses usually move between the intensive care unit, the emergency department, the operating room, and other special departments of the hospital. ICU nurses usually follow a standard shift schedule that includes morning, afternoon, and night schedules. There are also other relocation programs depending on the hospital and region. Nurses who are passionate about data and managing a patient's condition and outcomes typically do well as ICU nurses. An inquisitive mind and attention to processes are equally important. ICU nurses are completely compassionate and are not afraid to advocate for their patients and family members. who are distressed.

Keywords: nursing, intensive care unit, pediatric intensive care unit, mobile intensive care unit, surgical intensive care unite

Procedia PDF Downloads 78
5275 On Modeling Data Sets by Means of a Modified Saddlepoint Approximation

Authors: Serge B. Provost, Yishan Zhang

Abstract:

A moment-based adjustment to the saddlepoint approximation is introduced in the context of density estimation. First applied to univariate distributions, this methodology is extended to the bivariate case. It then entails estimating the density function associated with each marginal distribution by means of the saddlepoint approximation and applying a bivariate adjustment to the product of the resulting density estimates. The connection to the distribution of empirical copulas will be pointed out. As well, a novel approach is proposed for estimating the support of distribution. As these results solely rely on sample moments and empirical cumulant-generating functions, they are particularly well suited for modeling massive data sets. Several illustrative applications will be presented.

Keywords: empirical cumulant-generating function, endpoints identification, saddlepoint approximation, sample moments, density estimation

Procedia PDF Downloads 162
5274 Supervised Learning for Cyber Threat Intelligence

Authors: Jihen Bennaceur, Wissem Zouaghi, Ali Mabrouk

Abstract:

The major aim of cyber threat intelligence (CTI) is to provide sophisticated knowledge about cybersecurity threats to ensure internal and external safeguards against modern cyberattacks. Inaccurate, incomplete, outdated, and invaluable threat intelligence is the main problem. Therefore, data analysis based on AI algorithms is one of the emergent solutions to overcome the threat of information-sharing issues. In this paper, we propose a supervised machine learning-based algorithm to improve threat information sharing by providing a sophisticated classification of cyber threats and data. Extensive simulations investigate the accuracy, precision, recall, f1-score, and support overall to validate the designed algorithm and to compare it with several supervised machine learning algorithms.

Keywords: threat information sharing, supervised learning, data classification, performance evaluation

Procedia PDF Downloads 150
5273 Modelling Causal Effects from Complex Longitudinal Data via Point Effects of Treatments

Authors: Xiaoqin Wang, Li Yin

Abstract:

Background and purpose: In many practices, one estimates causal effects arising from a complex stochastic process, where a sequence of treatments are assigned to influence a certain outcome of interest, and there exist time-dependent covariates between treatments. When covariates are plentiful and/or continuous, statistical modeling is needed to reduce the huge dimensionality of the problem and allow for the estimation of causal effects. Recently, Wang and Yin (Annals of statistics, 2020) derived a new general formula, which expresses these causal effects in terms of the point effects of treatments in single-point causal inference. As a result, it is possible to conduct the modeling via point effects. The purpose of the work is to study the modeling of these causal effects via point effects. Challenges and solutions: The time-dependent covariates often have influences from earlier treatments as well as on subsequent treatments. Consequently, the standard parameters – i.e., the mean of the outcome given all treatments and covariates-- are essentially all different (null paradox). Furthermore, the dimension of the parameters is huge (curse of dimensionality). Therefore, it can be difficult to conduct the modeling in terms of standard parameters. Instead of standard parameters, we have use point effects of treatments to develop likelihood-based parametric approach to the modeling of these causal effects and are able to model the causal effects of a sequence of treatments by modeling a small number of point effects of individual treatment Achievements: We are able to conduct the modeling of the causal effects from a sequence of treatments in the familiar framework of single-point causal inference. The simulation shows that our method achieves not only an unbiased estimate for the causal effect but also the nominal level of type I error and a low level of type II error for the hypothesis testing. We have applied this method to a longitudinal study of COVID-19 mortality among Scandinavian countries and found that the Swedish approach performed far worse than the other countries' approach for COVID-19 mortality and the poor performance was largely due to its early measure during the initial period of the pandemic.

Keywords: causal effect, point effect, statistical modelling, sequential causal inference

Procedia PDF Downloads 205
5272 The Epidemiological Study on Prevalence of Giardia lamblia among Children in Esfahan City of Iran

Authors: Shahla Rostamirad

Abstract:

Purpose: Giardiasis is a widespread infection in humans caused by Giardia lamblia. The prevalence of this parasite among children in Isfahan of Iran is unknown. This study intended to estimate Giardia lamblia infection prevalence and identify possible associated risk factors in a healthy pediatric population living in the Isfahan, a metropolitan city of Iran. Methods: Between September 2010 and March 2012, 1448 stool sample from children with clinical manifestation that refer to clinical lab in Isfahan city for stool examination were collected and analyzed. About 1218 samples were positive for parasitic disease. All of samples were examined and diagnosed by direct examination and formalin-ether concentration of stools. Results: A total of 1218 positive cases were analyzed in this study. The findings showed that 92.5% of patients were infected by protozoa and 7.5 percent with helminth infection. The highest and lowest rate of infection belongs to Giardia lamblia and Entamoeba histolytica with 75% and 1.1%, respectively. Other infection cases were included of Blastocystys hominis 9.9%, E. coli 6.5%, H. nana 1.3%, Enterobious vermicolaris 4% and Ascaris lumbricoides 2.2% percent. The population studied revealed a gender distribution of 53.2% male and 46.8% female. Age distribution was 57.3% between 0-5 years and 42.7% between 6-15 years.The prevalence was higher among children aged 0-5 years (57.8%), than among older children (42.2%). Conclusion: The prevalence of protozoan parasite, especially Giardiasis, in children residing in the region of Isfahan is high. Several risk factors were associated with this prevalence and highlight the importance of parents' education and sanitation conditions in the children's well being. The association between Giardia lamblia and H. pylori seems an important issue deserving further investigation in order to promote prevention or treatment strategies. Other risk factor include presence of Helicobacter pylori infection, living in houses with own drainage system and reported household, pet contact, especially with cat and dog.

Keywords: Giardia duodenalis, prevalence, risk factors, children, Isfahan, Iran

Procedia PDF Downloads 377
5271 An Overview of Nano-Particles Effect on Mechanical Properties of Composites

Authors: Ganiyu I. Lawal, Olatunde I. Sekunowo, Stephen I. Durowaye

Abstract:

Composites depending on the nature of their constituents and mode of production are regarded as one of the advanced materials that drive today’s technology. This paper attempts a short review of the subject matter with a general aim of pushing to the next level the frontier of knowledge as it impacts the technology of nano-particles manufacturing. The objectives entail an effort to; aggregate recent research efforts in this field, analyse research findings and observations, streamline research efforts and support industry in taking decision on areas of fund deployment. It is envisaged that this work will serve as a quick hand-on compendium material for researchers in this field and a guide to relevant government departments wishing to fund a research whose outcomes have the potential of improving the nation’s GDP.

Keywords: advanced materials, composites, mechanical properties, nano-particles

Procedia PDF Downloads 276
5270 General and Sport Specific Fitness Testing Practices: Global Developments

Authors: Peter Smolianov, Jed Smith, Lisa Chen, Steven Dion, Christopher Schoen, Jaclyn Norberg

Abstract:

This study compared general conditioning and sport specific fitness tests used in China, European Union (EU), Russia, and the United States. A constant content comparison method was used to identify the differences. Data from the study indicated that there were shared test components, including aerobic fitness, muscular strength, endurance, and flexibility. However, the testing components and items, as well as the cut-off values of the analyzed tests varied by country for the same gender and age. Culturally unique methods of testing and preparing for the tests were identified. Additionally, evidence revealed support for lifelong fitness and long-term sport participation through comprehensive fitness and wellness guidelines for different age groups and through new internet-based technologies.

Keywords: fitness testing, global trends, new developments, worldwide comparison

Procedia PDF Downloads 159
5269 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images

Authors: Ravija Gunawardana, Banuka Athuraliya

Abstract:

Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.

Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine

Procedia PDF Downloads 156
5268 Synthesis of Vic-Dioxime Palladium (II) Complex: Precursor for Deposition on SBA-15 in ScCO2

Authors: Asım Egitmen, Aysen Demir, Burcu Darendeli, Fatma Ulusal, Bilgehan Güzel

Abstract:

Synthesizing supercritical carbon dioxide (scCO2) soluble precursors would be helpful for many processes of material syntheses based on scCO2. Ligand (amphi-(1Z, 2Z)-N-(2-fluoro-3-(trifluoromethyl) phenyl)-N'-hydroxy-2-(hydroxyimino) were synthesized from chloro glyoxime and flourus aniline and Pd(II) complex (precursor) prepared. For scCO2 deposition method, organometallic precursor was dissolved in scCO2 and impregnated onto the SBA-15 at 90 °C and 3000 psi. Then the organometallic precursor was reduced with H2 in the CO2 mixture (150 psi H2 + 2850 psi CO2). Pd deposited support material was characterized by ICP-OES, XRD, FE-SEM, TEM and EDX analyses. The Pd loading of the prepared catalyst, measured by ICP-OES showed a value of about 1.64% mol/g Pd of catalyst. Average particle size was found 5.3 nm. The catalytic activity of prepared catalyst was investigated over Suzuki-Miyaura C-C coupling reaction in different solvent with K2CO3 at 50 oC. The conversion ratio was determined by gas chromatography.

Keywords: nanoparticle, nanotube, oximes, precursor, supercritical CO2

Procedia PDF Downloads 356
5267 Analysis of the Role of Population Ageing on Crosstown Roads' Traffic Accidents Using Latent Class Clustering

Authors: N. Casado-Sanz, B. Guirao

Abstract:

The population aged 65 and over is projected to double in the coming decades. Due to this increase, driver population is expected to grow and in the near future, all countries will be faced with population aging of varying intensity and in unique time frames. This is the greatest challenge facing industrialized nations and due to this fact, the study of the relationships of dependency between population aging and road safety is becoming increasingly relevant. Although the deterioration of driving skills in the elderly has been analyzed in depth, to our knowledge few research studies have focused on the road infrastructure and the mobility of this particular group of users. In Spain, crosstown roads have one of the highest fatality rates. These rural routes have a higher percentage of elderly people who are more dependent on driving due to the absence or limitations of urban public transportation. Analysing road safety in these routes is very complex because of the variety of the features, the dispersion of the data and the complete lack of related literature. The objective of this paper is to identify key factors that cause traffic accidents. The individuals under study were the accidents with killed or seriously injured in Spanish crosstown roads during the period 2006-2015. Latent cluster analysis was applied as a preliminary tool for segmentation of accidents, considering population aging as the main input among other socioeconomic indicators. Subsequently, a linear regression analysis was carried out to estimate the degree of dependence between the accident rate and the variables that define each group. The results show that segmenting the data is very interesting and provides further information. Additionally, the results revealed the clear influence of the aging variable in the clusters obtained. Other variables related to infrastructure and mobility levels, such as the crosstown roads layout and the traffic intensity aimed to be one of the key factors in the causality of road accidents.

Keywords: cluster analysis, population ageing, rural roads, road safety

Procedia PDF Downloads 111
5266 Application of Sentinel-2 Data to Evaluate the Role of Mangrove Conservation and Restoration on Aboveground Biomass

Authors: Raheleh Farzanmanesh, Christopher J. Weston

Abstract:

Mangroves are forest ecosystems located in the inter-tidal regions of tropical and subtropical coastlines that provide many valuable economic and ecological benefits for millions of people, such as preventing coastal erosion, providing breeding, and feeding grounds, improving water quality, and supporting the well-being of local communities. In addition, mangroves capture and store high amounts of carbon in biomass and soils that play an important role in combating climate change. The decline in mangrove area has prompted government and private sector interest in mangrove conservation and restoration projects to achieve multiple Sustainable Development Goals, from reducing poverty to improving life on land. Mangrove aboveground biomass plays an essential role in the global carbon cycle, climate change mitigation and adaptation by reducing CO2 emissions. However, little information is available about the effectiveness of mangrove sustainable management on mangrove change area and aboveground biomass (AGB). Here, we proposed a method for mapping, modeling, and assessing mangrove area and AGB in two Global Environment Facility (GEF) blue forests projects based on Sentinel-2 Level 1C imagery during their conservation lifetime. The SVR regression model was used to estimate AGB in Tahiry Honko project in Madagascar and the Abu Dhabi Blue Carbon Demonstration Project (Abu Dhabi Emirates. The results showed that mangrove forests and AGB declined in the Tahiry Honko project, while in the Abu Dhabi project increased after the conservation initiative was established. The results provide important information on the impact of mangrove conservation activities and contribute to the development of remote sensing applications for mapping and assessing mangrove forests in blue carbon initiatives.

Keywords: blue carbon, mangrove forest, REDD+, aboveground biomass, Sentinel-2

Procedia PDF Downloads 73
5265 Corrosion Protection of Steel 316 by Electrochemically Synthesized Conductive Poly (O-Toluidine)

Authors: H. Acar, M. Karakışla, L. Aksu, M. Saçak

Abstract:

The corrosion protection effect of poly(o-toluidine) (POT) coated on steel 316 electrode was determined in corrosive media such as NaCl, H2SO4 and HCl with the use of Tafel curves and electrochemical impedance spectroscopy techniques. The POT coatings were prepared with cyclic voltammetry technique in aqueous solution of oxalic acid and they were characterized by FTIR and UV-Visible absorption spectroscopy. The Tafel curves revealed that the POT coating provides the most effective protection compared to the bare steel 316 electrode in NaCl as corrosive medium. The results were evaluated based upon data decrease of corrosion current and shift to positive potentials with the increase of number of scans. Electrochemical impedance spectroscopy measurements were found to support Tafel data of POT coating.

Keywords: corrosion, impedance spectroscopy, steel 316, poly(o-toluidine)

Procedia PDF Downloads 319
5264 Regularization of Gene Regulatory Networks Perturbed by White Noise

Authors: Ramazan I. Kadiev, Arcady Ponosov

Abstract:

Mathematical models of gene regulatory networks can in many cases be described by ordinary differential equations with switching nonlinearities, where the initial value problem is ill-posed. Several regularization methods are known in the case of deterministic networks, but the presence of stochastic noise leads to several technical difficulties. In the presentation, it is proposed to apply the methods of the stochastic singular perturbation theory going back to Yu. Kabanov and Yu. Pergamentshchikov. This approach is used to regularize the above ill-posed problem, which, e.g., makes it possible to design stable numerical schemes. Several examples are provided in the presentation, which support the efficiency of the suggested analysis. The method can also be of interest in other fields of biomathematics, where differential equations contain switchings, e.g., in neural field models.

Keywords: ill-posed problems, singular perturbation analysis, stochastic differential equations, switching nonlinearities

Procedia PDF Downloads 194
5263 Speech Identification Test for Individuals with High-Frequency Sloping Hearing Loss in Telugu

Authors: S. B. Rathna Kumar, Sandya K. Varudhini, Aparna Ravichandran

Abstract:

Telugu is a south central Dravidian language spoken in Andhra Pradesh, a southern state of India. The available speech identification tests in Telugu have been developed to determine the communication problems of individuals having a flat frequency hearing loss. These conventional speech audiometric tests would provide redundant information when used on individuals with high-frequency sloping hearing loss because of better hearing sensitivity in the low- and mid-frequency regions. Hence, conventional speech identification tests do not indicate the true nature of the communication problem of individuals with high-frequency sloping hearing loss. It is highly possible that a person with a high-frequency sloping hearing loss may get maximum scores if conventional speech identification tests are used. Hence, there is a need to develop speech identification test materials that are specifically designed to assess the speech identification performance of individuals with high-frequency sloping hearing loss. The present study aimed to develop speech identification test for individuals with high-frequency sloping hearing loss in Telugu. Individuals with high-frequency sloping hearing loss have difficulty in perception of voiceless consonants whose spectral energy is above 1000 Hz. Hence, the word lists constructed with phonemes having mid- and high-frequency spectral energy will estimate speech identification performance better for such individuals. The phonemes /k/, /g/, /c/, /ṭ/ /t/, /p/, /s/, /ś/, /ṣ/ and /h/are preferred for the construction of words as these phonemes have spectral energy distributed in the frequencies above 1000 KHz predominantly. The present study developed two word lists in Telugu (each word list contained 25 words) for evaluating speech identification performance of individuals with high-frequency sloping hearing loss. The performance of individuals with high-frequency sloping hearing loss was evaluated using both conventional and high-frequency word lists under recorded voice condition. The results revealed that the developed word lists were found to be more sensitive in identifying the true nature of the communication problem of individuals with high-frequency sloping hearing loss.

Keywords: speech identification test, high-frequency sloping hearing loss, recorded voice condition, Telugu

Procedia PDF Downloads 419
5262 Use of Adjunctive Cannabinoids in Opioid Dosing for Patients with Chronic Pain

Authors: Kristina De Milt, Nicole Huang, Jihye Park

Abstract:

Opioids have been a mainstay of the treatment of chronic pain, but their overprescription and misuse have led to an opioid epidemic. Recently, as an attempt to decrease the number of opioids prescribed, the use of cannabinoid therapy has become an increasingly popular adjunctive chronic pain management choice among providers. This review of literature investigates the effects of adjunctive cannabinoids to opioids in the management of chronic pain. The nine articles are included in the literature review range from observational studies to meta-analyses published in the year 2016 and after. A majority of the studies showed a decrease in the need for opioids after adjunctive cannabinoids were introduced and, in some instances, the cessation of opioid consumption. More high-quality evidence is needed to further support this stance and providers should weigh the benefits and risks of adjunctive cannabinoids according to the clinical picture.

Keywords: cannabis, chronic pain, opioids, pain management

Procedia PDF Downloads 253
5261 The Impact of Political Polarization on the COVID-19 Vaccine Hesitancy in the United States: A Qualitative Study

Authors: Peiran Ma

Abstract:

This study explored the role of political polarization in an individual's decision of receiving the COVID-19 vaccine. A total of 15 participants participated in individual interviews and focus group discussions about the relationships among domestic political polarization, vaccine hesitancy, and behavioral responses to the COVID-19 pandemic. Political affiliation affected an individual’s decision on the COVID-19 vaccination, such that people who identified as Liberals and Democrats were more accepting of the vaccine. On the other hand, the level of influence declined over time (2020-2022) when the general conception of COVID-19 immunization shifted from political to personal. Results provided qualitative support to the previously identified positive relationship between divided political opinions and COVID-19 vaccine hesitancy and highlighted the decreasing trend in the power of political polarization in vaccination and the existence of other factors.

Keywords: COVID-19, vaccine hesitancy, political polarization, partisanship, ideology

Procedia PDF Downloads 85
5260 Spawning Induction and Early Larval Development of the Penshell Atrina maura (Sowerby, 1835) under Controlled Conditions in Ecuador

Authors: Jose Melena, Rosa Santander, Tanya Gonzalez, Richard Duque, Juan Illanes

Abstract:

Ecuador is one of the countries with the greatest aquatic biodiversity worldwide. In particular, there are at least a dozen native marine species with great aquaculture potential locally. This research concerns one of those species. It has proposed to implement experimental protocols in order to induce spawning and to generate the early larval development of the penshell Atrina maura under controlled conditions. Bioassays were carried out with one adult batch (n= 26) with an average valvar length of 307,6 ± 9,4 mm, which were collected in the Puerto El Morro Mangrove (2° 42' 33'' S, 80° 14' 28'' W), Guayas Province. During a short acclimation stage, five adults of penshell A. maura were sacrificed in order to determine their sexual maturity degree and to estimate their sex ratio. Dissection showed that three were ripe females (60%) and two were ripe males (40%). Later, three groups (n= 7 by each) were tested with two treatments in order to induce the broodstock spawning: thermal stress, osmotic shock, and one control. Spawning induction was achieved by the immersion in water to 0 g L⁻¹ per 1 h and immersion in sea water to 34 g L⁻¹ per 1 h. After the delivery of gametes, it was achieved 1,35 × 10⁶ viable zygotes. As results, fertilized eggs had 60 µm diameter; while first and second cell divisions were observed to 1 h post-fertilization, with individual average length of 65 ± 4 µm and polar body. Latter cell divisions, including gastrula stage, appeared at 9 h post-fertilization, with individual average length of 71 ± 4 µm; and trochophore stage at 16 h post-fertilization with individual average length of 75 ± 5 µm. In addition, veliger stage was registered at 20 h post-fertilization with individual average length of 81 ± 5 µm. Umboned larvae appeared at day 8 post-fertilization, with individual average length of 145 ± 6 µm. These pioneering results in Ecuador can strengthen the local conservation process of the overexploited A. maura and to encourage its production for commercial purposes.

Keywords: Atrina maura, Ecuador, larval development, spawning induction

Procedia PDF Downloads 163