Search results for: data quality
27879 Biological Aquaculture System (BAS) Design and Water Quality on Marble Goby (Oxyeleotris marmoratus): A Water Recirculating Technology
Authors: AnnWon Chew, Nik Norulaini Nik Ab Rahman, Mohd Omar Ab Kadir, C. C. Chen, Jaafar Chua
Abstract:
This paper presents an innovative process to solve the ammonia, nitrite and nitrate build-up problem in recirculating system using Biological Aquaculture System (BAS). The novel aspects of the process lie in a series of bioreactors that specially arrange and design to meet the required conditions for water purification. The BAS maximizes the utilization of bio-balls as the ideal surface for beneficial microbes to flourish. It also serves as a physical barrier that traps organic particles, which in turn becomes source for the microbes to perform their work. The operation in the proposed system gives a low concentration and average range of good maintain excellent water quality, i.e., with low levels of ammonia, nitrite, nitrate, a suitable pH range for aquaculture and low turbidity. The BAS thus provides a solution for sustainable small-scale, urban aquaculture operation with a high recovery water and minimal waste disposal.Keywords: ammonia, bioreactor, Biological Aquaculture System (BAS), bio-balls, water recirculating technology
Procedia PDF Downloads 59227878 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics
Authors: Zahid Ullah, Atlas Khan
Abstract:
The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.Keywords: mathematical sciences, data analytics, advances, unveiling
Procedia PDF Downloads 9427877 A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics
Authors: Douglas A. Menezes, Isabel D. Nunes, Ulrich Schiel
Abstract:
Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data.Keywords: educational data visualization, high-level petri nets, instructional design, learning analytics
Procedia PDF Downloads 24327876 Analysis of Users’ Behavior on Book Loan Log Based on Association Rule Mining
Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong
Abstract:
This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24 percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.Keywords: behavior, data mining technique, a priori algorithm, knowledge discovery
Procedia PDF Downloads 40427875 Exploration of RFID in Healthcare: A Data Mining Approach
Authors: Shilpa Balan
Abstract:
Radio Frequency Identification, also popularly known as RFID is used to automatically identify and track tags attached to items. This study focuses on the application of RFID in healthcare. The adoption of RFID in healthcare is a crucial technology to patient safety and inventory management. Data from RFID tags are used to identify the locations of patients and inventory in real time. Medical errors are thought to be a prominent cause of loss of life and injury. The major advantage of RFID application in healthcare industry is the reduction of medical errors. The healthcare industry has generated huge amounts of data. By discovering patterns and trends within the data, big data analytics can help improve patient care and lower healthcare costs. The number of increasing research publications leading to innovations in RFID applications shows the importance of this technology. This study explores the current state of research of RFID in healthcare using a text mining approach. No study has been performed yet on examining the current state of RFID research in healthcare using a data mining approach. In this study, related articles were collected on RFID from healthcare journal and news articles. Articles collected were from the year 2000 to 2015. Significant keywords on the topic of focus are identified and analyzed using open source data analytics software such as Rapid Miner. These analytical tools help extract pertinent information from massive volumes of data. It is seen that the main benefits of adopting RFID technology in healthcare include tracking medicines and equipment, upholding patient safety, and security improvement. The real-time tracking features of RFID allows for enhanced supply chain management. By productively using big data, healthcare organizations can gain significant benefits. Big data analytics in healthcare enables improved decisions by extracting insights from large volumes of data.Keywords: RFID, data mining, data analysis, healthcare
Procedia PDF Downloads 23327874 The Importance of Knowledge Innovation for External Audit on Anti-Corruption
Authors: Adel M. Qatawneh
Abstract:
This paper aimed to determine the importance of knowledge innovation for external audit on anti-corruption in the entire Jordanian bank companies are listed in Amman Stock Exchange (ASE). The study importance arises from the need to recognize the Knowledge innovation for external audit and anti-corruption as the development in the world of business, the variables that will be affected by external audit innovation are: reliability of financial data, relevantly of financial data, consistency of the financial data, Full disclosure of financial data and protecting the rights of investors to achieve the objectives of the study a questionnaire was designed and distributed to the society of the Jordanian bank are listed in Amman Stock Exchange. The data analysis found out that the banks in Jordan have a positive importance of Knowledge innovation for external audit on anti-corruption. They agree on the benefit of Knowledge innovation for external audit on anti-corruption. The statistical analysis showed that Knowledge innovation for external audit had a positive impact on the anti-corruption and that external audit has a significantly statistical relationship with anti-corruption, reliability of financial data, consistency of the financial data, a full disclosure of financial data and protecting the rights of investors.Keywords: knowledge innovation, external audit, anti-corruption, Amman Stock Exchange
Procedia PDF Downloads 46527873 Performance Improvement of Cooperative Scheme in Wireless OFDM Systems
Authors: Ki-Ro Kim, Seung-Jun Yu, Hyoung-Kyu Song
Abstract:
Recently, the wireless communication systems are required to have high quality and provide high bit rate data services. Researchers have studied various multiple antenna scheme to meet the demand. In practical application, it is difficult to deploy multiple antennas for limited size and cost. Cooperative diversity techniques are proposed to overcome the limitations. Cooperative communications have been widely investigated to improve performance of wireless communication. Among diversity schemes, space-time block code has been widely studied for cooperative communication systems. In this paper, we propose a new cooperative scheme using pre-coding and space-time block code. The proposed cooperative scheme provides improved error performance than a conventional cooperative scheme using space-time block coding scheme.Keywords: cooperative communication, space-time block coding, pre-coding
Procedia PDF Downloads 35927872 Automated End-to-End Pipeline Processing Solution for Autonomous Driving
Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi
Abstract:
Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing
Procedia PDF Downloads 12327871 Permeability Prediction Based on Hydraulic Flow Unit Identification and Artificial Neural Networks
Authors: Emad A. Mohammed
Abstract:
The concept of hydraulic flow units (HFU) has been used for decades in the petroleum industry to improve the prediction of permeability. This concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir rock quality index (RQI). Both indices are based on reservoir porosity and permeability of core samples. It is assumed that core samples with similar FZI values belong to the same HFU. Thus, after dividing the porosity-permeability data based on the HFU, transformations can be done in order to estimate the permeability from the porosity. The conventional practice is to use the power law transformation using conventional HFU where percentage of error is considerably high. In this paper, neural network technique is employed as a soft computing transformation method to predict permeability instead of power law method to avoid higher percentage of error. This technique is based on HFU identification where Amaefule et al. (1993) method is utilized. In this regard, Kozeny and Carman (K–C) model, and modified K–C model by Hasan and Hossain (2011) are employed. A comparison is made between the two transformation techniques for the two porosity-permeability models. Results show that the modified K-C model helps in getting better results with lower percentage of error in predicting permeability. The results also show that the use of artificial intelligence techniques give more accurate prediction than power law method. This study was conducted on a heterogeneous complex carbonate reservoir in Oman. Data were collected from seven wells to obtain the permeability correlations for the whole field. The findings of this study will help in getting better estimation of permeability of a complex reservoir.Keywords: permeability, hydraulic flow units, artificial intelligence, correlation
Procedia PDF Downloads 13627870 Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues
Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid
Abstract:
New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.Keywords: information visualization, visual analytics, text mining, visual text analytics tools, big data visualization
Procedia PDF Downloads 39927869 Real-Time Inventory Management and Operational Efficiency in Manufacturing
Authors: Tom Wanyama
Abstract:
We have developed a weight-based parts inventory monitoring system utilizing the Industrial Internet of Things (IIoT) to enhance operational efficiencies in manufacturing. The system addresses various challenges, including eliminating downtimes caused by stock-outs, preventing human errors in parts delivery and product assembly, and minimizing motion waste by reducing unnecessary worker movements. The system incorporates custom QR codes for simplified inventory tracking and retrieval processes. The generated data serves a dual purpose by enabling real-time optimization of parts flow within manufacturing facilities and facilitating retroactive optimization of stock levels for informed decision-making in inventory management. The pilot implementation at SEPT Learning Factory successfully eradicated data entry errors, optimized parts delivery, and minimized workstation downtimes, resulting in a remarkable increase of over 10% in overall equipment efficiency across all workstations. Leveraging the IIoT features, the system seamlessly integrates information into the process control system, contributing to the enhancement of product quality. This approach underscores the importance of effective tracking of parts inventory in manufacturing to achieve transparency, improved inventory control, and overall profitability. In the broader context, our inventory monitoring system aligns with the evolving focus on optimizing supply chains and maintaining well-managed warehouses to ensure maximum efficiency in the manufacturing industry.Keywords: industrial Internet of things, industrial systems integration, inventory monitoring, inventory control in manufacturing
Procedia PDF Downloads 3627868 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks
Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz
Abstract:
Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.Keywords: customer relationship management, churn prediction, telecom industry, deep learning, artificial neural networks
Procedia PDF Downloads 14727867 The Face Sync-Smart Attendance
Authors: Bekkem Chakradhar Reddy, Y. Soni Priya, Mathivanan G., L. K. Joshila Grace, N. Srinivasan, Asha P.
Abstract:
Currently, there are a lot of problems related to marking attendance in schools, offices, or other places. Organizations tasked with collecting daily attendance data have numerous concerns. There are different ways to mark attendance. The most commonly used method is collecting data manually by calling each student. It is a longer process and problematic. Now, there are a lot of new technologies that help to mark attendance automatically. It reduces work and records the data. We have proposed to implement attendance marking using the latest technologies. We have implemented a system based on face identification and analyzing faces. The project is developed by gathering faces and analyzing data, using deep learning algorithms to recognize faces effectively. The data is recorded and forwarded to the host through mail. The project was implemented in Python and Python libraries used are CV2, Face Recognition, and Smtplib.Keywords: python, deep learning, face recognition, CV2, smtplib, Dlib.
Procedia PDF Downloads 5827866 Utilization of Informatics to Transform Clinical Data into a Simplified Reporting System to Examine the Analgesic Prescribing Practices of a Single Urban Hospital’s Emergency Department
Authors: Rubaiat S. Ahmed, Jemer Garrido, Sergey M. Motov
Abstract:
Clinical informatics (CI) enables the transformation of data into a systematic organization that improves the quality of care and the generation of positive health outcomes.Innovative technology through informatics that compiles accurate data on analgesic utilization in the emergency department can enhance pain management in this important clinical setting. We aim to establish a simplified reporting system through CI to examine and assess the analgesic prescribing practices in the EDthrough executing a U.S. federal grant project on opioid reduction initiatives. Queried data points of interest from a level-one trauma ED’s electronic medical records were used to create data sets and develop informational/visual reporting dashboards (on Microsoft Excel and Google Sheets) concerning analgesic usage across several pre-defined parameters and performance metrics using CI. The data was then qualitatively analyzed to evaluate ED analgesic prescribing trends by departmental clinicians and leadership. During a 12-month reporting period (Dec. 1, 2020 – Nov. 30, 2021) for the ongoing project, about 41% of all ED patient visits (N = 91,747) were for pain conditions, of which 81.6% received analgesics in the ED and at discharge (D/C). Of those treated with analgesics, 24.3% received opioids compared to 75.7% receiving opioid alternatives in the ED and at D/C, including non-pharmacological modalities. Demographics showed among patients receiving analgesics, 56.7% were aged between 18-64, 51.8% were male, 51.7% were white, and 66.2% had government funded health insurance. Ninety-one percent of all opioids prescribed were in the ED, with intravenous (IV) morphine, IV fentanyl, and morphine sulfate immediate release (MSIR) tablets accounting for 88.0% of ED dispensed opioids. With 9.3% of all opioids prescribed at D/C, MSIR was dispensed 72.1% of the time. Hydrocodone, oxycodone, and tramadol usage to only 10-15% of the time, and hydromorphone at 0%. Of opioid alternatives, non-steroidal anti-inflammatory drugs were utilized 60.3% of the time, 23.5% with local anesthetics and ultrasound-guided nerve blocks, and 7.9% with acetaminophen as the primary non-opioid drug categories prescribed by ED providers. Non-pharmacological analgesia included virtual reality and other modalities. An average of 18.5 ED opioid orders and 1.9 opioid D/C prescriptions per 102.4 daily ED patient visits was observed for the period. Compared to other specialties within our institution, 2.0% of opioid D/C prescriptions are given by ED providers, compared to the national average of 4.8%. Opioid alternatives accounted for 69.7% and 30.3% usage, versus 90.7% and 9.3% for opioids in the ED and D/C, respectively.There is a pressing need for concise, relevant, and reliable clinical data on analgesic utilization for ED providers and leadership to evaluate prescribing practices and make data-driven decisions. Basic computer software can be used to create effective visual reporting dashboards with indicators that convey relevant and timely information in an easy-to-digest manner. We accurately examined our ED's analgesic prescribing practices using CI through dashboard reporting. Such reporting tools can quickly identify key performance indicators and prioritize data to enhance pain management and promote safe prescribing practices in the emergency setting.Keywords: clinical informatics, dashboards, emergency department, health informatics, healthcare informatics, medical informatics, opioids, pain management, technology
Procedia PDF Downloads 14427865 Geographical Data Visualization Using Video Games Technologies
Authors: Nizar Karim Uribe-Orihuela, Fernando Brambila-Paz, Ivette Caldelas, Rodrigo Montufar-Chaveznava
Abstract:
In this paper, we present the advances corresponding to the implementation of a strategy to visualize geographical data using a Software Development Kit (SDK) for video games. We use multispectral images from Landsat 7 platform and Laser Imaging Detection and Ranging (LIDAR) data from The National Institute of Geography and Statistics of Mexican (INEGI). We select a place of interest to visualize from Landsat platform and make some processing to the image (rotations, atmospheric correction and enhancement). The resulting image will be our gray scale color-map to fusion with the LIDAR data, which was selected using the same coordinates than in Landsat. The LIDAR data is translated to 8-bit raw data. Both images are fused in a software developed using Unity (an SDK employed for video games). The resulting image is then displayed and can be explored moving around. The idea is the software could be used for students of geology and geophysics at the Engineering School of the National University of Mexico. They will download the software and images corresponding to a geological place of interest to a smartphone and could virtually visit and explore the site with a virtual reality visor such as Google cardboard.Keywords: virtual reality, interactive technologies, geographical data visualization, video games technologies, educational material
Procedia PDF Downloads 24627864 Practice Patterns of Physiotherapists for Learners with Disabilities at Special Schools: A Scoping Review
Authors: Lubisi L. V., Madumo M. B., Mudau N. P., Makhuvele L., Sibuyi M. M.
Abstract:
Background and Aims: Learners with disabilities can be integrated into mainstream schools, whereas there are those learners that are accommodated in special schools based on the support needs they require. These needs, among others, pertain to access to high-intensity therapeutic support by physiotherapists, occupational therapists, and speech therapists. However, access to physiotherapists in low- and middle-income countries is limited, and this creates a knowledge gap in identifying, to the best of our knowledge, best practice patterns aligned with physiotherapy at special schools. This gap compromises the quality of support to be rendered towards strengthening rehabilitation and optimising the participation of learners with disabilities in special schools. The aim of the scoping review was to map the evidence on practice patterns employed by physiotherapists at special schools for learners with disabilities. Methods: The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines were followed. Key terms regarding physiotherapy practice patterns for learners with disabilities at special schools were used to search the literature on the databases. Literature was sourced from Google Scholar, EBSCO, PEDro, PubMed, and Research Gate from 2013 to 2023. A total of 28 articles were initially retrieved and after a process of screening and exclusion, nine articles were included. All the researchers reviewed the articles for eligibility. Articles were initially screened based on the titles, followed by full text. Articles written in English or translated into English mentioned physical / physiotherapy interventions in special schools, both published and unpublished, were included. A qualitative data extraction template was developed and an inductive approach to thematic data analysis was used for included articles to see which themes emerged. Results: Three themes emerged after inductive thematic data analysis. 1. Collaboration with educators, parents, and therapists 2. Family Centred Approach 3. Telehealth. Conclusion: Collaboration is key in delivering therapeutic support to learners with disabilities at special schools. Physiotherapists need to be collaborators at the level of interprofessional and transprofessional. In addition, they need to explore technology to work remotely, especially when learners become absent physically from school.Keywords: learners with disabilities, special school, physiotherapists, therapeutic support
Procedia PDF Downloads 7527863 Study on the Quality of Biscuits Prepared from Wheat Flour and Cassava Flour
Authors: Ramim Tanver Rahman, Muhammad Mahbub Sobhan, M. A. Alim
Abstract:
This study reports on processing of biscuits using skinned, treated and dried cassava flour. Five samples of biscuits S2, S3, S4, S5, and S6 containing 8, 16, 24, 32, and 40% cassava flour with wheat flour and a control sample (S1) containing no cassava flour were processed. The weights of all the biscuit samples were higher than that of control biscuit. The biscuit containing cassava flour was lower width than the control biscuit. The spread ratio of biscuits with 16% cassava flour was higher than other combinations of cassava flour. No remarkable changes in moisture content, peroxide value, fatty acid value, texture, and flavor were observed up to 4 months of storage in ambient conditions (27° to 35°C). A decreasing trend in color, flavor, texture and overall acceptability was observed with the increased incorporation of cassava flour. The sample S1 (no cassava flour) secured the highest overall acceptability and sample S6 (40% cassava flour) obtained the lowest overall acceptability. It is recommended that good quality cassava flour fortified biscuits may be processed in industrial-scale substituting the wheat flour by cassava flour up to 24% levels.Keywords: cassava flour, wheat flour, shelf life, spread ratio, storage, biscuit
Procedia PDF Downloads 36927862 'Low Electronic Noise' Detector Technology in Computed Tomography
Authors: A. Ikhlef
Abstract:
Image noise in computed tomography, is mainly caused by the statistical noise, system noise reconstruction algorithm filters. Since last few years, low dose x-ray imaging became more and more desired and looked as a technical differentiating technology among CT manufacturers. In order to achieve this goal, several technologies and techniques are being investigated, including both hardware (integrated electronics and photon counting) and software (artificial intelligence and machine learning) based solutions. From a hardware point of view, electronic noise could indeed be a potential driver for low and ultra-low dose imaging. We demonstrated that the reduction or elimination of this term could lead to a reduction of dose without affecting image quality. Also, in this study, we will show that we can achieve this goal using conventional electronics (low cost and affordable technology), designed carefully and optimized for maximum detective quantum efficiency. We have conducted the tests using large imaging objects such as 30 cm water and 43 cm polyethylene phantoms. We compared the image quality with conventional imaging protocols with radiation as low as 10 mAs (<< 1 mGy). Clinical validation of such results has been performed as well.Keywords: computed tomography, electronic noise, scintillation detector, x-ray detector
Procedia PDF Downloads 12727861 Implementing a Hospitalist Co-Management Service in Orthopaedic Surgery
Authors: Diane Ghanem, Whitney Kagabo, Rebecca Engels, Uma Srikumaran, Babar Shafiq
Abstract:
Hospitalist co-management of orthopaedic surgery patients is a growing trend across the country. It was created as a collaborative effort to provide overarching care to patients with the goal of improving their postoperative care and decreasing in-hospital medical complications. The aim of this project is to provide a guide for implementing and optimizing a hospitalist co-management service in orthopaedic surgery. Key leaders from the hospitalist team, orthopaedic team and quality, safety and service team were identified. Multiple meetings were convened to discuss the comanagement service and determine the necessary building blocks behind an efficient and well-designed co-management framework. After meticulous deliberation, a consensus was reached on the final service agreement and a written guide was drafted. Fundamental features of the service include the identification of service stakeholders and leaders, frequent consensus meetings, a well-defined framework, with goals, program metrics and unified commands, and a regular satisfaction assessment to update and improve the program. Identified pearls for co-managing orthopaedic surgery patients are standardization, timing, adequate patient selection, and two-way feedback between hospitalists and orthopaedic surgeons to optimize the protocols. Developing a service agreement is a constant work in progress, with meetings, discussions, revisions, and multiple piloting attempts before implementation. It is a partnership created to provide hospitals with a streamlined admission process where at-risk patients are identified early, and patient care is optimized regardless of the number or nature of medical comorbidities. A wellestablished hospitalist co-management service can increase patient care quality and safety, as well as health care value.Keywords: co-management, hospitalist co-management, implementation, orthopaedic surgery, quality improvement
Procedia PDF Downloads 8927860 Production, Quality Control, and Biodistribution Assessment of 111In-BPAMD as a New Bone Imaging Agent
Authors: H. Yousefnia, A. Aghanejad, A. Mirzaei, R. Enayati, A. R. Jalilian, S. Zolghadri
Abstract:
Bone metastases occur in many cases at an early stage of the tumour disease; however, their symptoms are recognized rather late. The aim of this study was the preparation and quality control of 111In-BPAMD for diagnostic purposes. 111In was produced at the Agricultural, Medical, and Industrial Research School (AMIRS) by means of 30 MeV cyclotron via natCd(p,x)111In reaction. Complexion of In‐111 with BPAMD was carried out by using acidic solution of 111InCl3 and BPAMD in absolute water. The effect of various parameters such as temperature, ligand concentration, pH, and time on the radiolabeled yield was studied. 111In-BPAMD was prepared successfully with the radiochemical purity of 95% at the optimized condition (100 µg of BPAMD, pH=5, and at 90°C for 1 h) which was measured by ITLC method. The final solution was injected to wild-type mice and biodistribution was determined up to 72 h. SPECT images were acquired after 2 and 24 h post injection. Both the biodistribution studies and SPECT imaging indicated high bone uptake while accumulation in other organs was approximately negligible. The results show that 111In-BPAMD can be used as an excellent tracer for diagnosis of bone metastases by SPECT imaging.Keywords: biodistribution, BPAMD, 111In, SPECT
Procedia PDF Downloads 56127859 Nonparametric Sieve Estimation with Dependent Data: Application to Deep Neural Networks
Authors: Chad Brown
Abstract:
This paper establishes general conditions for the convergence rates of nonparametric sieve estimators with dependent data. We present two key results: one for nonstationary data and another for stationary mixing data. Previous theoretical results often lack practical applicability to deep neural networks (DNNs). Using these conditions, we derive convergence rates for DNN sieve estimators in nonparametric regression settings with both nonstationary and stationary mixing data. The DNN architectures considered adhere to current industry standards, featuring fully connected feedforward networks with rectified linear unit activation functions, unbounded weights, and a width and depth that grows with sample size.Keywords: sieve extremum estimates, nonparametric estimation, deep learning, neural networks, rectified linear unit, nonstationary processes
Procedia PDF Downloads 4227858 Sleep Tracking AI Application in Smart-Watches
Authors: Sumaiya Amir Khan, Shayma Al-Sharif, Samiha Mazher, Neha Intikhab Khan
Abstract:
This research paper aims to evaluate the effectiveness of sleep-tracking AI applications in smart-watches. It focuses on comparing the sleep analyses of two different smartwatch brands, Samsung and Fitbit, and measuring sleep at three different stages – REM (Rapid-Eye-Movement), NREM (Non-Rapid-Eye-Movement), and deep sleep. The methodology involves the participation of different users and analyzing their sleep data. The results reveal that although light sleep is the longest stage, deep sleep is higher than average in the participants. The study also suggests that light sleep is not uniform, and getting higher levels of deep sleep can prevent debilitating health conditions. Based on the findings, it is recommended that individuals should aim to achieve higher levels of deep sleep to maintain good health. Overall, this research contributes to the growing literature on the effectiveness of sleep-tracking AI applications and their potential to improve sleep quality.Keywords: sleep tracking, lifestyle, accuracy, health, AI, AI features, ML
Procedia PDF Downloads 8027857 Howard Mold Count of Tomato Pulp Commercialized in the State of São Paulo, Brazil
Authors: M. B. Atui, A. M. Silva, M. A. M. Marciano, M. I. Fioravanti, V. A. Franco, L. B. Chasin, A. R. Ferreira, M. D. Nogueira
Abstract:
Fungi attack large amount of fruits and those who have suffered an injury on the surface are more susceptible to the growth, as they have pectinolytic enzymes that destroy the edible portion forming an amorphous and soft dough. The spores can reach the plant by the wind, rain and insects and fruit may have on its surface, besides the contaminants from the fruit trees, land and water, forming a flora composed mainly of yeasts and molds. Other contamination can occur for the equipment used to harvest, for the use of boxes and contaminated water to the fruit washing, for storage in dirty places. The hyphae in tomato products indicate the use of raw materials contaminated or unsuitable hygiene conditions during processing. Although fungi are inactivated in heat processing step, its hyphae remain in the final product and search for detection and quantification is an indicator of the quality of raw material. Howard Method count of fungi mycelia in industrialized pulps evaluates the amount of decayed fruits existing in raw material. The Brazilian legislation governing processed and packaged products set the limit of 40% of positive fields in tomato pulps. The aim of this study was to evaluate the quality of the tomato pulp sold in greater São Paulo, through a monitoring during the four seasons of the year. All over 2010, 110 samples have been examined; 21 were taking in spring, 31 in summer, 31 in fall and 27 in winter, all from different lots and trademarks. Samples have been picked up in several stores located in the city of São Paulo. Howard method was used, recommended by the AOAC, 19th ed, 2011 16:19:02 technique - method 965.41. Hundred percent of the samples contained fungi mycelia. The count average of fungi mycelia per season was 23%, 28%, 8,2% and 9,9% in spring, summer, fall and winter, respectively. Regarding the spring samples of the 21 samples analyzed, 14.3% were off-limits proposed by the legislation. As for the samples of the fall and winter, all were in accordance with the legislation and the average of mycelial filament count has not exceeded 20%, which can be explained by the low temperatures during this time of the year. The acquired samples in the summer and spring showed high percentage of fungal mycelium in the final product, related to the high temperatures in these seasons. Considering that the limit of 40% of positive fields is accepted for the Brazilian Legislation (RDC nº 14/2014), 3 spring samples (14%) and 6 summer samples (19%) will be over this limit and subject to law penalties. According to gathered data, 82% of manufacturers of this product manage to keep acceptable levels of fungi mycelia in their product. In conclusion, only 9.2% samples were for the limits established by Resolution RDC. 14/2014, showing that the limit of 40% is feasible and can be used by these segment industries. The result of the filament count mycelial by Howard method is an important tool in the microscopic analysis since it measures the quality of raw material used in the production of tomato products.Keywords: fungi, howard, method, tomato, pulps
Procedia PDF Downloads 37427856 Assessment of Sleeping Patterns of Saudis with Type 2 Diabetes Mellitus in Ramadan and Non-Ramadan Periods Using a Wearable Device and a Questionnaire
Authors: Abdullah S. Alghamdi, Khaled Alghamdi, Richard O. Jenkins, Parvez I. Haris
Abstract:
Background: Quantity and quality of sleep have been reported to be significant risk factors for obesity and development of metabolic disorders such as type 2 diabetes mellitus (T2DM). The relationship between diabetes and sleep quantity was reported to be U-shaped, which means increased or decreased sleeping hours can increase the risk of diabetes. The plasma glucagon levels were found to continuously decrease during night-time sleep in healthy individuals, independently of blood glucose and insulin levels. The disturbance of the circadian rhythm is also important and has been linked with an increased the chance of diabetes incidence. There is a lack of research on sleep patterns on Saudis with T2DM and how this is affected by Ramadan fasting. Aim: To assess the sleeping patterns of Saudis with T2DM (before, during, and after Ramadan), using two different techniques and relate this to their HbA1c levels. Method: This study recruited 82 Saudi with T2DM, who chose to fast during Ramadan, from the Endocrine and Diabetic Centre of Al Iman General Hospital, Riyadh, Saudi Arabia. Ethical approvals for the study were obtained from De Montfort University and Saudi Ministry of Health. Their sleeping patterns were assessed by a self-administered questionnaire (before, during, and after Ramadan). The assessment included the daily total sleeping hours (DTSH), and total night-time sleeping hours (TNTSH) of the participants. In addition, sleeping patterns of 36 patients, randomly selected from the 82 participants, were further tracked during and after Ramadan by using Fitbit Flex 2™ accelerometer. Blood samples were collected in each period for measuring HbA1c. Results: Questionnaire analysis revealed that the sleeping patterns significantly changed between the periods, with shorter hours during Ramadan (P < 0.001 for DTSH, and P < 0.001 for TNTSH). These findings were confirmed by the Fitbit data, which also indicated significant shorter sleeping hours for the DTSH, and the TNTSH during Ramadan (P < 0.001 and P < 0.001, respectively). Although there were no significant correlations between the questionnaire and Fitbit data, the TNTSH were shorter among the participants in all periods by both techniques. The mean HbA1c significantly varied between periods, with lowest level during Ramadan. Although the statistical tests did not show significant variances in the mean HbA1c between the groups of participants regarding their hours of sleeping, the lowest mean HbA1c was observed in the group of participants who slept for 6-8 hours and had longer night-time sleeping hours. Conclusion: A short sleep duration, and absence of night-time sleep were significantly observed among the majority of the study population during Ramadan, which could suppress the full benefits of Ramadan fasting for diabetic patients. This study showed that there is a good agreement between the findings of the questionnaire and the Fitbit device for evaluating sleeping patterns in a Saudi population. A larger study is needed in the future to investigate the impact of Ramadan fasting on sleep quality and quantity and its relationship with health and disease.Keywords: Diabetes, Fasting, Fitbit, HbA1c, IPAQ, Ramadan, Sleep
Procedia PDF Downloads 11327855 Integration of Big Data to Predict Transportation for Smart Cities
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system. The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.Keywords: big data, machine learning, smart city, social cost, transportation network
Procedia PDF Downloads 26027854 Meeting the Health Needs of Adolescents and Young Adults: Developing and Evaluating an Electronic Questionnaire and Health Report Form, for the Health Assessment at Youth Health Clinics – A Mixed Methods Project
Authors: P.V. Lostelius, M.Mattebo, E. Thors Adolfsson, A. Söderlund, Å. Revenäs
Abstract:
Adolescents are vulnerable in healthcare settings. Early detection of poor health in young people is important to support a good quality of life and adult social functioning. Youth Health Clinics (YHCs) in Sweden provide healthcare for young people ages 13-25 years old. Using an overall mixed methods approach, the project’s main objective was to develop and evaluate an electronic health system, including a health questionnaire, a case report form, and an evaluation questionnaire to assess young people’s health risks in early stages, increase health, and quality of life. In total, 72 young people, 16-23 years old, eleven healthcare professionals and eight researchers participated in the three project studies. Results from interviews with fifteen young people gave that an electronic health questionnaire should include questions about physical-, mental-, sexual health and social support. It should specifically include questions about self-harm and suicide risk. The young people said that the questionnaire should be appealing, based on young people’s needs and be user-friendly. It was important that young people felt safe when responding to the questions, both physically and electronically. Also, they found that it had the potential to support the face-to face-meeting between young people and healthcare professionals. The electronic health report system was developed by the researchers, performing a structured development of the electronic health questionnaire, construction of a case report form to present the results from the health questions, along with an electronic evaluation questionnaire. An Information Technology company finalized the development by digitalizing the electronic health system. Four young people, three healthcare professionals and seven researchers evaluated the usability using interviews and a usability questionnaire. The electronic health questionnaire was found usable for YHCs but needed some clarifications. Essentially, the system succeeded in capturing the overall health of young people; it should be able to keep the interest of young people and have the potential to contribute to health assessment planning and young people’s self-reflection, sharing vulnerable feelings with healthcare professionals. In advance of effect studies, a feasibility study was performed by collecting electronic questionnaire data from 54 young people and interview data from eight healthcare professionals to assess the feasibility of the use of the electronic evaluation questionnaire, the case report form, and the planned recruitment method. When merging the results, the research group found that the evaluation questionnaire and the health report were feasible for future research. However, the COVID-19 pandemic, commitment challenges and drop-outs affected the recruitment of young people. Also, some healthcare professionals felt insecure about using computers and electronic devices and worried that their workload would increase. This project contributes knowledge about the development and use of electronic health tools for young people. Before implementation, clinical routines need for using the health report system need to be considered.Keywords: adolescent health, developmental studies, electronic health questionnaire, mixed methods research
Procedia PDF Downloads 10827853 Integrated Model for Enhancing Data Security Performance in Cloud Computing
Authors: Amani A. Saad, Ahmed A. El-Farag, El-Sayed A. Helali
Abstract:
Cloud computing is an important and promising field in the recent decade. Cloud computing allows sharing resources, services and information among the people of the whole world. Although the advantages of using clouds are great, but there are many risks in a cloud. The data security is the most important and critical problem of cloud computing. In this research a new security model for cloud computing is proposed for ensuring secure communication system, hiding information from other users and saving the user's times. In this proposed model Blowfish encryption algorithm is used for exchanging information or data, and SHA-2 cryptographic hash algorithm is used for data integrity. For user authentication process a user-name and password is used, the password uses SHA-2 for one way encryption. The proposed system shows an improvement of the processing time of uploading and downloading files on the cloud in secure form.Keywords: cloud Ccomputing, data security, SAAS, PAAS, IAAS, Blowfish
Procedia PDF Downloads 47727852 Initiative Programme to Reform Education in Thailand
Authors: Piyapat Chitpirom, Teerakiat Jareonsettasin, Chintida Vichitsophaphan
Abstract:
The Foundation of Virtuous Youth was established and supported by the Crown Property Bureau, with the intention to instill goodness in Thai youth. The Centre for Educational Psychology is one of the three units under the foundation. We aim to develop programmes that can be used to improve the quality of education in schools. Translation of the King’s message in keeping with the modern research from various sources, our team create 6 programmes: (1) Teacher-Student Relationship (2) Growth Mindset (3) Socratic Teaching (4) Peer Tutoring (5) Parental Involvement (6) Inclusion. After nine months of implementing the programmes in the schools, we found that there were more cooperation between student-student, teacher-student, teacher-parent, and student-parent and the school regained trust from the community. Our ideas were accepted well by the government as our director was promoted to be the Vice Minister of Education in order to implement our programmes into national education system. We consider that the key of our success is that we do practical things. We are still continuing, improving, and learning from our work with hope that the quality of Thai education will improve in near future.Keywords: education reform, educational psychology, effective teaching, teacher-student relationship
Procedia PDF Downloads 43927851 Activation-TV® to Reduce Elderly Loneliness and Insecurity
Authors: Hannele Laaksonen, Seija Nyqvist, Kari Nurmes
Abstract:
Objectives: In the year 2011 the City of Vaasa started to develop know-how in the technology and the introduction of services for aging people in cooperation with the Polytechnic Novia University of Applied Sciences and VAMK, University of Applied Sciences. The project´s targets included: to help elderly people to maintain their ability to function, to provide them social and physical activities, to prevent their social exclusion, to decrease their feelings of loneliness and insecurity and to develop their technical know-how. Methods: The project was built based on open source code, tailor-made service system and user interface for the elderly living at home and their families, based on the users´ expectations and experiences of services. Activation-TV®-project vas carried out 1.4.2011-31.3.2014. A pilot group of eight elderly persons, who were living at home, were selected to the project. All necessary technical means as well as guidance and teaching equipment were provided to the pilot group. The students of University of Applied Sciences (VAMK, Novia) and employees of Center of Ageing were made all programs to the Activation-TV®. The project group were interviewed after and before intervention. The data were evaluated both qualitatively and quantitatively. Results: The built service includes a video library, a group room for interactive programs and a personal room for bilateral meetings and direct shipment. The program is bilingual and produced in both national languages. The Activation TV® reduced elderly peoples´ (n=8) feelings of emptiness, added mental well-being and quality of life with social contacts. Relatives felt, that they were able to get in to older peoples´ everyday life with Activation TV®. Discussion: The built application was tailored to the model that has not been developed elsewhere in Finland. This model can be copied from one server to another and thus transferred to other municipalities but the program requires its own personnel system management and maintenance as well as program production cooperation between the different actors. This service can be used for the elderly who are living at home without dementia.Keywords: mental well-being, quality of life, elderly people, Finland
Procedia PDF Downloads 34327850 Evaluation of Chromium Fortified - Parboiled Rice Coated with Herbal Extracts: Cooking Quality and Sensory Properties
Authors: Wisnu Adi Yulianto, Agus Slamet, Sri Luwihana, Septian Albar Dwi Suprayogi
Abstract:
Parboiled rice was developed to produce rice, which has a low glycemic index for diabetics. However, diabetics also have a chromium (Cr) deficiency. Thus, it is important to fortify rice with Cr to increase the Cr content. Moreover, parboiled rice becomes rancid easily and has a musty odor, rendering the rice unfavorable. Natural herbs such as pandan leaves (Pandanus amaryllifolius Roxb.), bay leaves (Syzygium polyanthum [Wigh] Walp) and cinnamon bark powder (Cinnamomon cassia) are commonly added to food as aroma enhancers. Previous research has shown that these herbs could improve insulin sensitivity. The purpose of this study was to evaluate the effect of herbal extract coatings on the cooking quality and the preference level of chromium fortified - parboiled rice (CFPR). The rice grain variety used for this experiment was Ciherang and the fortificant was CrCl3. The three herbal extracts used for coating the CFPR were cinnamon, pandan and bay leaf, with concentration variations of 3%, 6%, and 9% (w/w) for each of the extracts. The samples were analyzed for their alkali spreading value, cooking time, elongation, water uptake ratio, solid loss, colour and lightness; and their sensory properties were determined by means of an organoleptic test. The research showed that coating the CFPR with pandan and cinnamon extracts at a concentration of 3% each produced a preferred CFPR. When coated with those herbal extracts the CFPR had the following cooking quality properties: alkali spreading value 5 (intermediate gelatinization temperature), cooking time, 26-27 min, color value, 14.95-15.00, lightness, 42.30 – 44.06, elongation, 1.53 – 1.54, water uptake ratio , 4.05-4.06, and solid loss, 0.09/100 g – 0.13 g/100 g.Keywords: bay leaves, chromium, cinnamon, pandan leaves, parboiled rice
Procedia PDF Downloads 457