Search results for: social data analysis
42708 The Relationship between Class Attendance and Performance of Industrial Engineering Students Enrolled for a Statistics Subject at the University of Technology
Authors: Tshaudi Motsima
Abstract:
Class attendance is key at all levels of education. At tertiary level many students develop a tendency of not attending all classes without being aware of the repercussions of not attending all classes. It is important for all students to attend all classes as they can receive first-hand information and they can benefit more. The student who attends classes is likely to perform better academically than the student who does not. The aim of this paper is to assess the relationship between class attendance and academic performance of industrial engineering students. The data for this study were collected through the attendance register of students and the other data were accessed from the Integrated Tertiary Software and the Higher Education Data Analyzer Portal. Data analysis was conducted on a sample of 93 students. The results revealed that students with medium predicate scores (OR = 3.8; p = 0.027) and students with low predicate scores (OR = 21.4, p < 0.001) were significantly likely to attend less than 80% of the classes as compared to students with high predicate scores. Students with examination performance of less than 50% were likely to attend less than 80% of classes than students with examination performance of 50% and above, but the differences were not statistically significant (OR = 1.3; p = 0.750).Keywords: class attendance, examination performance, final outcome, logistic regression
Procedia PDF Downloads 13442707 Sustainable Water Supply: Rainwater Harvesting as Flood Reduction Measures in Ibadan, Nigeria
Authors: Omolara Lade, David Oloke
Abstract:
Ibadan City suffers serious water supply problems; cases of dry taps are common in virtually every part of the City. The scarcity of piped water has made communities find alternative water sources; groundwater sources being a ready source. These wells are prone to pollution due to the close proximity of septic tanks to wells, disposal of solid or liquid wastes in pits, abandoned boreholes or even stream channels and landfills. Storms and floods in Ibadan have increased with consequent devastating effects claiming over 120 lives and displacing 600 people on August 2011 alone. In this study, an analysis of the water demand and sources of supply for the city was carried out through questionnaire survey and collection of data from City’s main water supply - Water Corporation of Oyo State (WCOS), groundwater sources were explored and 30 years rainfall data were collected from Meteorological station in Ibadan. 1067 questionnaire were administered at household level with a response rate of 86.7 %. A descriptive analysis of the survey revealed that 77.1 % of the respondents did not receive water at all from WCOS while 83.8 % depend on groundwater sources. Analysis of data from WCOS revealed that main water supply is inadequate as < 10 % of the population water demand was met. Rainfall intensity is highest in June with a mean value of 188 mm, which can be harvested at community—based level and used to complement the population water demand. Rainwater harvesting if planned, and managed properly will become a valuable alternative source of managing urban flood and alleviating water scarcity in the city.Keywords: Ibadan, rainwater harvesting, sustainable water, urban flooding
Procedia PDF Downloads 18242706 A Value-Based Approach to Recognize Authentic Transformational Leaders' Delivering Process of Corporate Social Responsibility Values
Authors: Yi-Jung Chen, Yunshi Liu
Abstract:
To explain how followers can perceive whether or not transformational leaders are authentic on the basis of their leadership behaviors based on value-based leadership theory, this study adopts the dual-focus model of transformational leadership and evaluates leaders’ corporate social responsibility values along with followers’ perceptions of leaders’ values. Using dyadic questionnaires, the final study sample consisted of 252 followers and 43 leaders at a private firm in Taiwan. Results show that followers perceive corporate social responsibility values of transformational leaders through their group-focused leadership behaviors because such group-focused leadership is in line with these values.Keywords: authentic transformational leadership, corporate social responsibility value, value-based leadership theory, dual-focus leadership
Procedia PDF Downloads 31042705 The Role of Emotions in Addressing Social and Environmental Issues in Ethical Decision Making
Authors: Kirsi Snellman, Johannes Gartner, , Katja Upadaya
Abstract:
A transition towards a future where the economy serves society so that it evolves within the safe operating space of the planet calls for fundamental changes in the way managers think, feel and act, and make decisions that relate to social and environmental issues. Sustainable decision-making in organizations are often challenging tasks characterized by trade-offs between environmental, social and financial aspects, thus often bringing forth ethical concerns. Although there have been significant developments in incorporating uncertainty into environmental decision-making and measuring constructs and dimensions in ethical behavior in organizations, the majority of sustainable decision-making models are rationalist-based. Moreover, research in psychology indicates that one’s readiness to make a decision depends on the individual’s state of mind, the feasibility of the implied change, and the compatibility of strategies and tactics of implementation. Although very informative, most of this extant research is limited in the sense that it often directs attention towards the rational instead of the emotional. Hence, little is known about the role of emotions in sustainable decision making, especially in situations where decision-makers evaluate a variety of options and use their feelings as a source of information in tackling the uncertainty. To fill this lacuna, and to embrace the uncertainty and perceived risk involved in decisions that touch upon social and environmental aspects, it is important to add emotion to the evaluation when aiming to reach the one right and good ethical decision outcome. This analysis builds on recent findings in moral psychology that associate feelings and intuitions with ethical decisions and suggests that emotions can sensitize the manager to evaluate the rightness or wrongness of alternatives if ethical concerns are present in sustainable decision making. Capturing such sensitive evaluation as triggered by intuitions, we suggest that rational justification can be complemented by using emotions as a tool to tune in to what feels right in making sustainable decisions. This analysis integrates ethical decision-making theories with recent advancements in emotion theories. It determines the conditions under which emotions play a role in sustainability decisions by contributing to a personal equilibrium in which intuition and rationality are both activated and in accord. It complements the rationalist ethics view according to which nothing fogs the mind in decision making so thoroughly as emotion, and the concept of cheater’s high that links unethical behavior with positive affect. This analysis contributes to theory with a novel theoretical model that specifies when and why managers, who are more emotional, are, in fact, more likely to make ethical decisions than those managers who are more rational. It also proposes practical advice on how emotions can convert the manager’s preferences into choices that benefit both common good and one’s own good throughout the transition towards a more sustainable future.Keywords: emotion, ethical decision making, intuition, sustainability
Procedia PDF Downloads 13242704 Alternating Expectation-Maximization Algorithm for a Bilinear Model in Isoform Quantification from RNA-Seq Data
Authors: Wenjiang Deng, Tian Mou, Yudi Pawitan, Trung Nghia Vu
Abstract:
Estimation of isoform-level gene expression from RNA-seq data depends on simplifying assumptions, such as uniform reads distribution, that are easily violated in real data. Such violations typically lead to biased estimates. Most existing methods provide a bias correction step(s), which is based on biological considerations, such as GC content–and applied in single samples separately. The main problem is that not all biases are known. For example, new technologies such as single-cell RNA-seq (scRNA-seq) may introduce new sources of bias not seen in bulk-cell data. This study introduces a method called XAEM based on a more flexible and robust statistical model. Existing methods are essentially based on a linear model Xβ, where the design matrix X is known and derived based on the simplifying assumptions. In contrast, XAEM considers Xβ as a bilinear model with both X and β unknown. Joint estimation of X and β is made possible by simultaneous analysis of multi-sample RNA-seq data. Compared to existing methods, XAEM automatically performs empirical correction of potentially unknown biases. XAEM implements an alternating expectation-maximization (AEM) algorithm, alternating between estimation of X and β. For speed XAEM utilizes quasi-mapping for read alignment, thus leading to a fast algorithm. Overall XAEM performs favorably compared to other recent advanced methods. For simulated datasets, XAEM obtains higher accuracy for multiple-isoform genes, particularly for paralogs. In a differential-expression analysis of a real scRNA-seq dataset, XAEM achieves substantially greater rediscovery rates in an independent validation set.Keywords: alternating EM algorithm, bias correction, bilinear model, gene expression, RNA-seq
Procedia PDF Downloads 14242703 Application of Two Stages Adaptive Neuro-Fuzzy Inference System to Improve Dissolved Gas Analysis Interpretation Techniques
Authors: Kharisma Utomo Mulyodinoto, Suwarno, A. Abu-Siada
Abstract:
Dissolved Gas Analysis is one of impressive technique to detect and predict internal fault of transformers by using gas generated by transformer oil sample. A number of methods are used to interpret the dissolved gas from transformer oil sample: Doernenberg Ratio Method, IEC (International Electrotechnical Commission) Ratio Method, and Duval Triangle Method. While the assessment of dissolved gas within transformer oil samples has been standardized over the past two decades, analysis of the results is not always straight forward as it depends on personnel expertise more than mathematical formulas. To get over this limitation, this paper is aimed at improving the interpretation of Doernenberg Ratio Method, IEC Ratio Method, and Duval Triangle Method using Two Stages Adaptive Neuro-Fuzzy Inference System (ANFIS). Dissolved gas analysis data from 520 faulty transformers was analyzed to establish the proposed ANFIS model. Results show that the developed ANFIS model is accurate and can standardize the dissolved gas interpretation process with accuracy higher than 90%.Keywords: ANFIS, dissolved gas analysis, Doernenberg ratio method, Duval triangular method, IEC ratio method, transformer
Procedia PDF Downloads 14842702 Effects of Wind Load on the Tank Structures with Various Shapes and Aspect Ratios
Authors: Doo Byong Bae, Jae Jun Yoo, Il Gyu Park, Choi Seowon, Oh Chang Kook
Abstract:
There are several wind load provisions to evaluate the wind response on tank structures such as API, Euro-code, etc. the assessment of wind action applying these provisions is made by performing the finite element analysis using both linear bifurcation analysis and geometrically nonlinear analysis. By comparing the pressure patterns obtained from the analysis with the results of wind tunnel test, most appropriate wind load criteria will be recommended.Keywords: wind load, finite element analysis, linear bifurcation analysis, geometrically nonlinear analysis
Procedia PDF Downloads 63742701 Relating Symptoms with Protein Production Abnormality in Patients with Down Syndrome
Authors: Ruolan Zhou
Abstract:
Trisomy of human chromosome 21 is the primary cause of Down Syndrome (DS), and this genetic disease has significantly burdened families and countries, causing great controversy. To address this problem, the research takes an approach in exploring the relationship between genetic abnormality and this disease's symptoms, adopting several techniques, including data analysis and enrichment analysis. It also explores open-source websites, such as NCBI, DAVID, SOURCE, STRING, as well as UCSC, to complement its result. This research has analyzed the variety of genes on human chromosome 21 with simple coding, and by using analysis, it has specified the protein-coding genes, their function, and their location. By using enrichment analysis, this paper has found the abundance of keratin production-related coding-proteins on human chromosome 21. By adopting past researches, this research has attempted to disclose the relationship between trisomy of human chromosome 21 and keratin production abnormality, which might be the reason for common diseases in patients with Down Syndrome. At last, by addressing the advantage and insufficiency of this research, the discussion has provided specific directions for future research.Keywords: Down Syndrome, protein production, genome, enrichment analysis
Procedia PDF Downloads 12642700 Focusing on Effective Translation Teaching in the Classroom: A Case Study
Authors: Zhi Huang
Abstract:
This study follows on from previous survey and focus group research exploring the effective teaching process in a translation classroom in Australian universities through case study method. The data analysis draws on social constructivist theory in translation teaching and focuses on teaching process aiming to discover how effective translation teachers conduct teaching in the classroom. The results suggest that effective teaching requires the teacher to have ability in four aspects: classroom management, classroom pedagogy, classroom communication, and teacher roles. Effective translation teachers are able to control the whole learning process, facilitate students in independent learning, guide students to be more critical about translation, giving both positive and negative feedback for students to reflect on their own, and being supportive, patient and encouraging to students for better classroom communication and learning outcomes. This study can be applied to other teachers in translation so that they can reflect on their own teaching in their education contexts and strive for being a more qualified translation teacher and achieving teaching effectiveness.Keywords: case study, classroom observation, classroom teaching, effective translation teaching, teacher effectiveness
Procedia PDF Downloads 42342699 Distributed Listening in Intensive Care: Nurses’ Collective Alarm Responses Unravelled through Auditory Spatiotemporal Trajectories
Authors: Michael Sonne Kristensen, Frank Loesche, James Foster, Elif Ozcan, Judy Edworthy
Abstract:
Auditory alarms play an integral role in intensive care nurses’ daily work. Most medical devices in the intensive care unit (ICU) are designed to produce alarm sounds in order to make nurses aware of immediate or prospective safety risks. The utilisation of sound as a carrier of crucial patient information is highly dependent on nurses’ presence - both physically and mentally. For ICU nurses, especially the ones who work with stationary alarm devices at the patient bed space, it is a challenge to display ‘appropriate’ alarm responses at all times as they have to navigate with great flexibility in a complex work environment. While being primarily responsible for a small number of allocated patients they are often required to engage with other nurses’ patients, relatives, and colleagues at different locations inside and outside the unit. This work explores the social strategies used by a team of nurses to comprehend and react to the information conveyed by the alarms in the ICU. Two main research questions guide the study: To what extent do alarms from a patient bed space reach the relevant responsible nurse by direct auditory exposure? By which means do responsible nurses get informed about their patients’ alarms when not directly exposed to the alarms? A comprehensive video-ethnographic field study was carried out to capture and evaluate alarm-related events in an ICU. The study involved close collaboration with four nurses who wore eye-level cameras and ear-level binaural audio recorders during several work shifts. At all time the entire unit was monitored by multiple video and audio recorders. From a data set of hundreds of hours of recorded material information about the nurses’ location, social interaction, and alarm exposure at any point in time was coded in a multi-channel replay-interface. The data shows that responsible nurses’ direct exposure and awareness of the alarms of their allocated patients vary significantly depending on work load, social relationships, and the location of the patient’s bed space. Distributed listening is deliberately employed by the nursing team as a social strategy to respond adequately to alarms, but the patterns of information flow prompted by alarm-related events are not uniform. Auditory Spatiotemporal Trajectory (AST) is proposed as a methodological label to designate the integration of temporal, spatial and auditory load information. As a mixed-method metrics it provides tangible evidence of how nurses’ individual alarm-related experiences differ from one another and from stationary points in the ICU. Furthermore, it is used to demonstrate how alarm-related information reaches the individual nurse through principles of social and distributed cognition, and how that information relates to the actual alarm event. Thereby it bridges a long-standing gap in the literature on medical alarm utilisation between, on the one hand, initiatives to measure objective data of the medical sound environment without consideration for any human experience, and, on the other hand, initiatives to study subjective experiences of the medical sound environment without detailed evidence of the objective characteristics of the environment.Keywords: auditory spatiotemporal trajectory, medical alarms, social cognition, video-ethography
Procedia PDF Downloads 19042698 Using ALOHA Code to Evaluate CO2 Concentration for Maanshan Nuclear Power Plant
Authors: W. S. Hsu, S. W. Chen, Y. T. Ku, Y. Chiang, J. R. Wang , J. H. Yang, C. Shih
Abstract:
ALOHA code was used to calculate the concentration under the CO2 storage burst condition for Maanshan nuclear power plant (NPP) in this study. Five main data are input into ALOHA code including location, building, chemical, atmospheric, and source data. The data from Final Safety Analysis Report (FSAR) and some reports were used in this study. The ALOHA results are compared with the failure criteria of R.G. 1.78 to confirm the habitability of control room. The result of comparison presents that the ALOHA result is below the R.G. 1.78 criteria. This implies that the habitability of control room can be maintained in this case. The sensitivity study for atmospheric parameters was performed in this study. The results show that the wind speed has the larger effect in the concentration calculation.Keywords: PWR, ALOHA, habitability, Maanshan
Procedia PDF Downloads 19842697 Efficiency Analysis of Trader in Thailand and Laos Border Trade: Case Study of Textile and Garment Products
Authors: Varutorn Tulnawat, Padcharee Phasuk
Abstract:
This paper investigates the issue of China’s dumping on border trade between Thailand and Laos. From the pass mostly, the border trade goods are traditional textile and garment mainly served locals and tourists which majority of traders is of small and medium size. In the present day the competition is fierce, the volume of trade has expanded far beyond its original intent. The major competitors in Thai-Laos border trade are China, Vietnam and also South Korea. This research measures and compares the efficiency and ability to survive the onslaught of Thai and Laos firm along Thailand (Nong Kai province) and Laos (Vientiane) border. Two attack strategies are observed, price cutting and incense such as full facilitation for big volume order. Data Envelopment Analysis (DEA) is applied to data surveyed from 90 Thai and Laos entrepreneurs. The expected results are the proportion of efficiency and inefficiency firms. Points of inefficiency and suggested improvement are also discussed.Keywords: border trade, dea, textile, garment
Procedia PDF Downloads 24542696 Estimation of Foliar Nitrogen in Selected Vegetation Communities of Uttrakhand Himalayas Using Hyperspectral Satellite Remote Sensing
Authors: Yogita Mishra, Arijit Roy, Dhruval Bhavsar
Abstract:
The study estimates the nitrogen concentration in selected vegetation community’s i.e. chir pine (pinusroxburghii) by using hyperspectral satellite data and also identified the appropriate spectral bands and nitrogen indices. The Short Wave InfraRed reflectance spectrum at 1790 nm and 1680 nm shows the maximum possible absorption by nitrogen in selected species. Among the nitrogen indices, log normalized nitrogen index performed positively and negatively too. The strong positive correlation is taken out from 1510 nm and 760 nm for the pinusroxburghii for leaf nitrogen concentration and leaf nitrogen mass while using NDNI. The regression value of R² developed by using linear equation achieved maximum at 0.7525 for the analysis of satellite image data and R² is maximum at 0.547 for ground truth data for pinusroxburghii respectively.Keywords: hyperspectral, NDNI, nitrogen concentration, regression value
Procedia PDF Downloads 29542695 Research on the Updating Strategy of Public Space in Small Towns in Zhejiang Province under the Background of New-Style Urbanization
Abstract:
Small towns are the most basic administrative institutions in our country, which are connected with cities and rural areas. Small towns play an important role in promoting local urban and rural economic development, providing the main public services and maintaining social stability in social governance. With the vigorous development of small towns and the transformation of industrial structure, the changes of social structure, spatial structure, and lifestyle are lagging behind, causing that the spatial form and landscape style do not belong to both cities and rural areas, and seriously affecting the quality of people’s life space and environment. The rural economy in Zhejiang Province has started, the society and the population are also developing in relative stability. In September 2016, Zhejiang Province set out the 'Technical Guidelines for Comprehensive Environmental Remediation of Small Towns in Zhejiang Province,' so as to comprehensively implement the small town comprehensive environmental remediation with the main content of strengthening the plan and design leading, regulating environmental sanitation, urban order and town appearance. In November 2016, Huzhou City started the comprehensive environmental improvement of small towns, strived to use three years to significantly improve the 115 small towns, as well as to create a number of high quality, distinctive and beautiful towns with features of 'clean and livable, rational layout, industrial development, poetry and painting style'. This paper takes Meixi Town, Zhangwu Town and Sanchuan Village in Huzhou City as the empirical cases, analyzes the small town public space by applying the relative theory of actor-network and space syntax. This paper also analyzes the spatial composition in actor and social structure elements, as well as explores the relationship of actor’s spatial practice and public open space by combining with actor-network theory. This paper introduces the relevant theories and methods of spatial syntax, carries out research analysis and design planning analysis of small town spaces from the perspective of quantitative analysis. And then, this paper proposes the effective updating strategy for the existing problems in public space. Through the planning and design in the building level, the dissonant factors produced by various spatial combination of factors and between landscape design and urban texture during small town development will be solved, inhabitant quality of life will be promoted, and town development vitality will be increased.Keywords: small towns, urbanization, public space, updating
Procedia PDF Downloads 22842694 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: data augmentation, mutex task generation, meta-learning, text classification.
Procedia PDF Downloads 9442693 Reducing Later Life Loneliness: A Systematic Literature Review of Loneliness Interventions
Authors: Dhruv Sharma, Lynne Blair, Stephen Clune
Abstract:
Later life loneliness is a social issue that is increasing alongside an upward global population trend. As a society, one way that we have responded to this social challenge is through developing non-pharmacological interventions such as befriending services, activity clubs, meet-ups, etc. Through a systematic literature review, this paper suggests that currently there is an underrepresentation of radical innovation, and underutilization of digital technologies in developing loneliness interventions for older adults. This paper examines intervention studies that were published in English language, within peer reviewed journals between January 2005 and December 2014 across 4 electronic databases. In addition to academic databases, interventions found in grey literature in the form of websites, blogs, and Twitter were also included in the overall review. This approach yielded 129 interventions that were included in the study. A systematic approach allowed the minimization of any bias dictating the selection of interventions to study. A coding strategy based on a pattern analysis approach was devised to be able to compare and contrast the loneliness interventions. Firstly, interventions were categorized on the basis of their objective to identify whether they were preventative, supportive, or remedial in nature. Secondly, depending on their scope, they were categorized as one-to-one, community-based, or group based. It was also ascertained whether interventions represented an improvement, an incremental innovation, a major advance or a radical departure, in comparison to the most basic form of a loneliness intervention. Finally, interventions were also assessed on the basis of the extent to which they utilized digital technologies. Individual visualizations representing the four levels of coding were created for each intervention, followed by an aggregated visual to facilitate analysis. To keep the inquiry within scope and to present a coherent view of the findings, the analysis was primarily concerned the level of innovation, and the use of digital technologies. This analysis highlights a weak but positive correlation between the level of innovation and the use of digital technologies in designing and deploying loneliness interventions, and also emphasizes how certain existing interventions could be tweaked to enable their migration from representing incremental innovation to radical innovation for example. This analysis also points out the value of including grey literature, especially from Twitter, in systematic literature reviews to get a contemporary view of latest work in the area under investigation.Keywords: ageing, loneliness, innovation, digital
Procedia PDF Downloads 12242692 Barriers of Successful Employment of Individuals with Mild Intellectual Disabilities
Authors: Mubarak Aldosari
Abstract:
The focus of this qualitative study was to explore the main barriers of successful employment of individuals with intellectual disabilities (ID). Methods: The semi-structured interviews were used to explore perception of a sample of eight managers/supervisors of employees who had ID regarding the main barriers that face successful employment of individuals with ID. Results: Thematic analysis of the interviews revealed four major themes that impede successful employment of individuals with ID: experiences of work, (b) social skills, (c) attitudes to individuals with ID, and (d) transportation. Conclusion: The current study was designed to provide important information to policymakers, officials, educators and parents regarding the challenges and barriers that face the successful employment of individuals with ID. The study show the importance of the support as well as effective and planned preparation for individuals with ID during schools to be qualified and have skills that they to be successful in the employment. Additionally, the results of this study will encourage further study of transition to post schools for individuals with ID in Saudi Arabia.Keywords: barriers, employment, individuals with mild intellectual disabilities, social skills
Procedia PDF Downloads 35142691 Critically Analyzing the Application of Big Data for Smart Transportation: A Case Study of Mumbai
Authors: Tanuj Joshi
Abstract:
Smart transportation is fast emerging as a solution to modern cities’ approach mobility issues, delayed emergency response rate and high congestion on streets. Present day scenario with Google Maps, Waze, Yelp etc. demonstrates how information and communications technologies controls the intelligent transportation system. This intangible and invisible infrastructure is largely guided by the big data analytics. On the other side, the exponential increase in Indian urban population has intensified the demand for better services and infrastructure to satisfy the transportation needs of its citizens. No doubt, India’s huge internet usage is looked as an important resource to guide to achieve this. However, with a projected number of over 40 billion objects connected to the Internet by 2025, the need for systems to handle massive volume of data (big data) also arises. This research paper attempts to identify the ways of exploiting the big data variables which will aid commuters on Indian tracks. This study explores real life inputs by conducting survey and interviews to identify which gaps need to be targeted to better satisfy the customers. Several experts at Mumbai Metropolitan Region Development Authority (MMRDA), Mumbai Metro and Brihanmumbai Electric Supply and Transport (BEST) were interviewed regarding the Information Technology (IT) systems currently in use. The interviews give relevant insights and requirements into the workings of public transportation systems whereas the survey investigates the macro situation.Keywords: smart transportation, mobility issue, Mumbai transportation, big data, data analysis
Procedia PDF Downloads 17842690 Acquisition of Murcian Lexicon and Morphology by L2 Spanish Immigrants: The Role of Social Networks
Authors: Andrea Hernandez Hurtado
Abstract:
Research on social networks (SNs) -- the interactions individuals share with others has shed important light in helping to explain differential use of variable linguistic forms, both in L1s and L2s. Nevertheless, the acquisition of nonstandard L2 Spanish in the Region of Murcia, Spain, and how learners interact with other speakers while sojourning there have received little attention. Murcian Spanish (MuSp) was widely influenced by Panocho, a divergent evolution of Hispanic Latin, and differs from the more standard Peninsular Spanish (StSp) in phonology, morphology, and lexicon. For instance, speakers from this area will most likely palatalize diminutive endings, producing animalico [̩a.ni.ma.ˈli.ko] instead of animalito [̩a.ni.ma.ˈli.to] ‘little animal’. Because L1 speakers of the area produce and prefer salient regional lexicon and morphology (particularly the palatalized diminutive -ico) in their speech, the current research focuses on how international residents in the Region of Murcia use Spanish: (1) whether or not they acquire (perceptively and/or productively) any of the salient regional features of MuSp, and (2) how their SNs explain such acquisition. This study triangulates across three tasks -recognition, production, and preference- addressing both lexicon and morphology, with each task specifically created for the investigation of MuSp features. Among other variables, the effects of L1, residence, and identity are considered. As an ongoing dissertation research, data are currently being gathered through an online questionnaire. So far, 7 participants from multiple nationalities have completed the survey, although a minimum of 25 are expected to be included in the coming months. Preliminary results revealed that MuSp lexicon and morphology were successfully recognized by participants (p<.001). In terms of regional lexicon production (10.0%) and preference (47.5%), although participants showed higher percentages of StSp, results showed that international residents become aware of stigmatized lexicon and may incorporate it into their language use. Similarly, palatalized diminutives (production 14.2%, preference 19.0%) were present in their responses. The Social Network Analysis provided information about participants’ relationships with their interactants, as well as among them. Results indicated that, generally, when residents were more immersed in the culture (i.e., had more Murcian alters) they produced and preferred more regional features. This project contributes to the knowledge of language variation acquisition in L2 speakers, focusing on a stigmatized Spanish dialect and exploring how stigmatized varieties may affect L2 development. Results will show how L2 Spanish speakers’ language is affected by their stay in Murcia. This, in turn, will shed light on the role of SNs in language acquisition, the acquisition of understudied and marginalized varieties, and the role of immersion on language acquisition. As the first systematic account on the acquisition of L2 Spanish lexicon and morphology in the Region of Murcia, it lays important groundwork for further research on the connection between SNs and the acquisition of regional variants, applicable to Murcia and beyond.Keywords: international residents, L2 Spanish, lexicon, morphology, nonstandard language acquisition, social networks
Procedia PDF Downloads 7742689 Quantum Statistical Machine Learning and Quantum Time Series
Authors: Omar Alzeley, Sergey Utev
Abstract:
Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series
Procedia PDF Downloads 46942688 The Survey of Sports Injuries in Ten Sports
Authors: Najmeh Arabnejad, Mohammad Hossein Yousefi
Abstract:
The risk of injuring is possible in most sports. These injuries are inevitable in contact sports. Since sports injuries result in financial, physical, physiological and social problems for most athletes and endanger their professional future, studying the happening of sports injuries in sports changes to an important issue. This study can be conducted through different aspects including psychological, pathological, social, managerial, etc. Therefore, the present study was designed and conducted with the aim Survey of Sports Injuries In Ten Sports from 2006 to 2011.This descriptive study was carried out in a documentary form. Thus, data related to sports insurance and sport injuries happened in soccer, volleyball, basketball, handball, badminton, karate, track and field, taekwondo, gymnastics and wrestling was collected from Sports Medical Board of Kerman Province, as the largest province in Iran, and then was analyzed. Data collection method was library one. Furthermore, information related to 210406 insured athletes was analyzed using Descriptive Statistical Indexes in the level mean and SPSS20 Software. The research findings showed that the number of male athletes who injured was higher than female athletes in most sports within various years. Soccer, karate, volleyball, wrestling, handball, taekwondo, gymnastics, basketball, track and field, and badminton had the most injuries, respectively. Moreover, the number of injured athletes and their ratio to insured ones during six years were studied; in general, an increase in ratio of sports injuries was observed. Thus, upward movement of sports injuries in different sports, as the results of this study confirm it, is a warning which results in losing young forces and wasting of sports potential in Iran.Keywords: sports, sports injuries, survey, Kerman
Procedia PDF Downloads 37042687 A Study to Explore the Views of Students regarding E-Learning as an Instructional Tool at University Level
Authors: Zafar Iqbal
Abstract:
This study involved students of 6th semester enrolled in a Bachelor of Computer Science Program at university level. In this era of science and technology, e-learning can be helpful for grassroots in providing them access to education tenant in less developed areas. It is a potential substitute of face-to-face teaching being used in different countries. The purpose of the study was to explore the views of students about e-learning (Facebook) as an instructional tool. By using purposive sampling technique an intact class of 30 students included both male and female were selected where e-learning was used as an instructional tool. The views of students were explored through qualitative approach by using focus group interviews. The approach was helpful to develop comprehensive understanding of students’ views towards e- learning. In addition, probing questions were also asked and recorded. Data was transcribed, generated nodes and then coded text against these nodes. For this purpose and further analysis, NVivo 10 software was used. Themes were generated and tangibly presented through cluster analysis. Findings were interesting and provide sufficient evidence that face book is a subsequent e-learning source for students of higher education. Students acknowledged it as best source of learning and it was aligned with their academic and social behavior. It was not time specific and therefore, feasible for students who work day time and can get on line access to the material when they got free time. There were some distracters (time wasters) reported by the students but can be minimized by little effort. In short, e-learning is need of the day and potential learning source for every individual who have access to internet living at any part of the globe.Keywords: e-learning, facebook, instructional tool, higher education
Procedia PDF Downloads 37642686 Efficient Positioning of Data Aggregation Point for Wireless Sensor Network
Authors: Sifat Rahman Ahona, Rifat Tasnim, Naima Hassan
Abstract:
Data aggregation is a helpful technique for reducing the data communication overhead in wireless sensor network. One of the important tasks of data aggregation is positioning of the aggregator points. There are a lot of works done on data aggregation. But, efficient positioning of the aggregators points is not focused so much. In this paper, authors are focusing on the positioning or the placement of the aggregation points in wireless sensor network. Authors proposed an algorithm to select the aggregators positions for a scenario where aggregator nodes are more powerful than sensor nodes.Keywords: aggregation point, data communication, data aggregation, wireless sensor network
Procedia PDF Downloads 16042685 The Estimation of Human Vital Signs Complexity
Authors: L. Bikulciene, E. Venskaityte, G. Jarusevicius
Abstract:
Non-stationary and nonlinear signals generated by living complex systems defy traditional mechanistic approaches, which are based on homeostasis. Previous our studies have shown that the evaluation of the interactions of physiological signals by using special analysis methods is suitable for observation of physiological processes. It is demonstrated the possibility of using deep physiological model, based interpretation of the changes of the human body’s functional states combined with an application of the analytical method based on matrix theory for the physiological signals analysis, which was applied on high risk cardiac patients. It is shown that evaluation of cardiac signals interactions show peculiar for each individual functional changes at the onset of hemodynamic restoration procedure. Therefore we suggest that the alterations of functional state of the body, after patients overcome surgery can be complemented by the data received from the suggested approach of the evaluation of functional variables interactions.Keywords: cardiac diseases, complex systems theory, ECG analysis, matrix analysis
Procedia PDF Downloads 34442684 The Impacts of Green Logistics Management Practices on Sustainability Performance in Nigeria
Authors: Ozoemelam Ikechukwu Lazarus, Nizamuddin B. Zainuddin, Abdul Kafi
Abstract:
Numerous studies have been carried out on Green Logistics Management Practices (GLMPs) across the globe. The study on the practices and performance of green chain practices in Africa in particular has not gained enough scholarly attention. Again, the majority of supply chain sustainability research being conducted focus on environmental sustainability. Logistics has been a major cause of supply chain resource waste and environmental damage. Many sectors of the economy that engage in logistical operations significantly rely on vehicles, which emit pollutants into the environment. Due to urbanization and industrialization, the logistical operations of manufacturing companies represent a serious hazard to the society and human life, making the sector one of the fastest expanding in the world today. Logistics companies are faced with numerous difficulties when attempting to implement logistics practices along their supply chains. In Nigeria, manufacturing companies aspire to implement reverse logistics in response to stakeholders’ requirements to reduce negative environmental consequences. However, implementing this is impeded by a criteria framework, and necessitates the careful analysis of how such criteria interact with each other in the presence of uncertainty. This study integrates most of the green logistics management practices (GLMPs) into the Nigerian firms to improve generalizability, and credibility. It examines the effect of Green Logistics Management Practices on environmental performance, social performance, market performance, and financial performance in the logistics industries. It seeks to identify the critical success factors in order to develop a model that incorporates different factors from the perspectives of the technology, organization, human and environment to inform the adoption and use of technologies for logistics supply chain social sustainability in Nigeria. It uses exploratory research approach to collect and analyse the data.Keywords: logistics, managemernt, suatainability, environment, operations
Procedia PDF Downloads 6342683 Moderating Effect of Different Social Supports on the Relationship between Workplace Bullying and Intention to Occupation Leave in Nurses
Authors: Chenchieh Chang
Abstract:
Objectives: This study had two objectives. First, it used affective events theory to investigate the relationship between workplace bullying and the intention to resign in nurses, a topic rarely explored in previous studies. Second, according to the conservation of resource theory, individuals encountering work incidents will utilize resources that are at their disposal to strengthen or weaken the effects of the incidents on them. Such resources include social support that comes from their bosses, colleagues, family, and friends. To answer the question of whether different social supports exert distinct effects on alleviating stress experienced by nurses, this study examined the moderating effects of different social supports on the relationship between workplace bullying and nurses’ intention to resign. Method: This study was approved by an institutional review board (code number: 105070) and adopted purposive sampling to survey 911, full-time nurses. Results: Work-related bullying exerted a significant and positive effect on the intention to resign, whereas bullying pertaining to interpersonal relationships and body-related bullying nonsignificantly affected intention to resign. Support from supervisors enhanced the effect of work-related bullying on an intention to resign, whereas support from colleagues and family did not moderate said effect. Research Limitations/Implications: The self-reporting method and cross-sectional research design adopted in this study might have resulted in common method variance and limited the ability to make causal inferences. This study suggests future studies to obtain measures of predictor and criterion variables from different sources or ensure a temporal, proximal, or psychological separation between predictor and criterion in the collection of data to avoid the common method bias. Practical Implications: First, businesses should establish a friendly work environment and prevent employees from encountering workplace bullying. Second, because social support cannot diminish the effect of workplace bullying on employees’ intention to resign, businesses should offer other means of assistance. For example, business managers may introduce confidential systems for employees to report workplace bullying; or they may establish consultation centers where employees can properly express their thoughts and feelings when encountering workplace bullying.Keywords: workplace bullying, intention to occupation leave, social supports, nurses
Procedia PDF Downloads 11542682 Social and Educational AI for Diversity: Research on Democratic Values to Develop Artificial Intelligence Tools to Guarantee Access for all to Educational Tools and Public Services
Authors: Roberto Feltrero, Sara Osuna-Acedo
Abstract:
Responsible Research and Innovation have to accomplish one fundamental aim: everybody has to participate in the benefits of innovation, but also innovation has to be democratic; that is to say, everybody may have the possibility to participate in the decisions in the innovation process. Particularly, a democratic and inclusive model of social participation and innovation includes persons with disabilities and people at risk of discrimination. Innovations on Artificial Intelligence for social development have to accomplish the same dual goal: improving equality for accessing fields of public interest like education, training and public services, as well as improving civic and democratic participation in the process of developing such innovations for all. This research aims to develop innovations, policies and policy recommendations to apply and disseminate such artificial intelligence and social model for making educational and administrative processes more accessible. First, designing a citizen participation process to engage citizens in the designing and use of artificial intelligence tools for public services. This will result in improving trust in democratic institutions contributing to enhancing the transparency, effectiveness, accountability and legitimacy of public policy-making and allowing people to participate in the development of ethical standards for the use of such technologies. Second, improving educational tools for lifelong learning with AI models to improve accountability and educational data management. Dissemination, education and social participation will be integrated, measured and evaluated in innovative educational processes to make accessible all the educational technologies and content developed on AI about responsible and social innovation. A particular case will be presented regarding access for all to educational tools and public services. This accessibility requires cognitive adaptability because, many times, legal or administrative language is very complex. Not only for people with cognitive disabilities but also for old people or citizens at risk of educational or social discrimination. Artificial Intelligence natural language processing technologies can provide tools to translate legal, administrative, or educational texts to a more simple language that can be accessible to everybody. Despite technological advances in language processing and machine learning, this becomes a huge project if we really want to respect ethical and legal consequences because that kinds of consequences can only be achieved with civil and democratic engagement in two realms: 1) to democratically select texts that need and can be translated and 2) to involved citizens, experts and nonexperts, to produce and validate real examples of legal texts with cognitive adaptations to feed artificial intelligence algorithms for learning how to translate those texts to a more simple and accessible language, adapted to any kind of population.Keywords: responsible research and innovation, AI social innovations, cognitive accessibility, public participation
Procedia PDF Downloads 9042681 A NoSQL Based Approach for Real-Time Managing of Robotics's Data
Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir
Abstract:
This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.Keywords: NoSQL databases, database management systems, robotics, big data
Procedia PDF Downloads 35542680 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose
Authors: Kumar Shashvat, Amol P. Bhondekar
Abstract:
In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.Keywords: odor classification, generative models, naive bayes, linear discriminant analysis
Procedia PDF Downloads 38742679 Development of Digital Twin Concept to Detect Abnormal Changes in Structural Behaviour
Authors: Shady Adib, Vladimir Vinogradov, Peter Gosling
Abstract:
Digital Twin (DT) technology is a new technology that appeared in the early 21st century. The DT is defined as the digital representation of living and non-living physical assets. By connecting the physical and virtual assets, data are transmitted smoothly, allowing the virtual asset to fully represent the physical asset. Although there are lots of studies conducted on the DT concept, there is still limited information about the ability of the DT models for monitoring and detecting unexpected changes in structural behaviour in real time. This is due to the large computational efforts required for the analysis and an excessively large amount of data transferred from sensors. This paper aims to develop the DT concept to be able to detect the abnormal changes in structural behaviour in real time using advanced modelling techniques, deep learning algorithms, and data acquisition systems, taking into consideration model uncertainties. finite element (FE) models were first developed offline to be used with a reduced basis (RB) model order reduction technique for the construction of low-dimensional space to speed the analysis during the online stage. The RB model was validated against experimental test results for the establishment of a DT model of a two-dimensional truss. The established DT model and deep learning algorithms were used to identify the location of damage once it has appeared during the online stage. Finally, the RB model was used again to identify the damage severity. It was found that using the RB model, constructed offline, speeds the FE analysis during the online stage. The constructed RB model showed higher accuracy for predicting the damage severity, while deep learning algorithms were found to be useful for estimating the location of damage with small severity.Keywords: data acquisition system, deep learning, digital twin, model uncertainties, reduced basis, reduced order model
Procedia PDF Downloads 99