Search results for: transition metal nitride coatings
809 Phenotypic and Symbiotic Characterization of Rhizobia Isolated from Faba Bean (Vicia faba L.) in Moroccan Soils
Authors: Y. Hajjam, I. T. Alami, S. M. Udupa, S. Cherkaoui
Abstract:
Faba bean (Vicia faba L.) is an important food legume crop in Morocco. It is mainly used as human food and feed for animals. Faba bean also plays an important role in cereal-based cropping systems, when rotated with cereals it improves soil fertility by fixing N2 in root nodules mediated by Rhizobium. Both faba bean and its biological nitrogen fixation symbiotic bacterium Rhizobium are affected by different stresses such as: salinity, drought, pH, heavy metal, and the uptake of inorganic phosphate compounds. Therefore, the aim of the present study was to evaluate the phenotypic diversity among the faba bean rhizobial isolates and to select the tolerant strains that can fix N2 under environmental constraints for inoculation particularly for affected soils, in order to enhance the productivity of faba bean and to improve soil fertility. Result have shown that 62% of isolates were fast growing with the ability of producing acids compounds , while 38% of isolates are slow growing with production of alkalins. Moreover, 42.5% of these isolates were able to solubilize inorganic phosphate Ca3(PO4)2 and the index of solubilization was ranged from 2.1 to 3.0. The resistance to extreme pH, temperature, water stress heavy metals and antibiotics lead us to classify rhizobial isolates into different clusters. Finally, the authentication test under greenhouse conditions showed that 55% of the rhizobial isolates could induce nodule formation on faba bean (Vicia faba L.) under greenhouse experiment. This phenotypic characterization may contribute to improve legumes and non legumes crops especially in affected soils and also to increase agronomic yield in the dry areas.Keywords: rhizobia, vicia faba, phenotypic characterization, nodule formation, environmental constraints
Procedia PDF Downloads 252808 Comparison of hCG and GnRH in Enhancing Pregnancy Rate of Non-Lactating Cycling Brood Mares
Authors: Sanan Raza, Muhammad Younus, Ahmad Yar Qamar, Tariq Abbas, Hamayun Khan, Amanullah Khan
Abstract:
Mares are considered to be seasonally polyestrous animals. The breeding season of mare ranges from March to May in Pakistan. However, fertility problems of mares have been trifling the horse breeders and stud owners since long, and it comes out that the fertility status of mares in Pakistan is relatively lower than the world average. The aim of the present study was to compare the effect of hCG and GnRH in improving pregnancy rate of mares in a transition period of month March and April. A total of n=66 mares showing normal estrus cycles with age ranging 5-12 y, weighing between 400-600 kg, BCS 6 ± 0.5 (1-9) and lactation varied from first to 5th were included in the experiment. These mares were administered PGF2α (75 μg; Dalmazine®, Fatro, Italy; 1 ml; i.m.) and divided into 3 groups. Mares of group 1 (n=22) were administered GnRH (100 μg; Dalmarelin®, Fatro, Italy; 4ml; im) while group 2 (n=22) mares were given hCG (5000 IU; IVF-C, LG Pharma; 1ml; iv). Likewise, mares of group 3 (n=22) were injected normal saline. Each treatment was given, when follicle attained the size of 35mm, keeping in view, the maturity of ovulating follicle at 35mm size and response to each treatment after routine ultrasound examination. All the mares of three groups were bred at 12 and 36 hours of treatment when the follicle reached the size of 35mm measured by ultrasound examination. Pregnancy was diagnosed by ultrasonography on day 18th and 42nd mating. On day 18th, pregnancy rate was 81.8% for hCG followed by 54.5% for GnRH and 45.5% for control. On day 42nd, pregnancy rate was (47.4%) for hCG which is significantly high (p<0.05) followed by GnRH (31.6%) and control (21.1%). Additionally the pregnancy loss was (25%, 20% respectively) in control and GnRH treated groups; whereas, hCG treated group showed no pregnancy loss (0.00%). Since no embryonic loss has been observed with hCG treatment during current study. Also hCG treated mares were 7.87 times more likely to conceive than controls. There were two times more chances of pregnancy in hCG treated mares than GnRH treated mares Therefore, it is concluded that the use of hCG in breeding season can improve pregnancy rate at a significant level when compared with GnRH hormone.Keywords: mares, ovulation, hCG, pregnancy rate
Procedia PDF Downloads 622807 Studies on Structural and Electrical Properties of Lanthanum Doped Sr₂CoMoO₆₋δ System
Authors: Pravin Kumar, Rajendra K. Singh, Prabhakar Singh
Abstract:
A widespread research work on Mo-based double perovskite systems has been reported as a potential application for electrode materials of solid oxide fuel cells. Mo-based double perovskites studied in form of B-site ordered double perovskite materials, with general formula A₂B′B″O₆ structured by alkaline earth element (A = Sr, Ca, Ba) and heterovalent transition metals (B′ = Fe, Co, Ni, Cr, etc. and B″ = Mo, W, etc.), are raising a significant interest as potential mixed ionic-electronic conductors in the temperature range of 500-800 °C. Such systems reveal higher electrical conductivity, particularly those assigned in form of Sr₂CoMoO₆₋δ (M = Mg, Mn, Fe, Co, Ni, Zn etc.) which were studied in different environments (air/H₂/H₂-Ar/CH₄) at an intermediate temperature. Among them, the Sr₂CoMoO₆₋δ system is a potential candidate as an anode material for solid oxide fuel cells (SOFCs) due to its better electrical conductivity. Therefore, Sr₂CoMoO₆₋δ (SCM) system with La-doped on Sr site has been studied to discover the structural and electrical properties. The double perovskite system Sr₂CoMoO₆₋δ (SCM) and doped system Sr₂-ₓLaₓCoMoO₆₋δ (SLCM, x=0.04) were synthesized by the citrate-nitrate combustion synthesis route. Thermal studies were carried out by thermo-gravimetric analysis. Phase justification was confirmed by powder X-ray diffraction (XRD) as a tetragonal structure with space group I4/m. A minor phase of SrMoO₄ (s.g. I41/a) was identified as a secondary phase using JCPDS card no. 85-0586. Micro-structural investigations revealed the formation of uniform grains. The average grain size of undoped (SCM) and doped (SLCM) compositions was calculated by a linear intercept method and found to be ⁓3.8 μm and 2.7 μm, respectively. The electrical conductivity of SLCM is found higher than SCM in the air within the temperature range of 200-600 °C. SLCM system was also measured in reducing atmosphere (pure H₂) in the temperature range 300-600 °C. SLCM has been showed the higher conductivity in the reducing atmosphere (H₂) than in air and therefore it could be a promising anode material for SOFCs.Keywords: double perovskite, electrical conductivity, SEM, XRD
Procedia PDF Downloads 132806 Diversity and Quality of Food Consumption Compared to Nutritional Status in Ages 15–17 Years Old in Jakarta
Authors: Andra Vidyarini
Abstract:
Adolescence is a transition period in which various changes occur, both biologically, intellectually and psychosocially. Changes in adolescents, one of which is a change in food consumption patterns that make adolescents vulnerable to nutritional problems that can affect their growth and health in the future. Nutritional problems in adolescents have increased from year to year and one of the causes is the low diversity and quality of consumption. The diversity and quality of consumption can be seen through the Individual Dietary Diversity Score and the Healthy Eating Index. Currently, in Indonesia, data on the diversity and quality of food consumption, especially among adolescents, are still scarce. In general, the purpose of this study is to describe the diversity and quality of adolescent food consumption and the relationship between the diversity and quality of food consumption with nutritional status. This study is a cross-sectional study by looking at the diversity and quality of consumption of adolescents aged 15-17 years. The total number of subjects in this study amounted to 70 teenagers. This research was conducted online via a google form. Data analysis in this study was univariate and bivariate. The results showed that the diversity of the subject's food consumption was in the diverse and very diverse category with an average of 6. However, the quality was still not good, whereas it was still in the bad and moderate categories with an average of 12.93. The nutritional status of the majority of the subjects was in the normal category and overweight to obese. The implementation of blended learning where there are still limited face-to-face meetings at school can be the reason why teenagers' food consumption is more diverse than when they are face-to-face schools. In addition, changes in people's diet during the pandemic also influenced the results of the study. The change in pattern is a change in eating habits to three times a day with menu choices ranging from rice, meat, fish, bean and vegetables. Analysis of the relationship between the diversity and quality of food consumption shows that the diversity of consumption has a significant relationship with the quality of food consumption with a p-value of 0.002 (p<0.05). Meanwhile, the diversity and quality of food consumption have no significant relationship with nutritional status, with p values 0.777 and 0.251 (>0.05), respectively. This shows that the diversity of food consumption is directly proportional to the quality of consumption, where if you have a variety of food consumption, the quality or in terms of portions and weight are also sufficient in accordance with the recommendations of PGRS.Keywords: healthy eating index (HEI), food diversity, quality of consumption, adolescent
Procedia PDF Downloads 175805 Planning a Haemodialysis Process by Minimum Time Control of Hybrid Systems with Sliding Motion
Authors: Radoslaw Pytlak, Damian Suski
Abstract:
The aim of the paper is to provide a computational tool for planning a haemodialysis process. It is shown that optimization methods can be used to obtain the most effective treatment focused on removing both urea and phosphorus during the process. In order to achieve that, the IV–compartment model of phosphorus kinetics is applied. This kinetics model takes into account a rebound phenomenon that can occur during haemodialysis and results in a hybrid model of the process. Furthermore, vector fields associated with the model equations are such that it is very likely that using the most intuitive objective functions in the planning problem could lead to solutions which include sliding motions. Therefore, building computational tools for solving the problem of planning a haemodialysis process has required constructing numerical algorithms for solving optimal control problems with hybrid systems. The paper concentrates on minimum time control of hybrid systems since this control objective is the most suitable for the haemodialysis process considered in the paper. The presented approach to optimal control problems with hybrid systems is different from the others in several aspects. First of all, it is assumed that a hybrid system can exhibit sliding modes. Secondly, the system’s motion on the switching surface is described by index 2 differential–algebraic equations, and that guarantees accurate tracking of the sliding motion surface. Thirdly, the gradients of the problem’s functionals are evaluated with the help of adjoint equations. The adjoint equations presented in the paper take into account sliding motion and exhibit jump conditions at transition times. The optimality conditions in the form of the weak maximum principle for optimal control problems with hybrid systems exhibiting sliding modes and with piecewise constant controls are stated. The presented sensitivity analysis can be used to construct globally convergent algorithms for solving considered problems. The paper presents numerical results of solving the haemodialysis planning problem.Keywords: haemodialysis planning process, hybrid systems, optimal control, sliding motion
Procedia PDF Downloads 195804 2D Ferromagnetism in Van der Waals Bonded Fe₃GeTe₂
Authors: Ankita Tiwari, Jyoti Saini, Subhasis Ghosh
Abstract:
For many years, researchers have been fascinated by the subject of how properties evolve as dimensionality is lowered. Early on, it was shown that the presence of a significant magnetic anisotropy might compensate for the lack of long-range (LR) magnetic order in a low-dimensional system (d < 3) with continuous symmetry, as proposed by Hohenberg-Mermin and Wagner (HMW). Strong magnetic anisotropy allows an LR magnetic order to stabilize in two dimensions (2D) even in the presence of stronger thermal fluctuations which is responsible for the absence of Heisenberg ferromagnetism in 2D. Van der Waals (vdW) ferromagnets, including CrI₃, CrTe₂, Cr₂X₂Te₆ (X = Si and Ge) and Fe₃GeTe₂, offer a nearly ideal platform for studying ferromagnetism in 2D. Fe₃GeTe₂ is the subject of extensive investigation due to its tunable magnetic properties, high Curie temperature (Tc ~ 220K), and perpendicular magnetic anisotropy. Many applications in the field of spintronics device development have been quite active due to these appealing features of Fe₃GeTe₂. Although it is known that LR-driven ferromagnetism is necessary to get around the HMW theorem in 2D experimental realization, Heisenberg 2D ferromagnetism remains elusive in condensed matter systems. Here, we show that Fe₃GeTe₂ hosts both localized and delocalized spins, resulting in itinerant and local-moment ferromagnetism. The presence of LR itinerant interaction facilitates to stabilize Heisenberg ferromagnet in 2D. With the help of Rhodes-Wohlfarth (RW) and generalized RW-based analysis, Fe₃GeTe₂ has been shown to be a 2D ferromagnet with itinerant magnetism that can be modulated by an external magnetic field. Hence, the presence of both local moment and itinerant magnetism has made this system interesting in terms of research in low dimensions. We have also rigorously performed critical analysis using an improvised method. We show that the variable critical exponents are typical signatures of 2D ferromagnetism in Fe₃GeTe₂. The spontaneous magnetization exponent β changes the universality class from mean-field to 2D Heisenberg with field. We have also confirmed the range of interaction via the renormalization group (RG) theory. According to RG theory, Fe₃GeTe₂ is a 2D ferromagnet with LR interactions.Keywords: Van der Waal ferromagnet, 2D ferromagnetism, phase transition, itinerant ferromagnetism, long range order
Procedia PDF Downloads 71803 Effect of Golden Oyster Mushroom (Pleurotus citrinopileatus) Powder on Physiochemical, Antioxidative, and Sensory Properties of Noodles
Authors: Giap Pham Ngoc Tram, Tran Hong Quan, Tran Tieu Yen, Nguyen Phung Tien
Abstract:
The use of natural ingredients to enhance the nutritional and sensory properties of food products has gained significant interest in recent years. This study focuses on the effect of Golden oyster mushroom powder (GOMP) on the physiochemical, antioxidative, and sensory properties of noodles. The aim of this study is to investigate the influence of GOMP on the nutritional, antioxidant, and sensory properties of noodles. The study determined the color, moisture, total ash, protein, total phenolic, flavonoid contents, water activity, and antioxidant activity of GOMP and noodles. The incorporation of GOMP at levels of 5-15% increased the ash, protein, flavonoid, and total phenolic contents of the noodles. It also enhanced their antioxidant activities, as evidenced by improved DPPH radical scavenging activity and metal chelating activity. However, the incorporation of GOMP resulted in a decrease in the L* and b* values of the noodles. Furthermore, the GOMP-enriched noodles exhibited a lower cutting force compared to the control. This study highlights the potential of GOMP as a nutritional and antioxidant ingredient in noodle preparation. It adds to the existing literature by providing evidence of the positive effects of GOMP on the nutritional and functional properties of noodles. The researchers collected data on the physiochemical properties, nutritional contents, and antioxidant activities of GOMP and noodles. Statistical analysis was then performed to assess the differences between the control and GOMP-enriched noodles. The results of this study demonstrate that the inclusion of GOMP at the amount of 5-15% can increase the nutritional and antioxidant properties of noodles without significantly impacting sensory attributes.Keywords: oyster mushroom, noodles, antioxidant activity, phytochemical, sensory property
Procedia PDF Downloads 65802 Development of Materials Based on Phosphates of NaZr2(PO4)3 with Low Thermal Expansion
Authors: V. Yu. Volgutov, A. I. Orlova, S. A. Khainakov
Abstract:
NaZr2(PO4)3 (NZP) and their structural analogues are characterized by a peculiar behaviors on heating – they have different expansion and contraction along different crystallographic directions due to specific arrangements of crystal structure in these compounds. An important feature of such structures is the ability to incorporate into their structural analogues wide variety of metal cations having different size and oxidation states, with different combinations and concentrations. These cations are located in different crystallographic non-equivalent positions of octahedral tetrahedral crystal framework as well as in inter-framework cavities. Through, due to iso- and hetero-valent isomorphism of the cations (and the anions) in NZP, it becomes possible to tuning the compositions and to obtain the compounds with ‘on a plan’ properties. For the design of compounds with low and ultra-low thermal expansion including those with tailored thermal expansion properties, the following crystallochemical principles it seems are promising: 1) Insertion into crystal M1 position the cations having different sizes and, 2) the variation in the composition of compounds, providing different occupation of crystal M1 position. Following these principles we have designed and synthesized the next NZP-type phosphates series: a) where radii of the cations in the M1 crystal position was varied: Zr1/4Zr2(PO4)3 - Th1/4Zr2(PO4)3 (series I); R1/3Zr2(PO4)3 where R= Nd, Eu, Er (series II), b) where the occupation of M1 crystal position was varied: Zr1/4Zr2(PO4)3-Er1/3Zr2(PO4)3 (series III) and Zr1/4Zr2(PO4)3-Sr1/2Zr2(PO4)3 (series IV). The thermal expansion parameters were determined over the range of 25-800ºC. For each series the minimum axial coefficient of thermal expansion αa = αb, αc and their anisotropy Δα = Iαa - αcI, 10-6 K-1 was found as next: -1.51, 1.07, 2.58 for Th1/4Zr2(PO4)3 (series I); -0.72, 0.10, 0.81 for Nd1/3Zr2(PO4)3 (series II); -2.78, 1.35, 4.12 for Er1/6Zr1/8Zr2(PO4)3 (series III); 2.23, 1.32, 0.91 for Sr1/2Zr2(PO4)3 (series IV). The measured tendencies of the thermal expansion of crystals were in good agreement with predicted ones. For one of the members from the studied phosphates namely Th1/16Zr3/16Zr2(PO4)3 structural refinement have been carried out at 25, 200, 600, and 800°C. The dependencies of the structural parameters with the temperature have been determined.Keywords: high-temperature crystallography, NaZr2(PO4)3, (NZP) analogs, structural-chemical principles, tuning thermal expansion
Procedia PDF Downloads 233801 Improved Performance of Mn Substituted Ceria Nanospheres for Water Gas Shift Reaction: Influence of Preparation Conditions
Authors: Bhairi Lakshminarayana, Surajit Sarker, Ch. Subrahmanyam
Abstract:
The present study reports the development of noble metal free nano catalysts for low-temperature CO oxidation and water gas shift reaction. Mn-substituted CeO2 solid solution catalysts were synthesized by co-precipitation, combustion and hydrothermal methods. The formation of solid solution was confirmed by XRD with Rietveld refinement and the percentage of carbon and nitrogen doping was ensured by CHNS analyzer. Raman spectroscopic confirmed the oxygen vacancies. The surface area, pore volume and pore size distribution confirmed by N2 physisorption analysis, whereas, UV-visible diffuse reflectance spectroscopy and XPS data confirmed the oxidation state of the Mn ion. The particle size and morphology (spherical shape) of the material was confirmed using FESEM and HRTEM analysis. Ce0.8Mn0.2O2-δ was calcined at 400 °C, 600 °C and 800 °C. Raman spectroscopy confirmed that the catalyst calcined at 400 °C has the best redox properties. The activity of the designed catalysts for CO oxidation (0.2 vol%), carried out with GHSV of 21,000 h-1 and it has been observed that co-precipitation favored the best active catalyst towards CO oxidation and water gas shift reaction, due to the high surface area, improved reducibility, oxygen mobility and highest quantity of surface oxygen species. The activation energy of low temperature CO oxidation on Ce0.8Mn0.2O2- δ (combustion) was 5.5 kcal.K-1.mole-1. The designed catalysts were tested for water gas shift reaction. The present study demonstrates that Mn ion substituted ceria at 400 °C calcination temperature prepared by co-precipitation method promise to revive a green sustainable energy production approach.Keywords: Ce0.8Mn0.2O2-ð, CO oxidation, physicochemical characterization, water gas shift reaction (WGS)
Procedia PDF Downloads 237800 Mobile Technology as a Catalyst for Creative Teaching: A Developmental Based Research Study in a Large Public School in Mozambique
Authors: L. O'Sullivan, C. Murphy
Abstract:
This study examined the impact, if any, of mobile technology on the achievement of United Nations Sustainable Development Goal 4: Quality Education for All. It focused specifically on teachers and their practice, in a school with large class sizes and limited teaching resources. Teachers in third grade in a large public school in Mozambique were provided with an iPad connected to a projector, powered by a mobile solar-panel. Teachers also participated in ten days of professional development workshops over thirteen months. Teacher discussions, micro-teaching sessions and classes in the school were video-recorded, and data was triangulated using surveys and additional documents including class plans, digital artifacts created by teachers, workshop notes and researcher field notes. The catalyst for teachers’ creativity development was to use the photographic capabilities of the iPad to capture the local context and make lessons relevant to the lived experience of the students. In the transition stage, teachers worked with lesson plans and support from the professional development workshops to make small incremental changes to their practice, which scaffolded their growing competence in the creative use of the technology as a tool for teaching and developing new teaching resources. Over the full period of the study, these small changes in practice resulted in a cultural shift in how teachers approached all lessons, even those in which they were not using the technology. They developed into working as a community of practice. The digital lessons created were re-used and further developed by other teachers, providing a relevant and valuable bank of content in a context lacking in books and other teaching resources. This study demonstrated that mobile technology proved to be a successful catalyst for impacting creative teaching practice in this context, and supports the Quality Education for All Sustainable Development Goal.Keywords: mobile technology, creative teaching, sub-Saharan Africa, quality education for all
Procedia PDF Downloads 128799 Connecting Life and Learning: Transformative Learning to Increase Student Engagement
Authors: Kashi Raj Pandey
Abstract:
Transformative learning is a form of learning rooted in learners' life experiences and their inherent love for learning. It emphasizes the importance of incorporating students' everyday work through the use of learning diaries and reflective journals. It encourages learners to take a proactive role in their own improvement, fostering creativity and promoting informed discussions about the learning process. Reflecting on the personal experience with English language learning in a rural village in Nepal where rote memorization was the prevailing teaching method, this traditional approach hindered a deeper understanding of the language, prompting the author to recognize the need for more effective pedagogy. In this study, the author delved into the cultural contextualization of English language learning, taking into account learners' backgrounds. The study’s findings highlighted the importance of equity, inclusion, mutuality, and social justice in the classroom, emphasizing the significance of integrating students' lived experiences into the pedagogical approach. This, in turn, can encourage students to engage in profound and collaborative learning practices within the realm of English language education. Upon successfully implementing the research findings, including the eight key conditions of transformative learning, in multiple classrooms, the author collaborated with international educationists and government stakeholders in Nepal. The purpose was to disseminate the research findings, conduct teacher training workshops, and systematically enhance Nepali students’ English language learning. These methods have already demonstrated a significant improvement in student engagement within the same school where the author once learned English as a child. This study aims to explore teachers’ decision-making process regarding the transition from traditional teaching methods to interactive ones, which have gained national recognition within the ESL/EFL teaching community in Nepal. By sharing these experiences, it is expected that other teachers will also contemplate adopting transformative learning pedagogy in their own classrooms.Keywords: reflection, student engagement, pedagogy, transformative learning
Procedia PDF Downloads 81798 Risk Assessment of Heavy Metals in Soils at Electronic Waste Activity Sites within the Vicinity of Alaba International Market, Nigeria
Authors: A. A. Adebayo, A. O. Ogunkeyede, A. O. Adeigbe
Abstract:
Digital globalisation and yarn of Nigeria society to overcome the digital divide have resulted in contamination of soil by heavy metals (HMs) from e-waste activities at Alaba international market, Lagos, Nigeria. The aim of this research was to determine the concentration of various metals {Cadmium (Cd), Chromium (Cr), Copper (Cu), and Lead (Pb)} and identify their ecological and health risks for the people within the study area. A total of 60 soil samples were collected at Alaba market study area. Two types of samples were collected from each sampling points: topsoil (0-15 cm), subsoil (15 -30 cm). The metal concentration results showed that the soils were heavily contaminated by HMs at topsoil and subsoil. The geoaccummulation and ecological risk indices revealed high pollution level from all studied site. The health risk assessment results suggested that there is high possibility of carcinogenic risk to humans because the carcinogenic risk via corresponding exposure pathways exceeded the safety limit of 10-6 (the acceptable level of carcinogenic risk for human). Furthermore, inhalation of soil particles is the main exposure pathway for Cr to enter the human body for all ages. Children in the vicinity are exposed more to ingestion of Pb since they tend to eat earth (pica) and repeatedly suck their fingers. This study provides basic information to create awareness for a need to introduce pollution control measures and the need to protect the ecosystem and human health within the study area at Alaba international market.Keywords: contaminated soil, ecological risk, hazard index, risk factor, exposure pathways, heavy metals
Procedia PDF Downloads 253797 In Search of Good Fortune: Individualization, Youth and the Spanish Labour Market within a Context of Crisis
Authors: Matthew Lee Turnbough
Abstract:
In 2007 Spain began to experience the effects of a deep economic crisis, which would generate a situation characterised by instability and uncertainty. This has been an obstacle, especially acute for the youth of this country seeking to enter the workforce. As a result of the impact of COVID-19, the youth in Spain are now suffering the effects of a new crisis that has deepened an already fragile labour environment. In this paper, we analyse the discourses that have emerged from a precarious labour market, specifically from two companies dedicated to operating job portals and job listings in Spain, Job Today, and CornerJob. These two start-up businesses have developed mobile applications geared towards young adults in search of employment in the service sector, two of the companies with the highest user rates in Spain. Utilizing a discourse analysis approach, we explore the impact of individualization and how the process of psychologization may contribute to an increasing reliance on individual solutions to social problems. As such, we seek to highlight the expectations and demands that are placed upon young workers and the type of subjectivity that this dynamic could foster, all this within an unstable framework seemingly marked by chance, a context which is key for the emergence of individualization. Furthermore, we consider the extent to which young adults incorporate these discourses and the strategies they employ basing our analysis on the VULSOCU (New Forms of Socio-Existential Vulnerability, Supports, and Care in Spain) research project, specifically the results of nineteen in-depth interviews and three discussion groups with young adults in this country. Consequently, we seek to elucidate the argumentative threads rooted in the process of individualization and underline the implications of this dynamic for the young worker and his/her labour insertion while also identifying manifestations of the goddess of fortune as a representation of chance in this context. Finally, we approach this panorama of social change in Spain from the perspective of the individuals or young adults who find themselves immersed in this transition from one crisis to another.Keywords: chance, crisis, discourses, individualization, work, youth
Procedia PDF Downloads 117796 Synthesis and Characterization of CNPs Coated Carbon Nanorods for Cd2+ Ion Adsorption from Industrial Waste Water and Reusable for Latent Fingerprint Detection
Authors: Bienvenu Gael Fouda Mbanga
Abstract:
This study reports a new approach of preparation of carbon nanoparticles coated cerium oxide nanorods (CNPs/CeONRs) nanocomposite and reusing the spent adsorbent of Cd2+- CNPs/CeONRs nanocomposite for latent fingerprint detection (LFP) after removing Cd2+ ions from aqueous solution. CNPs/CeONRs nanocomposite was prepared by using CNPs and CeONRs with adsorption processes. The prepared nanocomposite was then characterized by using UV-visible spectroscopy (UV-visible), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction pattern (XRD), scanning electron microscope (SEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Zeta potential, X-ray photoelectron spectroscopy (XPS). The average size of the CNPs was 7.84nm. The synthesized CNPs/CeONRs nanocomposite has proven to be a good adsorbent for Cd2+ removal from water with optimum pH 8, dosage 0. 5 g / L. The results were best described by the Langmuir model, which indicated a linear fit (R2 = 0.8539-0.9969). The adsorption capacity of CNPs/CeONRs nanocomposite showed the best removal of Cd2+ ions with qm = (32.28-59.92 mg/g), when compared to previous reports. This adsorption followed pseudo-second order kinetics and intra particle diffusion processes. ∆G and ∆H values indicated spontaneity at high temperature (40oC) and the endothermic nature of the adsorption process. CNPs/CeONRs nanocomposite therefore showed potential as an effective adsorbent. Furthermore, the metal loaded on the adsorbent Cd2+- CNPs/CeONRs has proven to be sensitive and selective for LFP detection on various porous substrates. Hence Cd2+-CNPs/CeONRs nanocomposite can be reused as a good fingerprint labelling agent in LFP detection so as to avoid secondary environmental pollution by disposal of the spent adsorbent.Keywords: Cd2+-CNPs/CeONRs nanocomposite, cadmium adsorption, isotherm, kinetics, thermodynamics, reusable for latent fingerprint detection
Procedia PDF Downloads 121795 “Post-Industrial” Journalism as a Creative Industry
Authors: Lynette Sheridan Burns, Benjamin J. Matthews
Abstract:
The context of post-industrial journalism is one in which the material circumstances of mechanical publication have been displaced by digital technologies, increasing the distance between the orthodoxy of the newsroom and the culture of journalistic writing. Content is, with growing frequency, created for delivery via the internet, publication on web-based ‘platforms’ and consumption on screen media. In this environment, the question is not ‘who is a journalist?’ but ‘what is journalism?’ today. The changes bring into sharp relief new distinctions between journalistic work and journalistic labor, providing a key insight into the current transition between the industrial journalism of the 20th century, and the post-industrial journalism of the present. In the 20th century, the work of journalists and journalistic labor went hand-in-hand as most journalists were employees of news organizations, whilst in the 21st century evidence of a decoupling of ‘acts of journalism’ (work) and journalistic employment (labor) is beginning to appear. This 'decoupling' of the work and labor that underpins journalism practice is far reaching in its implications, not least for institutional structures. Under these conditions we are witnessing the emergence of expanded ‘entrepreneurial’ journalism, based on smaller, more independent and agile - if less stable - enterprise constructs that are a feature of creative industries. Entrepreneurial journalism is realized in a range of organizational forms from social enterprise, through to profit driven start-ups and hybrids of the two. In all instances, however, the primary motif of the organization is an ideological definition of journalism. An example is the Scoop Foundation for Public Interest Journalism in New Zealand, which owns and operates Scoop Publishing Limited, a not for profit company and social enterprise that publishes an independent news site that claims to have over 500,000 monthly users. Our paper demonstrates that this journalistic work meets the ideological definition of journalism; conducted within the creative industries using an innovative organizational structure that offers a new, viable post-industrial future for journalism.Keywords: creative industries, digital communication, journalism, post industrial
Procedia PDF Downloads 280794 Development of Mixed Matrix Membranes by Using NH₂-Functionalized UiO-66 and [APTMS][AC] Ionic Liquid for the Separation of CO₂
Authors: Hafiza Mamoona Khalid, Afshan Mujahid, Asif Ali, Asim Laeeq Khan, Mahmood Saleem, Rafael M. Santos
Abstract:
The ever-escalating CO₂ concentration in the atmosphere calls for accelerated development and deployment of carbon capture processes to reduce emissions. Mixed matrix membranes (MMMs), which are fabricated by incorporating the beneficial properties of highly selective inorganic fillers into a polymer matrix, have exhibited significant progress and the ability to enhance the performance of a membrane for gas separation. In this research, an amine-based ionic liquid (IL) [APTMS][AC] was prepared, which has greater CO₂ affinity and greater solubility due to its amine moiety. The metal–organic framework (MOF) UiO-66 with a multidimensional crystalline structure was used as a filler due to its appropriate porosity and tunable properties, and it was functionalized with NH₂. MOFs were further modified with an IL to prepare UiO-66@IL and UiO-66-NH₂@IL, and MMMs incorporating each MOF were fabricated with the polymer Pebax-1657. All the prepared membranes and MOFs were characterized to predict their separation efficiency. Several characterization techniques, namely, FTIR spectroscopy, XRD, and SEM, were used to successfully synthesize UiO-66@IL and UiO-66-NH₂@IL composites and confirmed proper dispersion and excellent polymer‒ filler compatibility at filler loadings ranging from 0 to 30 wt.%. The separation performances were investigated, and the results showed that the incorporation of RTIL with the highly crystalline structure and large surface area of UiO-66 enhanced the separation efficiency of the membrane. The permeability of CO₂ for all fabricated membranes continuously increased with increasing filler concentration, wherein the permeability was comparatively high for the UiO-66-NH₂ MMMs. The CO₂/CH₄ selectivity improved by 35%, 54%, and 60%, respectively, for UiO-66@IL, UiO-66-NH₂, and UiO-66-NH₂@IL MMMs compared to simple UiO-66 for CO₂/CH₄ and by 28%, 36%, and 63%, respectively, for CO₂/N₂, with an increase in filler loading in the MMMs.Keywords: gas separation, mixed matrix membranes, CO₂ sequestration, climate change, global warming
Procedia PDF Downloads 15793 Full-Scale 3D Simulation of the Electroslag Rapid Remelting Process
Authors: E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig
Abstract:
The standard electroslag remelting (ESR) process can ideally control the solidification of an ingot and produce homogeneous structure with minimum defects. However, the melt rate of electrode is rather low that makes the whole process uneconomical especially to produce small ingot sizes. In contrast, continuous casting is an economical process to produce small ingots such as billets at high casting speed. Unfortunately, deep liquid melt pool forms in the billet ingot of continuous casting that leads to center porosity and segregation. As such, continuous casting is not suitable to produce segregation prone alloys like tool steel or several super alloys. On the other hand, the electro slag rapid remelting (ESRR) process has advantages of both traditional ESR and continuous casting processes to produce billets. In the ESRR process, a T-shaped mold is used including a graphite ring that takes major amount of current through the mold. There are only a few reports available in the literature discussing about this topic. The research on the ESRR process is currently ongoing aiming to improve the design of the T-shaped mold, to decrease overall heat loss in the process, and to obtain a higher temperature at metal meniscus. In the present study, a 3D model is proposed to investigate the electromagnetic, thermal, and flow fields in the whole process as well as solidification of the billet ingot. We performed a fully coupled numerical simulation to explore the influence of the electromagnetically driven flow (MHD) on the thermal field in the slag and ingot. The main goal is to obtain some fundamental understanding of the formation of melt pool of the solidifying billet ingot in the ESRR process.Keywords: billet ingot, magnetohydrodynamics (mhd), numerical simulation, remelting, solidification, t-shaped mold.
Procedia PDF Downloads 295792 Thermal Regulation of Channel Flows Using Phase Change Material
Authors: Kira Toxopeus, Kamran Siddiqui
Abstract:
Channel flows are common in a wide range of engineering applications. In some types of channel flows, particularly the ones involving chemical or biological processes, the control of the flow temperature is crucial to maintain the optimal conditions for the chemical reaction or to control the growth of biological species. This often becomes an issue when the flow experiences temperature fluctuations due to external conditions. While active heating and cooling could regulate the channel temperature, it may not be feasible logistically or economically and is also regarded as a non-sustainable option. Thermal energy storage utilizing phase change material (PCM) could provide the required thermal regulation sustainably by storing the excess heat from the channel and releasing it back as required, thus regulating the channel temperature within a range in the proximity of the PCM melting temperature. However, in designing such systems, the configuration of the PCM storage within the channel is critical as it could influence the channel flow dynamics, which would, in turn, affect the heat exchange between the channel fluid and the PCM. The present research is focused on the investigation of the flow dynamical behavior in the channel during heat transfer from the channel flow to the PCM thermal energy storage. Offset vertical columns in a narrow channel were used that contained the PCM. Two different column shapes, square and circular, were considered. Water was used as the channel fluid that entered the channel at a temperature higher than that of the PCM melting temperature. Hence, as the water was passing through the channel, the heat was being transferred from the water to the PCM, causing the PCM to store the heat through a phase transition from solid to liquid. Particle image velocimetry (PIV) was used to measure the two-dimensional velocity field of the channel flow as it flows between the PCM columns. Thermocouples were also attached to the PCM columns to measure the PCM temperature at three different heights. Three different water flow rates (0.5, 0.75 and 1.2 liters/min) were considered. At each flow rate, experiments were conducted at three different inlet water temperatures (28ᵒC, 33ᵒC and 38ᵒC). The results show that the flow rate and the inlet temperature influenced the flow behavior inside the channel.Keywords: channel flow, phase change material, thermal energy storage, thermal regulation
Procedia PDF Downloads 140791 Photocatalytic Degradation of Methylene Blue Dye Using Cuprous Oxide/Graphene Nanocomposite
Authors: Bekan Bogale, Tsegaye Girma Asere, Tilahun Yai, Fekadu Melak
Abstract:
Aims: To study photocatalytic degradation of methylene blue dye on cuprous oxide/graphene nanocomposite. Background: Cuprous oxide (Cu2O) nanoparticles are among the metal oxides that demonstrated photocatalytic activity. However, the stability of Cu2O nanoparticles due to the fast recombination rate of electron/hole pairs remains a significant challenge in their photocatalytic applications. This, in turn, leads to mismatching of the effective bandgap separation, tending to reduce the photocatalytic activity of the desired organic waste (MB). To overcome these limitations, graphene has been combined with cuprous oxides, resulting in cuprous oxide/graphene nanocomposite as a promising photocatalyst. Objective: In this study, Cu2O/graphene nanocomposite was synthesized and evaluated for its photocatalytic performance of methylene blue (MB) dye degradation. Method: Cu2O/graphene nanocomposites were synthesized from graphite powder and copper nitrate using the facile sol-gel method. Batch experiments have been conducted to assess the applications of the nanocomposites for MB degradation. Parameters such as contact time, catalyst dosage, and pH of the solution were optimized for maximum MB degradation. The prepared nanocomposites were characterized by using UV-Vis, FTIR, XRD, and SEM. The photocatalytic performance of Cu2O/graphene nanocomposites was compared against Cu2O nanoparticles for cationic MB dye degradation. Results: Cu2O/graphene nanocomposite exhibits higher photocatalytic activity for MB degradation (with a degradation efficiency of 94%) than pure Cu2O nanoparticles (67%). This has been accomplished after 180 min of irradiation under visible light. The kinetics of MB degradation by Cu2O/graphene composites can be demonstrated by the second-order kinetic model. The synthesized nanocomposite can be used for more than three cycles of photocatalytic MB degradation. Conclusion: This work indicated new insights into Cu2O/graphene nanocomposite as high-performance in photocatalysis to degrade MB, playing a great role in environmental protection in relation to MB dye.Keywords: methylene blue, photocatalysis, cuprous oxide, graphene nanocomposite
Procedia PDF Downloads 189790 Surface-Enhanced Raman Spectroscopy-Based Detection of SARS-CoV-2 Through In Situ One-pot Electrochemical Synthesis of 3D Au-Lysate Nanocomposite Structures on Plasmonic Au Electrodes
Authors: Ansah Iris Baffour, Dong-Ho Kim, Sung-Gyu Park
Abstract:
The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus and is gradually shifting to an endemic phase which implies the outbreak is far from over and will be difficult to eradicate. Global cooperation has led to unified precautions that aim to suppress epidemiological spread (e.g., through travel restrictions) and reach herd immunity (through vaccinations); however, the primary strategy to restrain the spread of the virus in mass populations relies on screening protocols that enable rapid on-site diagnosis of infections. Herein, we employed surface enhanced Raman spectroscopy (SERS) for the rapid detection of SARS-CoV-2 lysate on an Au-modified Au nanodimple(AuND)electrode. Through in situone-pot Au electrodeposition on the AuND electrode, Au-lysate nanocomposites were synthesized, generating3D internal hotspots for large SERS signal enhancements within 30 s of the deposition. The capture of lysate into newly generated plasmonic nanogaps within the nanocomposite structures enhanced metal-spike protein contact in 3D spaces and served as hotspots for sensitive detection. The limit of detection of SARS-CoV-2 lysate was 5 x 10-2 PFU/mL. Interestingly, ultrasensitive detection of the lysates of influenza A/H1N1 and respiratory syncytial virus (RSV) was possible, but the method showed ultimate selectivity for SARS-CoV-2 in lysate solution mixtures. We investigated the practical application of the approach for rapid on-site diagnosis by detecting SARS-CoV-2 lysate spiked in normal human saliva at ultralow concentrations. The results presented demonstrate the reliability and sensitivity of the assay for rapid diagnosis of COVID-19.Keywords: label-free detection, nanocomposites, SARS-CoV-2, surface-enhanced raman spectroscopy
Procedia PDF Downloads 123789 Reducing Antimicrobial Resistance Using Biodegradable Polymer Composites of Mof-5 for Efficient and Sustained Delivery of Cephalexin and Metronidazole
Authors: Anoff Anim, Lila Mahmound, Maria Katsikogianni, Sanjit Nayak
Abstract:
Sustained and controlled delivery of antimicrobial drugs have been largely studied recently using metal organic frameworks (MOFs)and different polymers. However, much attention has not been given to combining both MOFs and biodegradable polymers which would be a good strategy in providing a sustained gradual release of the drugs. Herein, we report a comparative study of the sustained and controlled release of widely used antibacterial drugs, cephalexin and metronidazole, from zinc-based MOF-5 incorporated in biodegradable polycaprolactone (PCL) and poly-lactic glycolic acid (PLGA) membranes. Cephalexin and metronidazole were separately incorporated in MOF-5 post-synthetically, followed by their integration into biodegradable PLGA and PCL membranes. The pristine MOF-5 and the loaded MOFs were thoroughly characterized by FT-IR, SEM, TGA and PXRD. Drug release studies were carried out to assess the release rate of the drugs in PBS and distilled water for up to 48 hours using UV-Vis Spectroscopy. Four bacterial strains from both the Gram-positive and Gram-negative types, Staphylococus aureus, Staphylococuss epidermidis, Escherichia coli, Acinetobacter baumanii, were tested against the pristine MOF, pure drugs, loaded MOFs and the drug-loaded MOF-polymer composites. Metronidazole-loaded MOF-5 composite of PLGA (PLGA-Met@MOF-5) was found to show highest efficiency to inhibit the growth of S. epidermidis compared to the other bacteria strains while maintaining a sustained minimum inhibitory concentration (MIC). This study demonstrates that the combination of biodegradable MOF-polymer composites can provide an efficient platform for sustained and controlled release of antimicrobial drugs, and can be a potential strategy to integrate them in biomedical devices.Keywords: antimicrobial resistance, biodegradable polymers, cephalexin, drug release metronidazole, MOF-5, PCL, PLGA
Procedia PDF Downloads 85788 Evaluation of Water Chemistry and Quality Characteristics of Işıklı Lake (Denizli, Türkiye)
Authors: Abdullah Ay, Şehnaz Şener
Abstract:
It is of great importance to reveal their current status and conduct research in this direction for the sustainable use and protection of lakes, which are among the most important water resources for meeting water needs and ensuring ecological balance. In this context, the purpose of this study is to determine the hydrogeochemical properties, as well as water quality and usability characteristics of Işıklı Lake within the Lakes Region of Turkey. Işıklı Lake is a tectonic lake located in the Aegean Region of Turkey. The lake has a surface area of approximately 36 km². Temperature (T), electrical conductivity (EC) and hydrogen ion concentration (pH), dissolved oxygen (%, mg/l), Oxidation Reduction Potential (ORP; mV), and amount of dissolved solids in water (TDS; mg/l) of water samples taken from the lake values were determined by in situ analysis. Major ion and heavy metal analyses were carried out under laboratory conditions. Additionally, the relationship between major ion concentrations and TDS values of Işıklı Lake water samples was determined by correlation analysis. According to the results obtained, it is seen that especially Mg, Ca and HCO₃ ions are dominant in the lake water, and it has been determined that the lake water is in the Ca-Mg-HCO₃ water facies. According to statistical analysis, a strong and positive relationship was found between the TDS value and bicarbonate and calcium (R² = 0.61 and 0.7, respectively). However, no significant relationship was detected between the TDS value and other chemical elements. Although the waters are generally in water quality class I, they are in class IV in terms of sulfur and aluminum. It is included in the water quality class. This situation is due to the rock-water interaction in the region. When the analysis results of the lake water were compared with the drinking water limit values specified by TSE-266 (2005) and WHO (2017), it was determined that it was not suitable for drinking water use in terms of Pb, Se, As, and Cr. When the waters were evaluated in terms of pollution, it was determined that 50% of the samples carried pollution loads in terms of Al, As, Fe, NO3, and Cu.Keywords: Işıklı Lake, water chemistry, water quality, pollution, arsenic, Denizli
Procedia PDF Downloads 24787 Characterizing Nanoparticles Generated from the Different Working Type and the Stack Flue during 3D Printing Process
Authors: Kai-Jui Kou, Tzu-Ling Shen, Ying-Fang Wang
Abstract:
The objectives of the present study are to characterize nanoparticles generated from the different working type in 3D printing room and the stack flue during 3D printing process. The studied laboratory (10.5 m× 7.2 m × 3.2 m) with a ventilation rate of 500 m³/H is installed a 3D metal printing machine. Direct-reading instrument of a scanning mobility particle sizer (SMPS, Model 3082, TSI Inc., St. Paul, MN, USA) was used to conduct static sampling for nanoparticle number concentration and particle size distribution measurements. The SMPS obtained particle number concentration at every 3 minutes, the diameter of the SMPS ranged from 11~372 nm when the aerosol and sheath flow rates were set at 0.6 and 6 L/min, respectively. The concentrations of background, printing process, clearing operation, and screening operation were performed in the laboratory. On the other hand, we also conducted nanoparticle measurement on the 3D printing machine's stack flue to understand its emission characteristics. Results show that the nanoparticles emitted from the different operation process were the same distribution in the form of the uni-modal with number median diameter (NMD) as approximately 28.3 nm to 29.6 nm. The number concentrations of nanoparticles were 2.55×10³ count/cm³ in laboratory background, 2.19×10³ count/cm³ during printing process, 2.29×10³ count/cm³ during clearing process, 3.05×10³ count/cm³ during screening process, 2.69×10³ count/cm³ in laboratory background after printing process, and 6.75×10³ outside laboratory, respectively. We found that there are no emission nanoparticles during the printing process. However, the number concentration of stack flue nanoparticles in the ongoing print is 1.13×10⁶ count/cm³, and that of the non-printing is 1.63×10⁴ count/cm³, with a NMD of 458 nm and 29.4 nm, respectively. It can be confirmed that the measured particle size belongs to easily penetrate the filter in theory during the printing process, even though the 3D printer has a high-efficiency filtration device. Therefore, it is recommended that the stack flue of the 3D printer would be equipped with an appropriate dust collection device to prevent the operators from exposing these hazardous particles.Keywords: nanoparticle, particle emission, 3D printing, number concentration
Procedia PDF Downloads 183786 On Cold Roll Bonding of Polymeric Films
Authors: Nikhil Padhye
Abstract:
Recently a new phenomenon for bonding of polymeric films in solid-state, at ambient temperatures well below the glass transition temperature of the polymer, has been reported. This is achieved by bulk plastic compression of polymeric films held in contact. Here we analyze the process of cold-rolling of polymeric films via finite element simulations and illustrate a flexible and modular experimental rolling-apparatus that can achieve bonding of polymeric films through cold-rolling. Firstly, the classical theory of rolling a rigid-plastic thin-strip is utilized to estimate various deformation fields such as strain-rates, velocities, loads etc. in rolling the polymeric films at the specified feed-rates and desired levels of thickness-reduction(s). Predicted magnitudes of slow strain-rates, particularly at ambient temperatures during rolling, and moderate levels of plastic deformation (at which Bauschinger effect can be neglected for the particular class of polymeric materials studied here), greatly simplifies the task of material modeling and allows us to deploy a computationally efficient, yet accurate, finite deformation rate-independent elastic-plastic material behavior model (with inclusion of isotropic-hardening) for analyzing the rolling of these polymeric films. The interfacial behavior between the roller and polymer surfaces is modeled using Coulombic friction; consistent with the rate-independent behavior. The finite deformation elastic-plastic material behavior based on (i) the additive decomposition of stretching tensor (D = De + Dp, i.e. a hypoelastic formulation) with incrementally objective time integration and, (ii) multiplicative decomposition of deformation gradient (F = FeFp) into elastic and plastic parts, are programmed and carried out for cold-rolling within ABAQUS Explicit. Predictions from both the formulations, i.e., hypoelastic and multiplicative decomposition, exhibit a close match. We find that no specialized hyperlastic/visco-plastic model is required to describe the behavior of the blend of polymeric films, under the conditions described here, thereby speeding up the computation process .Keywords: Polymer Plasticity, Bonding, Deformation Induced Mobility, Rolling
Procedia PDF Downloads 189785 Approaches to Reduce the Complexity of Mathematical Models for the Operational Optimization of Large-Scale Virtual Power Plants in Public Energy Supply
Authors: Thomas Weber, Nina Strobel, Thomas Kohne, Eberhard Abele
Abstract:
In context of the energy transition in Germany, the importance of so-called virtual power plants in the energy supply continues to increase. The progressive dismantling of the large power plants and the ongoing construction of many new decentralized plants result in great potential for optimization through synergies between the individual plants. These potentials can be exploited by mathematical optimization algorithms to calculate the optimal application planning of decentralized power and heat generators and storage systems. This also includes linear or linear mixed integer optimization. In this paper, procedures for reducing the number of decision variables to be calculated are explained and validated. On the one hand, this includes combining n similar installation types into one aggregated unit. This aggregated unit is described by the same constraints and target function terms as a single plant. This reduces the number of decision variables per time step and the complexity of the problem to be solved by a factor of n. The exact operating mode of the individual plants can then be calculated in a second optimization in such a way that the output of the individual plants corresponds to the calculated output of the aggregated unit. Another way to reduce the number of decision variables in an optimization problem is to reduce the number of time steps to be calculated. This is useful if a high temporal resolution is not necessary for all time steps. For example, the volatility or the forecast quality of environmental parameters may justify a high or low temporal resolution of the optimization. Both approaches are examined for the resulting calculation time as well as for optimality. Several optimization models for virtual power plants (combined heat and power plants, heat storage, power storage, gas turbine) with different numbers of plants are used as a reference for the investigation of both processes with regard to calculation duration and optimality.Keywords: CHP, Energy 4.0, energy storage, MILP, optimization, virtual power plant
Procedia PDF Downloads 178784 Ultrasound-Assisted Sol – Gel Synthesis of Nano-Boehmite for Biomedical Purposes
Authors: Olga Shapovalova, Vladimir Vinogradov
Abstract:
Among many different sol – gel matrices only alumina can be successfully parenteral injected in the human body. And this is not surprising, because boehmite (aluminium oxyhydroxide) is the metal oxide approved by FDA and EMA for intravenous and intramuscular administrations, and also has been using for a longtime as adjuvant for producing of many modern vaccines. In our earlier study, it has been shown, that denaturation temperature of enzymes entrapped in sol-gel boehmite matrix increases for 30 – 60 °С with preserving of initial activity. It makes such matrices more attractive for long-term storage of non-stable drugs. In current work we present ultrasound-assisted sol-gel synthesis of nano-boehmite. This method provides bio-friendly, very stable, highly homogeneous alumina sol with using only water and aluminium isopropoxide as a precursor. Many parameters of the synthesis were studied in details: time of ultrasound treatment, US frequency, surface area, pore and nanoparticle size, zeta potential and others. Here we investigated the dependence of stability of colloidal sols and textural properties of the final composites as a function of the time of ultrasonic treatment. Chosen ultrasonic treatment time was between 30 and 180 minutes. Surface area, average pore diameter and total pore volume of the final composites were measured by surface and pore size analyzer Nova 1200 Quntachrome. It was shown that the matrices with ultrasonic treatment time equal to 90 minutes have the biggest surface area 431 ± 24 m2/g. On the other had such matrices have a smaller stability in comparison with the samples with ultrasonic treatment time equal to 120 minutes that have the surface area 390 ± 21 m2/g. It was shown that the stable sols could be formed only after 120 minutes of ultrasonic treatment, otherwise the white precipitate of boehmite is formed. We conclude that the optimal ultrasonic treatment time is 120 minutes.Keywords: boehmite matrix, stabilisation, ultrasound-assisted sol-gel synthesis
Procedia PDF Downloads 267783 Human Factors Interventions for Risk and Reliability Management of Defence Systems
Authors: Chitra Rajagopal, Indra Deo Kumar, Ila Chauhan, Ruchi Joshi, Binoy Bhargavan
Abstract:
Reliability and safety are essential for the success of mission-critical and safety-critical defense systems. Humans are part of the entire life cycle of defense systems development and deployment. The majority of industrial accidents or disasters are attributed to human errors. Therefore, considerations of human performance and human reliability are critical in all complex systems, including defense systems. Defense systems are operating from the ground, naval and aerial platforms in diverse conditions impose unique physical and psychological challenges to the human operators. Some of the safety and mission-critical defense systems with human-machine interactions are fighter planes, submarines, warships, combat vehicles, aerial and naval platforms based missiles, etc. Human roles and responsibilities are also going through a transition due to the infusion of artificial intelligence and cyber technologies. Human operators, not accustomed to such challenges, are more likely to commit errors, which may lead to accidents or loss events. In such a scenario, it is imperative to understand the human factors in defense systems for better systems performance, safety, and cost-effectiveness. A case study using Task Analysis (TA) based methodology for assessment and reduction of human errors in the Air and Missile Defense System in the context of emerging technologies were presented. Action-oriented task analysis techniques such as Hierarchical Task Analysis (HTA) and Operator Action Event Tree (OAET) along with Critical Action and Decision Event Tree (CADET) for cognitive task analysis was used. Human factors assessment based on the task analysis helps in realizing safe and reliable defense systems. These techniques helped in the identification of human errors during different phases of Air and Missile Defence operations, leading to meet the requirement of a safe, reliable and cost-effective mission.Keywords: defence systems, reliability, risk, safety
Procedia PDF Downloads 136782 Protein-Enrichment of Oilseed Meals by Triboelectrostatic Separation
Authors: Javier Perez-Vaquero, Katryn Junker, Volker Lammers, Petra Foerst
Abstract:
There is increasing importance to accelerate the transition to sustainable food systems by including environmentally friendly technologies. Our work focuses on protein enrichment and fractionation of agricultural side streams by dry triboelectrostatic separation technology. Materials are fed in particulate form into a system dispersed in a highly turbulent gas stream, whereby the high collision rate of particles against surfaces and other particles greatly enhances the electrostatic charge build-up over the particle surface. A subsequent step takes the charged particles to a delimited zone in the system where there is a highly uniform, intense electric field applied. Because the charge polarity acquired by a particle is influenced by its chemical composition, morphology, and structure, the protein-rich and fiber-rich particles of the starting material get opposite charge polarities, thus following different paths as they move through the region where the electric field is present. The output is two material fractions, which differ in their respective protein content. One is a fiber-rich, low-protein fraction, while the other is a high-protein, low-fiber composition. Prior to testing, materials undergo a milling process, and some samples are stored under controlled humidity conditions. In this way, the influence of both particle size and humidity content was established. We used two oilseed meals: lupine and rapeseed. In addition to a lab-scale separator to perform the experiments, the triboelectric separation process could be successfully scaled up to a mid-scale belt separator, increasing the mass feed from g/sec to kg/hour. The triboelectrostatic separation technology opens a huge potential for the exploitation of so far underutilized alternative protein sources. Agricultural side-streams from cereal and oil production, which are generated in high volumes by the industries, can further be valorized by this process.Keywords: bench-scale processing, dry separation, protein-enrichment, triboelectrostatic separation
Procedia PDF Downloads 190781 A Case Study on Theme-Based Approach in Health Technology Engineering Education: Customer Oriented Software Applications
Authors: Mikael Soini, Kari Björn
Abstract:
Metropolia University of Applied Sciences (MUAS) Information and Communication Technology (ICT) Degree Programme provides full-time Bachelor-level undergraduate studies. ICT Degree Programme has seven different major options; this paper focuses on Health Technology. In Health Technology, a significant curriculum change in 2014 enabled transition from fragmented curriculum including dozens of courses to a new integrated curriculum built around three 30 ECTS themes. This paper focuses especially on the second theme called Customer Oriented Software Applications. From students’ point of view, the goal of this theme is to get familiar with existing health related ICT solutions and systems, understand business around health technology, recognize social and healthcare operating principles and services, and identify customers and users and their special needs and perspectives. This also acts as a background for health related web application development. Built web application is tested, developed and evaluated with real users utilizing versatile user centred development methods. This paper presents experiences obtained from the first implementation of Customer Oriented Software Applications theme. Student feedback was gathered with two questionnaires, one in the middle of the theme and other at the end of the theme. Questionnaires had qualitative and quantitative parts. Similar questionnaire was implemented in the first theme; this paper evaluates how the theme-based integrated curriculum has progressed in Health Technology major by comparing results between theme 1 and 2. In general, students were satisfied for the implementation, timing and synchronization of the courses, and the amount of work. However there is still room for development. Student feedback and teachers’ observations have been and will be used to develop the content and operating principles of the themes and whole curriculum.Keywords: engineering education, integrated curriculum, learning and teaching methods, learning experience
Procedia PDF Downloads 321780 The Determination of the Phosphorous Solubility in the Iron by the Function of the Other Components
Authors: Andras Dezső, Peter Baumli, George Kaptay
Abstract:
The phosphorous is the important components in the steels, because it makes the changing of the mechanical properties and possibly modifying the structure. The phosphorous can be create the Fe3P compounds, what is segregated in the ferrite grain boundary in the intervals of the nano-, or microscale. This intermetallic compound is decreasing the mechanical properties, for example it makes the blue brittleness which means that the brittle created by the segregated particles at 200 ... 300°C. This work describes the phosphide solubility by the other components effect. We make calculations for the Ni, Mo, Cu, S, V, C, Si, Mn, and the Cr elements by the Thermo-Calc software. We predict the effects by approximate functions. The binary Fe-P system has a solubility line, which has a determinating equation. The result is below: lnwo = -3,439 – 1.903/T where the w0 means the weight percent of the maximum soluted concentration of the phosphorous, and the T is the temperature in Kelvin. The equation show that the P more soluble element when the temperature increasing. The nickel, molybdenum, vanadium, silicon, manganese, and the chromium make dependence to the maximum soluted concentration. These functions are more dependent by the elements concentration, which are lower when we put these elements in our steels. The copper, sulphur and carbon do not make effect to the phosphorous solubility. We predict that all of cases the maximum solubility concentration increases when the temperature more and more high. Between 473K and 673 K, in the phase diagram, these systems contain mostly two or three phase eutectoid, and the singe phase, ferritic intervals. In the eutectoid areas the ferrite, the iron-phosphide, and the metal (III)-phospide are in the equilibrium. In these modelling we predicted that which elements are good for avoid the phosphide segregation or not. These datas are important when we make or choose the steels, where the phosphide segregation stopping our possibilities.Keywords: phosphorous, steel, segregation, thermo-calc software
Procedia PDF Downloads 625