Search results for: batch machine learning
5462 The Effect of Immobilization Conditions on Hydrogen Production from Palm Oil Mill Effluent
Authors: A. W. Zularisam, Lakhveer Singh, Mimi Sakinah Abdul Munaim
Abstract:
In this study, the optimization of hydrogen production using polyethylene glycol (PEG) immobilized sludge was investigated in batch tests. Palm oil mill effluent (POME) is used as a substrate that can act as a carbon source. Experiment focus on the effect of some important affecting factors on fermentative hydrogen production. Results showed that immobilized sludge demonstrated the maximum hydrogen production rate of 340 mL/L-POME/h under follow optimal condition: amount of biomass 10 mg VSS/ g bead, PEG concentration 10%, and cell age 24 h or 40 h. More importantly, immobilized sludge not only enhanced hydrogen production but can also tolerate the harsh environment and produce hydrogen at the wide ranges of pH. The present results indicate the potential of PEG-immobilized sludge for large-scale operations as well; these factors play an important role in stable and continuous hydrogen production.Keywords: bioydrogen, immobilization, polyethylene glycol, palm oil mill effluent, dark fermentation
Procedia PDF Downloads 3435461 Mobile Learning in Developing Countries: A Synthesis of the Past to Define the Future
Authors: Harriet Koshie Lamptey, Richard Boateng
Abstract:
Mobile learning (m-learning) is a novel approach to knowledge acquisition and dissemination and is gaining global attention. Steady progress in wireless technologies and the portability of communication devices continue to broaden the scope and use of mobiles. With the convergence of Web functionality onto mobile platforms and the affordability and availability of mobile technology, m-learning has the potential of being the next prevalent channel of education in both formal and informal settings. There is substantive literature on developed countries but the state in developing countries (DCs) however appears vague. This paper is a synthesis of extant literature on mobile learning in DCs. The research interest is based on the fact that in DCs, mobile communication and internet connectivity are popular. However, its use in education is under explored. There are some reviews on the state, conceptualizations, trends and teacher education, but to the authors’ knowledge, no study has focused on mobile learning adoption and integration issues. This study examines issues and gaps associated with its adoption and integration in DCs higher education institutions. A qualitative build-up of literature was conducted using articles pooled from electronic databases (Google Scholar and ERIC). To enable criteria for inclusion and incorporate diverse study perspectives, search terms used were m-learning, DCs, higher education institutions, challenges, benefits, impact, gaps and issues. The synthesis revealed that though mobile technology has diffused globally, its pedagogical pursuit in DCs remains quite low. The absence of a mobile Web and the difficulty of resource conversion into mobile format due to lack of funding and technical competence is a stumbling block. Again, the lack of established design and implementation rules to guide the development of m-learning platforms in DCs is a hindrance. The absence of access restrictions on devices poses security threats to institutional systems. Negative perceptions that devices are taking over faculty roles lead to resistance in some situations. Resistance to change can be a hindrance to the acceptance and success of new systems. Lack of interest for m-learning is also attributed to lower technological literacy levels of the underprivileged masses. Scholarly works on m-learning in DCs is yet to mature. Most technological innovations are handed down from developed countries, and this constantly creates a lag for DCs. Lack of theoretical grounding was also identified which reduces the objectivity of study reports. The socio-cultural terrain of DCs results in societies with different views and needs that have been identified as a hindrance to research. Institutional commitment decisions, adequate funding for the necessary infrastructural development as well as multiple stakeholder participation is important for project success. Evidence suggests that while adoption decisions are readily made, successful integration of the concept for its full benefits to be realized is often neglected. Recommendations to findings were made to provide possible remedies to identified issues.Keywords: developing countries, higher education institutions, mobile learning, literature review
Procedia PDF Downloads 2255460 Virtual Reality for Chemical Engineering Unit Operations
Authors: Swee Kun Yap, Sachin Jangam, Suraj Vasudevan
Abstract:
Experiential learning is dubbed as a highly effective way to enhance learning. Virtual reality (VR) is thus a helpful tool in providing a safe, memorable, and interactive learning environment. A class of 49 fluid mechanics students participated in starting up a pump, one of the most used equipment in the chemical industry, in VR. They experience the process in VR to familiarize themselves with the safety training and the standard operating procedure (SOP) in guided mode. Students subsequently observe their peers (in groups of 4 to 5) complete the same training. The training first brings each user through the personal protection equipment (PPE) selection, before guiding the user through a series of steps for pump startup. One of the most common feedback given by industries include the weakness of our graduates in pump design and operation. Traditional fluid mechanics is a highly theoretical module loaded with engineering equations, providing limited opportunity for visualization and operation. With VR pump, students can now learn to startup, shutdown, troubleshoot and observe the intricacies of a centrifugal pump in a safe and controlled environment, thereby bridging the gap between theory and practical application. Following the completion of the guided mode operation, students then individually complete the VR assessment for pump startup on the same day, which requires students to complete the same series of steps, without any cues given in VR to test their recollection rate. While most students miss out a few minor steps such as the checking of lubrication oil and the closing of minor drain valves before pump priming, all the students scored full marks in the PPE selection, and over 80% of the students were able to complete all the critical steps that are required to startup a pump safely. The students were subsequently tested for their recollection rate by means of an online quiz 3 weeks later, and it is again found that over 80% of the students were able to complete the critical steps in the correct order. In the survey conducted, students reported that the VR experience has been enjoyable and enriching, and 79.5% of the students voted to include VR as a positive supplementary exercise in addition to traditional teaching methods. One of the more notable feedback is the higher ease of noticing and learning from mistakes as an observer rather than as a VR participant. Thus, the cycling between being a VR participant and an observer has helped tremendously in their knowledge retention. This reinforces the positive impact VR has on learning.Keywords: experiential learning, learning by doing, pump, unit operations, virtual reality
Procedia PDF Downloads 1385459 Reliability Indices Evaluation of SEIG Rotor Core Magnetization with Minimum Capacitive Excitation for WECs
Authors: Lokesh Varshney, R. K. Saket
Abstract:
This paper presents reliability indices evaluation of the rotor core magnetization of the induction motor operated as a self-excited induction generator by using probability distribution approach and Monte Carlo simulation. Parallel capacitors with calculated minimum capacitive value across the terminals of the induction motor operating as a SEIG with unregulated shaft speed have been connected during the experimental study. A three phase, 4 poles, 50Hz, 5.5 hp, 12.3A, 230V induction motor coupled with DC Shunt Motor was tested in the electrical machine laboratory with variable reactive loads. Based on this experimental study, it is possible to choose a reliable induction machine operating as a SEIG for unregulated renewable energy application in remote area or where grid is not available. Failure density function, cumulative failure distribution function, survivor function, hazard model, probability of success and probability of failure for reliability evaluation of the three phase induction motor operating as a SEIG have been presented graphically in this paper.Keywords: residual magnetism, magnetization curve, induction motor, self excited induction generator, probability distribution, Monte Carlo simulation
Procedia PDF Downloads 5585458 Early Influences on Teacher Identity: Perspectives from the USA and Northern Ireland
Authors: Martin Hagan
Abstract:
Teacher identity has been recognised as a crucial field of research which supports understanding of the ways in which teachers navigate the complexities of professional life in order to grow in competence, knowledge and practice. As a field of study, teacher identity is concerned with understanding: how identity is defined; how it develops; how teachers make sense of their emerging identity; and how the act of teaching is mediated through the individual teacher’s values, beliefs and sense of professional self. By comparing two particular, socially constructed learning contexts or ‘learning milieu’, one in Northern Ireland and the other in the United States of America, this study aims specifically, to gain better understanding of how teacher identity develops during the initial phase of teacher education. The comparative approach was adopted on the premise that experiences are constructed through interactive, socio-historical and cultural negotiations with others within particular environments, situations and contexts. As such, whilst the common goal is to ‘become’ a teacher, the nuances emerging from the different learning milieu highlight variance in discourse, priorities, practice and influence. A qualitative, interpretative research design was employed to understand the world-constructions of the participants through asking open-ended questions, seeking views and perspectives, examining contexts and eventually deducing meaning. Data were collected using semi structured interviews from a purposive sample of student teachers (n14) in either the first or second year of study in their respective institutions. In addition, a sample of teacher educators (n5) responsible for the design, organisation and management of the programmes were also interviewed. Inductive thematic analysis was then conducted, which highlighted issues related to: the participants’ personal dispositions, prior learning experiences and motivation; the influence of the teacher education programme on the participants’ emerging professional identity; and the extent to which the experiences of working with teachers and pupils in schools in the context of the practicum, challenged and changed perspectives on teaching as a professional activity. The study also highlights the varying degrees of influence exercised by the different roles (tutor, host teacher/mentor, student) within the teacher-learning process across the two contexts. The findings of the study contribute to the understanding of teacher identity development in the early stages of professional learning. By so doing, the research makes a valid contribution to the discourse on initial teacher preparation and can help to better inform teacher educators and policy makers in relation to appropriate strategies, approaches and programmes to support professional learning and positive teacher identity formation.Keywords: initial teacher education, professional learning, professional growth, teacher identity
Procedia PDF Downloads 735457 Integrating Technology in Teaching and Learning Mathematics
Authors: Larry Wang
Abstract:
The aim of this paper is to demonstrate how an online homework system is integrated in teaching and learning mathematics and how it improves the student success rates in some gateway mathematics courses. WeBWork provided by the Mathematical Association of America is adopted as the online homework system. During the period of 2010-2015, the system was implemented in classes of precalculus, calculus, probability and statistics, discrete mathematics, linear algebra, and differential equations. As a result, the passing rates of the sections with WeBWork are well above other sections without WeBWork (about 7-10% higher). The paper also shows how the WeBWork system was used.Keywords: gateway mathematics, online grading, pass rate, WeBWorK
Procedia PDF Downloads 2995456 Statistical Optimization and Production of Rhamnolipid by P. aeruginosa PAO1 Using Prickly Pear Peel as a Carbon Source
Authors: Mostafa M. Abo Elsoud, Heba I. Elkhouly, Nagwa M. Sidkey
Abstract:
Production of rhamnolipids by Pseudomonas aeruginosa has attracted a growing interest during the last few decades due to its high productivity compared with other microorganisms. In the current work, rhamnolipids production by P. aeruginosa PAO1 was statistically modeled using Taguchi orthogonal array, numerically optimized and validated. Prickly Pear Peel (Opuntia ficus-indica) has been used as a carbon source for production of rhamnolipid. Finally, the optimum conditions for rhamnolipid production were applied in 5L working volume bioreactors at different aerations, agitation and controlled pH for maximum rhamnolipid production. In addition, kinetic studies of rhamnolipids production have been reported. At the end of the batch bioreactor optimization process, rhamnolipids production by P. aeruginosa PAO1 has reached the worldwide levels and can be applied for its industrial production.Keywords: rhamnolipids, pseudomonas aeruginosa, statistical optimization, tagushi, opuntia ficus-indica
Procedia PDF Downloads 1795455 Fabrication of High-Aspect Ratio Vertical Silicon Nanowire Electrode Arrays for Brain-Machine Interfaces
Authors: Su Yin Chiam, Zhipeng Ding, Guang Yang, Danny Jian Hang Tng, Peiyi Song, Geok Ing Ng, Ken-Tye Yong, Qing Xin Zhang
Abstract:
Brain-machine interfaces (BMI) is a ground rich of exploration opportunities where manipulation of neural activity are used for interconnect with myriad form of external devices. These research and intensive development were evolved into various areas from medical field, gaming and entertainment industry till safety and security field. The technology were extended for neurological disorders therapy such as obsessive compulsive disorder and Parkinson’s disease by introducing current pulses to specific region of the brain. Nonetheless, the work to develop a real-time observing, recording and altering of neural signal brain-machine interfaces system will require a significant amount of effort to overcome the obstacles in improving this system without delay in response. To date, feature size of interface devices and the density of the electrode population remain as a limitation in achieving seamless performance on BMI. Currently, the size of the BMI devices is ranging from 10 to 100 microns in terms of electrodes’ diameters. Henceforth, to accommodate the single cell level precise monitoring, smaller and denser Nano-scaled nanowire electrode arrays are vital in fabrication. In this paper, we would like to showcase the fabrication of high aspect ratio of vertical silicon nanowire electrodes arrays using microelectromechanical system (MEMS) method. Nanofabrication of the nanowire electrodes involves in deep reactive ion etching, thermal oxide thinning, electron-beam lithography patterning, sputtering of metal targets and bottom anti-reflection coating (BARC) etch. Metallization on the nanowire electrode tip is a prominent process to optimize the nanowire electrical conductivity and this step remains a challenge during fabrication. Metal electrodes were lithographically defined and yet these metal contacts outline a size scale that is larger than nanometer-scale building blocks hence further limiting potential advantages. Therefore, we present an integrated contact solution that overcomes this size constraint through self-aligned Nickel silicidation process on the tip of vertical silicon nanowire electrodes. A 4 x 4 array of vertical silicon nanowires electrodes with the diameter of 290nm and height of 3µm has been successfully fabricated.Keywords: brain-machine interfaces, microelectromechanical systems (MEMS), nanowire, nickel silicide
Procedia PDF Downloads 4355454 Synthesis of Graphene Oxide/Chitosan Nanocomposite for Methylene Blue Adsorption
Authors: S. Melvin Samuel, Jayanta Bhattacharya
Abstract:
In the present study, a graphene oxide/chitosan (GO-CS) composite material was prepared and used as an adsorbent for the removal of methylene blue (MB) from aqueous solution. The synthesized GO-CS adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopes (SEM), transmission electron microscopy (TEM), Raman spectroscopy and thermogravimetric analysis (TGA). The removal of MB was conducted in batch mode. The effect of parameters influencing the adsorption of MB such as pH of the solution, initial MB concentration, shaking speed, contact time and adsorbent dosage were studied. The results showed that the GO-CS composite material has high adsorption capacity of 196 mg/g of MB solution at pH 9.0. Further, the adsorption of MB on GO-CS followed pseudo second order kinetics and equilibrium adsorption data well fitted by the Langmuir isotherm model. The study suggests that the GO-CS is a favorable adsorbent for the removal of MB from aqueous solution.Keywords: Methylene blue, Graphene oxide-chitosan, Isotherms, Kinetics.
Procedia PDF Downloads 1905453 Comparative Outlook of Teacher Education in Nigeria and India
Authors: Muhammad Badamasi Abdullahi
Abstract:
Teacher education, both pre- and in-service programs, is offered in many countries of the world by different teacher education institutions as declared in the Policies on Education of the countries. However, differences exist from one country to another as a result of some factors peculiar to them. Notwithstanding, there also exist similarities among them in regard to teacher education. This paper is expected to dig into teacher education programs in Nigeria and India so that areas of similarities and differences would be highlighted as well as provide a venue for possible recommendation of both countries to learn from one another. All this is directed towards providing a no -border approach in enhancing effective teaching and learning.Keywords: teacher education, teaching and learning, pre-service, in-service
Procedia PDF Downloads 3865452 Developing Educator Cultural Awareness through Critically Reflective Professional Learning Community Collaboration
Authors: Brooke A. Moore
Abstract:
Developing teachers’ cultural awareness ensures schools are culturally responsive and socially just for diverse and exceptional students. An ideology of ‘normal’ exists in schools, creating boundaries where some students belong and others are marginalized based on difference. It is important that teacher preparation work to create democratic classrooms where teachers foster tolerance of difference and promote critical thinking and social justice. This paper outlines a framework for developing educator cultural awareness through the use of critically reflective professional learning communities (PLCs) drawing from the research on teacher critical reflection, collaborative PLCs, and Engeström’s theory of expansive learning. A case study using the framework was conducted with ten practicing teachers. Participants read and reflected on critical literature to make visible unexamined beliefs, engaged in conversations that pushed them to reflect more deeply and project forward new ideas, and set goals for acting as agents of change in their schools.Keywords: cultural and linguistic diversity, diversity, special education, teacher beliefs
Procedia PDF Downloads 2485451 Building Tutor and Tutee Pedagogical Agents to Enhance Learning in Adaptive Educational Games
Authors: Ogar Ofut Tumenayu, Olga Shabalina
Abstract:
This paper describes the application of two types of pedagogical agents’ technology with different functions in an adaptive educational game with the sole aim of improving learning and enhancing interactivities in Digital Educational Games (DEG). This idea could promote the elimination of some problems of DEG, like isolation in game-based learning, by introducing a tutor and tutee pedagogical agents. We present an analysis of a learning companion interacting in a peer tutoring environment as a step toward improving social interactions in the educational game environment. We show that tutor and tutee agents use different interventions and interactive approaches: the tutor agent is engaged in tracking the learner’s activities and inferring the learning state, while the tutee agent initiates interactions with the learner at the appropriate times and in appropriate manners. In order to provide motivation to prevent mistakes and clarity a game task, the tutor agent uses the help dialog tool to provide assistance, while the tutee agent provides collaboration assistance by using the hind tool. We presented our idea on a prototype game called “Pyramid Programming Game,” a 2D game that was developed using Libgdx. The game's Pyramid component symbolizes a programming task that is presented to the player in the form of a puzzle. During gameplay, the Agents can instruct, direct, inspire, and communicate emotions. They can also rapidly alter the instructional pattern in response to the learner's performance and knowledge. The pyramid must be effectively destroyed in order to win the game. The game also teaches and illustrates the advantages of utilizing educational agents such as TrA and TeA to assist and motivate students. Our findings support the idea that the functionality of a pedagogical agent should be dualized into an instructional and learner’s companion agent in order to enhance interactivity in a game-based environment.Keywords: tutor agent, tutee agent, learner’s companion interaction, agent collaboration
Procedia PDF Downloads 675450 Comprehensive Review of Ultralightweight Security Protocols
Authors: Prashansa Singh, Manjot Kaur, Rohit Bajaj
Abstract:
The proliferation of wireless sensor networks and Internet of Things (IoT) devices in the quickly changing digital landscape has highlighted the urgent need for strong security solutions that can handle these systems’ limited resources. A key solution to this problem is the emergence of ultralightweight security protocols, which provide strong security features while respecting the strict computational, energy, and memory constraints imposed on these kinds of devices. This in-depth analysis explores the field of ultralightweight security protocols, offering a thorough examination of their evolution, salient features, and the particular security issues they resolve. We carefully examine and contrast different protocols, pointing out their advantages and disadvantages as well as the compromises between resource limitations and security resilience. We also study these protocols’ application domains, including the Internet of Things, RFID systems, and wireless sensor networks, to name a few. In addition, the review highlights recent developments and advancements in the field, pointing out new trends and possible avenues for future research. This paper aims to be a useful resource for researchers, practitioners, and developers, guiding the design and implementation of safe, effective, and scalable systems in the Internet of Things era by providing a comprehensive overview of ultralightweight security protocols.Keywords: wireless sensor network, machine-to-machine, MQTT broker, server, ultralightweight, TCP/IP
Procedia PDF Downloads 825449 Robust Electrical Segmentation for Zone Coherency Delimitation Base on Multiplex Graph Community Detection
Authors: Noureddine Henka, Sami Tazi, Mohamad Assaad
Abstract:
The electrical grid is a highly intricate system designed to transfer electricity from production areas to consumption areas. The Transmission System Operator (TSO) is responsible for ensuring the efficient distribution of electricity and maintaining the grid's safety and quality. However, due to the increasing integration of intermittent renewable energy sources, there is a growing level of uncertainty, which requires a faster responsive approach. A potential solution involves the use of electrical segmentation, which involves creating coherence zones where electrical disturbances mainly remain within the zone. Indeed, by means of coherent electrical zones, it becomes possible to focus solely on the sub-zone, reducing the range of possibilities and aiding in managing uncertainty. It allows faster execution of operational processes and easier learning for supervised machine learning algorithms. Electrical segmentation can be applied to various applications, such as electrical control, minimizing electrical loss, and ensuring voltage stability. Since the electrical grid can be modeled as a graph, where the vertices represent electrical buses and the edges represent electrical lines, identifying coherent electrical zones can be seen as a clustering task on graphs, generally called community detection. Nevertheless, a critical criterion for the zones is their ability to remain resilient to the electrical evolution of the grid over time. This evolution is due to the constant changes in electricity generation and consumption, which are reflected in graph structure variations as well as line flow changes. One approach to creating a resilient segmentation is to design robust zones under various circumstances. This issue can be represented through a multiplex graph, where each layer represents a specific situation that may arise on the grid. Consequently, resilient segmentation can be achieved by conducting community detection on this multiplex graph. The multiplex graph is composed of multiple graphs, and all the layers share the same set of vertices. Our proposal involves a model that utilizes a unified representation to compute a flattening of all layers. This unified situation can be penalized to obtain (K) connected components representing the robust electrical segmentation clusters. We compare our robust segmentation to the segmentation based on a single reference situation. The robust segmentation proves its relevance by producing clusters with high intra-electrical perturbation and low variance of electrical perturbation. We saw through the experiences when robust electrical segmentation has a benefit and in which context.Keywords: community detection, electrical segmentation, multiplex graph, power grid
Procedia PDF Downloads 795448 Cultural Stereotypes in EFL Classrooms and Their Implications on English Language Procedures in Cameroon
Authors: Eric Enongene Ekembe
Abstract:
Recent calls on EFL teaching posit the centrality of context factors and argue for a correlation between effectiveness in teaching with the learners’ culture in the EFL classroom. Context is not everything; it is defined with indicators of learners’ cultural artifacts and stereotypes in meaningful interactions in the language classroom. In keeping with this, it is difficult to universalise pedagogic procedures given that appropriate procedures are context-sensitive- and contexts differ. It is necessary to investigate what counts as cultural specificities or stereotypes of specific learners to reflect on how different language learning contexts affect or are affected by English language teaching procedures, most especially in under-represented cultures, which have appropriated the English language. This paper investigates cultural stereotypes of EFL learners in the culturally diverse Cameroon to examine how they mediate teaching and learning. Data collected on mixed-method basis from 83 EFL teachers and 1321 learners in Cameroon reveal a strong presence of typical cultural artifacts and stereotypes. Statistical analysis and thematic coding demonstrate that teaching procedures in place were insensitive to the cultural artifacts and stereotypes, resulting in trending tension between teachers and learners. The data equally reveal a serious contradiction between the communicative goals of language teaching and learning: what teachers held as effective teaching was diametrically opposed to success in learning. In keeping with this, the paper argues for a ‘decentred’ teacher preparation in Cameroon that is informed by systemic learners’ feedback. On this basis, applied linguistics has the urgent task of exploring dimensions of what actually counts as contextualized practice in ELT.Keywords: cultural stereotypes, EFL, implications, procedures
Procedia PDF Downloads 1295447 GA3C for Anomalous Radiation Source Detection
Authors: Chia-Yi Liu, Bo-Bin Xiao, Wen-Bin Lin, Hsiang-Ning Wu, Liang-Hsun Huang
Abstract:
In order to reduce the risk of radiation damage that personnel may suffer during operations in the radiation environment, the use of automated guided vehicles to assist or replace on-site personnel in the radiation environment has become a key technology and has become an important trend. In this paper, we demonstrate our proof of concept for autonomous self-learning radiation source searcher in an unknown environment without a map. The research uses GPU version of Asynchronous Advantage Actor-Critic network (GA3C) of deep reinforcement learning to search for radiation sources. The searcher network, based on GA3C architecture, has self-directed learned and improved how search the anomalous radiation source by training 1 million episodes under three simulation environments. In each episode of training, the radiation source position, the radiation source intensity, starting position, are all set randomly in one simulation environment. The input for searcher network is the fused data from a 2D laser scanner and a RGB-D camera as well as the value of the radiation detector. The output actions are the linear and angular velocities. The searcher network is trained in a simulation environment to accelerate the learning process. The well-performance searcher network is deployed to the real unmanned vehicle, Dashgo E2, which mounts LIDAR of YDLIDAR G4, RGB-D camera of Intel D455, and radiation detector made by Institute of Nuclear Energy Research. In the field experiment, the unmanned vehicle is enable to search out the radiation source of the 18.5MBq Na-22 by itself and avoid obstacles simultaneously without human interference.Keywords: deep reinforcement learning, GA3C, source searching, source detection
Procedia PDF Downloads 1145446 The Use of Layered Neural Networks for Classifying Hierarchical Scientific Fields of Study
Authors: Colin Smith, Linsey S Passarella
Abstract:
Due to the proliferation and decentralized nature of academic publication, no widely accepted scheme exists for organizing papers by their scientific field of study (FoS) to the author’s best knowledge. While many academic journals require author provided keywords for papers, these keywords range wildly in scope and are not consistent across papers, journals, or field domains, necessitating alternative approaches to paper classification. Past attempts to perform field-of-study (FoS) classification on scientific texts have largely used a-hierarchical FoS schemas or ignored the schema’s inherently hierarchical structure, e.g. by compressing the structure into a single layer for multi-label classification. In this paper, we introduce an application of a Layered Neural Network (LNN) to the problem of performing supervised hierarchical classification of scientific fields of study (FoS) on research papers. In this approach, paper embeddings from a pretrained language model are fed into a top-down LNN. Beginning with a single neural network (NN) for the highest layer of the class hierarchy, each node uses a separate local NN to classify the subsequent subfield child node(s) for an input embedding of concatenated paper titles and abstracts. We compare our LNN-FOS method to other recent machine learning methods using the Microsoft Academic Graph (MAG) FoS hierarchy and find that the LNN-FOS offers increased classification accuracy at each FoS hierarchical level.Keywords: hierarchical classification, layer neural network, scientific field of study, scientific taxonomy
Procedia PDF Downloads 1335445 Current-Based Multiple Faults Detection in Electrical Motors
Authors: Moftah BinHasan
Abstract:
Induction motors (IM) are vital components in industrial processes whose failure may yield to an unexpected interruption at the industrial plant, with highly incurred consequences in costs, product quality, and safety. Among different detection approaches proposed in the literature, that based on stator current monitoring termed as Motor Current Signature Analysis (MCSA) is the most preferred. MCSA is advantageous due to its non-invasive properties. The popularity of motor current signature analysis comes from being that the current consists of motor harmonics, around the supply frequency, which show some properties related to different situations of healthy and faulty conditions. One of the techniques used with machine line current resorts to spectrum analysis. Besides discussing the fundamentals of MCSA and its applications in the condition monitoring arena, this paper shows a summary of the most frequent faults and their consequence signatures on the stator current spectrum of an induction motor. In addition, this article presents different case studies of induction motor fault diagnosis. These faults were seeded in the machine which was run for more than an hour for each test before the results were recorded for the faulty situations. These results are then compared with those for the healthy cases that were recorded earlier.Keywords: induction motor, condition monitoring, fault diagnosis, MCSA, rotor, stator, bearing, eccentricity
Procedia PDF Downloads 4595444 Is There a Group of "Digital Natives" at Secondary Schools?
Authors: L. Janská, J. Kubrický
Abstract:
The article describes a research focused on the influence of the information and communication technology (ICT) on the pupils' learning. The investigation deals with the influences that distinguish between the group of pupils influenced by ICT and the group of pupils not influenced by ICT. The group influenced by ICT should evince a different approach in number of areas (in managing of two and more activities at once, in a quick orientation and searching for information on the Internet, in an ability to quickly and effectively assess the data sources, in the assessment of attitudes and opinions of the other users of the network, in critical thinking, in the preference to work in teams, in the sharing of information and personal data via the virtual social networking, in insisting on the immediate reaction on their every action etc.).Keywords: ICT influence, digital natives, pupil´s learning
Procedia PDF Downloads 2915443 Mixed Treatment (Physical-Chemical and Biological) of Ouled Fayet Landfill Leachates
Authors: O. Balamane-Zizi, L. M. Rouidi, A. Boukhrissa, N. Daas, H. Ait-amar
Abstract:
The objective of this study was to test the possibility of a mixed treatment (physical-chemical and biological) of Ouled Fayet leachates which date of 10 years and has a large fraction of hard COD that can be reduced by coagulation-flocculation. Previous batch tests showed the possibility of applying the physical-chemical and biological treatments separately; the removal efficiencies obtained in this case were not interesting. We propose, therefore, to test the possibility of a combined treatment, in order to improve the quality of the leachates. Estimation of the treatment’s effectiveness was done by analysis of some pollution parameters such as COD, suspended solids, and heavy metals (particularly iron and nickel). The main results obtained after the combination of treatments, show reduction rate of about 63% for COD, 73% for suspended solids and 80% for iron and nickel. We also noted an improvement in the turbidity of treated leachates.Keywords: landfill leachates, COD, physical-chemical treatment, biological treatment
Procedia PDF Downloads 4745442 Gamification Teacher Professional Development: Engaging Language Learners in STEMS through Game-Based Learning
Authors: Karen Guerrero
Abstract:
Kindergarten-12th grade teachers engaged in teacher professional development (PD) on game-based learning techniques and strategies to support teaching STEMSS (STEM + Social Studies with an emphasis on geography across the curriculum) to language learners. Ten effective strategies have supported teaching content and language in tandem. To provide exiting teacher PD on summer and spring breaks, gamification has integrated these strategies to engage linguistically diverse student populations to provide informal language practice while students engage in the content. Teachers brought a STEMSS lesson to the PD, engaged in a wide variety of games (dice, cards, board, physical, digital, etc.), critiqued the games based on gaming elements, then developed, brainstormed, presented, piloted, and published their game-based STEMSS lessons to share with their colleagues. Pre and post-surveys and focus groups were conducted to demonstrate an increase in knowledge, skills, and self-efficacy in using gamification to teach content in the classroom. Provide an engaging strategy (gamification) to support teaching content and language to linguistically diverse students in the K-12 classroom. Game-based learning supports informal language practice while developing academic vocabulary utilized in the game elements/content focus, building both content knowledge through play and language development through practice. The study also investigated teacher's increase in knowledge, skills, and self-efficacy in using games to teach language learners. Mixed methods were used to investigate knowledge, skills, and self-efficacy prior to and after the gamification teacher training (pre/post) and to understand the content and application of developing and utilizing game-based learning to teach. This study will contribute to the body of knowledge in applying game-based learning theories to the K-12 classroom to support English learners in developing English skills and STEMSS content knowledge.Keywords: gamification, teacher professional development, STEM, English learners, game-based learning
Procedia PDF Downloads 925441 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision
Authors: Zahow Muoftah
Abstract:
Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.Keywords: computer vision, banana, apple, detection, classification
Procedia PDF Downloads 1065440 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery
Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong
Abstract:
The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition
Procedia PDF Downloads 2905439 An Investigation on Physics Teachers’ Views Towards Context Based Learning Approach
Authors: Medine Baran, Abdulkadir Maskan, Mehmet Ikbal Yetişir, Mukadder Baran, Azmi Türkan, Şeyma Yaşar
Abstract:
The purpose of this study was to determine the views of physics teachers from several secondary schools in Turkey towards context-based learning approach. In the study, the context-based learning opinion questionnaire developed by the researchers for use as the data collection tool was piloted with 250 physics teachers. The questionnaire examined by the researchers and field experts was initially made up of 53 items. Following the evaluation process of the questionnaire, it included 37 items. In this way, the reliability and validity process of the measurement tool was completed. In the end, the finalized questionnaire was applied to 144 physics teachers from several secondary schools in different cities in Turkey (F:73, M:71). In the study, the participants were determined based on ease of reaching them. The results revealed no remarkable difference between the views of the physics teachers with respect to their gender, region and school. However, when the items in the questionnaire were considered, it was found that the participants interestingly agreed on some of the choices in the items. Depending on this, it was found that there were high levels of differences between the frequencies of those who agreed and those who disagreed with the 16 items in the questionnaire. Therefore, as the following phase of the present study, further research has been planned using the same questions. Based on these questions, which received opposite responses, physics teachers will be asked for their views about the results of the study using the interview technique, one of qualitative research techniques. In this way, the results will be evaluated both by the researchers and by the participants, and the problems and difficulties will be determined. As a result, related suggestions can be put forward.Keywords: context bases learning, physics teachers, views
Procedia PDF Downloads 3735438 Integrated Education at Jazan University: Budding Hope for Employability
Authors: Jayanthi Rajendran
Abstract:
Experience is what makes a man perfect. Though we tend to learn many a different things in life through practice still we need to go an extra mile to gain experience which would be profitable only when it is integrated with regular practice. A clear phenomenal idea is that every teacher is a learner. The centralized idea of this paper would focus on the integrated practices carried out among the students of Jizan University which enhances learning through experiences. Integrated practices like student-directed activities, balanced curriculum, phonological based activities and use of consistent language would enlarge the vision and mission of students to earn experience through learning. Students who receive explicit instruction and guidance could practice the skills and strategies through student-directed activities such as peer tutoring and cooperative learning. The second effective practice is to use consistent language. Consistent language provides students a model for talking about the new concepts which also enables them to communicate without hindrances. Phonological awareness is an important early reading skill for all students. Students generally have phonemic awareness in their home language can often transfer that knowledge to a second language. And also a balanced curriculum requires instruction in all the elements of reading. Reading is the most effective skill when both basic and higher-order skills are included on a daily basis. Computer based reading and listening skills will empower students to understand a language in a better way. English language learners can benefit from sound reading instruction even before they are fully proficient in English as long as the instruction is comprehensible. Thus, if students have to be well equipped in learning they should foreground themselves in various integrated practices through multifarious experience for which teachers are moderators and trainers. This type of learning prepares the students for a constantly changing society which helps them to meet the competitive world around them for better employability fulfilling the vision and mission of the institution.Keywords: consistent language, employability, phonological awareness, balanced curriculum
Procedia PDF Downloads 4015437 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems
Authors: Rodolfo Lorbieski, Silvia Modesto Nassar
Abstract:
Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.Keywords: stacking, multi-layers, ensemble, multi-class
Procedia PDF Downloads 2695436 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes
Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani
Abstract:
The development of the method to annotate unknown gene functions is an important task in bioinformatics. One of the approaches for the annotation is The identification of the metabolic pathway that genes are involved in. Gene expression data have been utilized for the identification, since gene expression data reflect various intracellular phenomena. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.Keywords: metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning
Procedia PDF Downloads 4045435 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 975434 Stochastic Modeling and Productivity Analysis of a Flexible Manufacturing System
Authors: Mehmet Savsar, Majid Aldaihani
Abstract:
Flexible Manufacturing Systems (FMS) are used to produce a variety of parts on the same equipment. Therefore, their utilization is higher than traditional machining systems. Higher utilization, on the other hand, results in more frequent equipment failures and additional need for maintenance. Therefore, it is necessary to carefully analyze operational characteristics and productivity of FMS or Flexible Manufacturing Cells (FMC), which are smaller configuration of FMS, before installation or during their operation. Appropriate models should be developed to determine production rates based on operational conditions, including equipment reliability, availability, and repair capacity. In this paper, a stochastic model is developed for an automated FMC system, which consists of two machines served by two robots and a single repairman. The model is used to determine system productivity and equipment utilization under different operational conditions, including random machine failures, random repairs, and limited repair capacity. The results are compared to previous study results for FMC system with sufficient repair capacity assigned to each machine. The results show that the model will be useful for design engineers and operational managers to analyze performance of manufacturing systems at the design or operational stages.Keywords: flexible manufacturing, FMS, FMC, stochastic modeling, production rate, reliability, availability
Procedia PDF Downloads 5165433 Development of a General Purpose Computer Programme Based on Differential Evolution Algorithm: An Application towards Predicting Elastic Properties of Pavement
Authors: Sai Sankalp Vemavarapu
Abstract:
This paper discusses the application of machine learning in the field of transportation engineering for predicting engineering properties of pavement more accurately and efficiently. Predicting the elastic properties aid us in assessing the current road conditions and taking appropriate measures to avoid any inconvenience to commuters. This improves the longevity and sustainability of the pavement layer while reducing its overall life-cycle cost. As an example, we have implemented differential evolution (DE) in the back-calculation of the elastic modulus of multi-layered pavement. The proposed DE global optimization back-calculation approach is integrated with a forward response model. This approach treats back-calculation as a global optimization problem where the cost function to be minimized is defined as the root mean square error in measured and computed deflections. The optimal solution which is elastic modulus, in this case, is searched for in the solution space by the DE algorithm. The best DE parameter combinations and the most optimum value is predicted so that the results are reproducible whenever the need arises. The algorithm’s performance in varied scenarios was analyzed by changing the input parameters. The prediction was well within the permissible error, establishing the supremacy of DE.Keywords: cost function, differential evolution, falling weight deflectometer, genetic algorithm, global optimization, metaheuristic algorithm, multilayered pavement, pavement condition assessment, pavement layer moduli back calculation
Procedia PDF Downloads 164