Search results for: significant wave data
33265 Development of a Shape Based Estimation Technology Using Terrestrial Laser Scanning
Authors: Gichun Cha, Byoungjoon Yu, Jihwan Park, Minsoo Park, Junghyun Im, Sehwan Park, Sujung Sin, Seunghee Park
Abstract:
The goal of this research is to estimate a structural shape change using terrestrial laser scanning. This study proceeds with development of data reduction and shape change estimation algorithm for large-capacity scan data. The point cloud of scan data was converted to voxel and sampled. Technique of shape estimation is studied to detect changes in structure patterns, such as skyscrapers, bridges, and tunnels based on large point cloud data. The point cloud analysis applies the octree data structure to speed up the post-processing process for change detection. The point cloud data is the relative representative value of shape information, and it used as a model for detecting point cloud changes in a data structure. Shape estimation model is to develop a technology that can detect not only normal but also immediate structural changes in the event of disasters such as earthquakes, typhoons, and fires, thereby preventing major accidents caused by aging and disasters. The study will be expected to improve the efficiency of structural health monitoring and maintenance.Keywords: terrestrial laser scanning, point cloud, shape information model, displacement measurement
Procedia PDF Downloads 23533264 A Non-Invasive Blood Glucose Monitoring System Using near-Infrared Spectroscopy with Remote Data Logging
Authors: Bodhayan Nandi, Shubhajit Roy Chowdhury
Abstract:
This paper presents the development of a portable blood glucose monitoring device based on Near-Infrared Spectroscopy. The system supports Internet connectivity through WiFi and uploads the time series data of glucose concentration of patients to a server. In addition, the server is given sufficient intelligence to predict the future pathophysiological state of a patient given the current and past pathophysiological data. This will enable to prognosticate the approaching critical condition of the patient much before the critical condition actually occurs.The server hosts web applications to allow authorized users to monitor the data remotely.Keywords: non invasive, blood glucose concentration, microcontroller, IoT, application server, database server
Procedia PDF Downloads 22033263 Proposal to Increase the Efficiency, Reliability and Safety of the Centre of Data Collection Management and Their Evaluation Using Cluster Solutions
Authors: Martin Juhas, Bohuslava Juhasova, Igor Halenar, Andrej Elias
Abstract:
This article deals with the possibility of increasing efficiency, reliability and safety of the system for teledosimetric data collection management and their evaluation as a part of complex study for activity “Research of data collection, their measurement and evaluation with mobile and autonomous units” within project “Research of monitoring and evaluation of non-standard conditions in the area of nuclear power plants”. Possible weaknesses in existing system are identified. A study of available cluster solutions with possibility of their deploying to analysed system is presented.Keywords: teledosimetric data, efficiency, reliability, safety, cluster solution
Procedia PDF Downloads 51533262 The Effect of Parents BMI on Overweight and Obesity Elementary School Students in Behbahan City
Authors: Hosseini Siahi Zohreh, Sana Mohammad Jafar
Abstract:
The prevalence of overweight and obesity in children and adolescents has increased in recent decades in different countries. Childhood obesity, increases the risk of adult obesity and its related diseases. Determine the prevalence of the problem in different populations results to screening and adequate intervention and the effects of early and late complications. Various studies have shown Parents and family environment has a significant impact on the incidence of overweight and obesity in children. As parental obesity is directly related to child obesity. In this study were selected randomly 60 girl students with a BMI above the 95th percentile (as fat) and BMI greater than 85 and less than 95 (overweight). So 60 were selected randomly of girl students with a BMI of between 5 and 85 (normal). In the case of boys was done exactly the same. Case and control groups were matched according to age and grade for statistical analysis of SPPS software version 17. According to results the prevalence of overweight and obesity in girl students respectively is 8.7 percent and 13.76 percent and in boy students 9.9 percent and 10.42 percent. Also was not found in boys group the relationship significant between obesity and overweight with parents BMI. Whereas in girls group was found a significant relationship.Keywords: parents BMI, overweight, obesity, primary school students
Procedia PDF Downloads 51833261 A Data-Driven Compartmental Model for Dengue Forecasting and Covariate Inference
Authors: Yichao Liu, Peter Fransson, Julian Heidecke, Jonas Wallin, Joacim Rockloev
Abstract:
Dengue, a mosquito-borne viral disease, poses a significant public health challenge in endemic tropical or subtropical countries, including Sri Lanka. To reveal insights into the complexity of the dynamics of this disease and study the drivers, a comprehensive model capable of both robust forecasting and insightful inference of drivers while capturing the co-circulating of several virus strains is essential. However, existing studies mostly focus on only one aspect at a time and do not integrate and carry insights across the siloed approach. While mechanistic models are developed to capture immunity dynamics, they are often oversimplified and lack integration of all the diverse drivers of disease transmission. On the other hand, purely data-driven methods lack constraints imposed by immuno-epidemiological processes, making them prone to overfitting and inference bias. This research presents a hybrid model that combines machine learning techniques with mechanistic modelling to overcome the limitations of existing approaches. Leveraging eight years of newly reported dengue case data, along with socioeconomic factors, such as human mobility, weekly climate data from 2011 to 2018, genetic data detecting the introduction and presence of new strains, and estimates of seropositivity for different districts in Sri Lanka, we derive a data-driven vector (SEI) to human (SEIR) model across 16 regions in Sri Lanka at the weekly time scale. By conducting ablation studies, the lag effects allowing delays up to 12 weeks of time-varying climate factors were determined. The model demonstrates superior predictive performance over a pure machine learning approach when considering lead times of 5 and 10 weeks on data withheld from model fitting. It further reveals several interesting interpretable findings of drivers while adjusting for the dynamics and influences of immunity and introduction of a new strain. The study uncovers strong influences of socioeconomic variables: population density, mobility, household income and rural vs. urban population. The study reveals substantial sensitivity to the diurnal temperature range and precipitation, while mean temperature and humidity appear less important in the study location. Additionally, the model indicated sensitivity to vegetation index, both max and average. Predictions on testing data reveal high model accuracy. Overall, this study advances the knowledge of dengue transmission in Sri Lanka and demonstrates the importance of incorporating hybrid modelling techniques to use biologically informed model structures with flexible data-driven estimates of model parameters. The findings show the potential to both inference of drivers in situations of complex disease dynamics and robust forecasting models.Keywords: compartmental model, climate, dengue, machine learning, social-economic
Procedia PDF Downloads 8433260 Investigation of the Effects of Monoamine Oxidase Levels on the 20S Proteasome
Authors: Bhavini Patel, Aslihan Ugun-Klusek, Ellen Billet
Abstract:
The two main contributing factors to familial and idiopathic form of Parkinson’s disease (PD) are oxidative stress and altered proteolysis. Monoamine oxidase-A (MAO-A) plays a significant role in redox homeostasis by producing reactive oxygen species (ROS) via deamination of for example, dopamine. The ROS generated induces chemical modification of proteins resulting in altered biological function. The ubiquitin-proteasome system, which consists of three different types or proteolytic activity, namely “chymotrypsin-like” activity (CLA), “trypsin-like” activity (TLA) and “post acidic-like” activity (PLA), is responsible for the degradation of ubiquitinated proteins. Defects in UPS are known to be strongly correlated to PD. Herein, the effect of ROS generated by MAO-A on proteasome activity and the effects of proteasome inhibition on MAO-A protein levels in WT, mock and MAO-A overexpressed (MAO-A+) SHSY5Y neuroblastoma cell lines were investigated. The data in this study report increased proteolytic activity when MAO-A protein levels are significantly increased, in particular CLA and PLA. Additionally, 20S proteasome inhibition induced a decrease in MAO-A levels in WT and mock cells in comparison to MAO-A+ cells in which 20S proteasome inhibition induced increased MAO-A levels to be further increased at 48 hours of inhibition. This study supports the fact that MAO-A could be a potential pharmaceutical target for neuronal protection as data suggests that endogenous MAO-A levels may be essential for modulating cell death and survival.Keywords: monoamine oxidase, neurodegeneration, Parkinson's disease, proteasome
Procedia PDF Downloads 13533259 ICT-based Methodologies and Students’ Academic Performance and Retention in Physics: A Case with Newton Laws of Motion
Authors: Gabriel Ocheleka Aniedi A. Udo, Patum Wasinda
Abstract:
The study was carried out to appraise the impact of ICT-based teaching methodologies (video-taped instructions and Power Point presentations) on academic performance and retention of secondary school students in Physics, with particular interest in Newton Laws of Motion. The study was conducted in Cross River State, Nigeria, with a quasi-experimental research design using non-randomised pre-test and post-test control group. The sample for the study consisted of 176 SS2 students drawn from four intact classes of four secondary schools within the study area. Physics Achievement Test (PAT), with a reliability coefficient of 0.85, was used for data collection. Mean and Analysis of Covariance (ANCOVA) was used in the treatment of the obtained data. The results of the study showed that there was a significant difference in the academic performance and retention of students taught using video-taped instructions and those taught using power point presentations. Findings of the study showed that students taught using video-taped instructions had a higher academic performance and retention than those taught using power point presentations. The study concludes that the use of blended ICT-based teaching methods can improve learner’s academic performance and retention.Keywords: video taped instruction (VTI), power point presentation (PPT), academic performance, retention, physics
Procedia PDF Downloads 9233258 Efficient Storage in Cloud Computing by Using Index Replica
Authors: Bharat Singh Deora, Sushma Satpute
Abstract:
Cloud computing is based on resource sharing. Like other resources which can be shareable, storage is a resource which can be shared. We can use collective resources of storage from different locations and maintain a central index table for storage details. The storage combining of different places can form a suitable data storage which is operated from one location and is very economical. Proper storage of data should improve data reliability & availability and bandwidth utilization. Also, we are moving the contents of one storage to other according to our need.Keywords: cloud computing, cloud storage, Iaas, PaaS, SaaS
Procedia PDF Downloads 34033257 Microfinance for the Marginalised: The Impact of the Rojiroti Approach in India
Authors: Gil Yaron, Rebecca Gordon, John Best, Sunil Choudhary
Abstract:
There have been a number of studies examining the impact of microfinance; however, the magnitude of impact varies across regions, and there has been mixed evidence due to the differences in the nature of interventions, context and the way in which microfinance is implemented. The Rojiroti approach to microfinance involves the creation of women's self-help groups (SHGs), rotated loans from savings and subsequent credit from a Bihar-based NGO. Rojiroti serves customers who are significantly poorer and more marginalised than those typically served by microfinance in India. In the data analysed, more than 90 percent of members are from scheduled caste and tribes (62 percent) or other disadvantaged castes. This paper analyses the impact of Rojiroti microfinance using panel data on 740 new SHG members and 340 women in matched control sites at baseline and after 18 months. We consider changes in assets, children's education, women's mobility and domestic violence among other indicators. These results show significant gains for Rojiroti borrowers relative to control sites for important, but not all, variables. Comparison with more longstanding SHGs (at least 36 months) helps to explain how the borrowing patterns of poor and marginalised SHG members evolve. The context of this intervention is also important; in this case, innovative microfinance is provided too much poorer and marginalised women than is typically the case, and so the results seen are in contrast to numerous studies that show little or no effect of microfinance on the lives of their clients.Keywords: microfinance, gender, impact, pro-poor
Procedia PDF Downloads 15733256 Atomic Decomposition Audio Data Compression and Denoising Using Sparse Dictionary Feature Learning
Authors: T. Bryan , V. Kepuska, I. Kostnaic
Abstract:
A method of data compression and denoising is introduced that is based on atomic decomposition of audio data using “basis vectors” that are learned from the audio data itself. The basis vectors are shown to have higher data compression and better signal-to-noise enhancement than the Gabor and gammatone “seed atoms” that were used to generate them. The basis vectors are the input weights of a Sparse AutoEncoder (SAE) that is trained using “envelope samples” of windowed segments of the audio data. The envelope samples are extracted from the audio data by performing atomic decomposition with Gabor or gammatone seed atoms. This process identifies segments of audio data that are locally coherent with the seed atoms. Envelope samples are extracted by identifying locally coherent audio data segments with Gabor or gammatone seed atoms, found by matching pursuit. The envelope samples are formed by taking the kronecker products of the atomic envelopes with the locally coherent data segments. Oracle signal-to-noise ratio (SNR) verses data compression curves are generated for the seed atoms as well as the basis vectors learned from Gabor and gammatone seed atoms. SNR data compression curves are generated for speech signals as well as early American music recordings. The basis vectors are shown to have higher denoising capability for data compression rates ranging from 90% to 99.84% for speech as well as music. Envelope samples are displayed as images by folding the time series into column vectors. This display method is used to compare of the output of the SAE with the envelope samples that produced them. The basis vectors are also displayed as images. Sparsity is shown to play an important role in producing the highest denoising basis vectors.Keywords: sparse dictionary learning, autoencoder, sparse autoencoder, basis vectors, atomic decomposition, envelope sampling, envelope samples, Gabor, gammatone, matching pursuit
Procedia PDF Downloads 25333255 Integration of EEG and Motion Tracking Sensors for Objective Measure of Attention-Deficit Hyperactivity Disorder in Pre-Schoolers
Authors: Neha Bhattacharyya, Soumendra Singh, Amrita Banerjee, Ria Ghosh, Oindrila Sinha, Nairit Das, Rajkumar Gayen, Somya Subhra Pal, Sahely Ganguly, Tanmoy Dasgupta, Tanusree Dasgupta, Pulak Mondal, Aniruddha Adhikari, Sharmila Sarkar, Debasish Bhattacharyya, Asim Kumar Mallick, Om Prakash Singh, Samir Kumar Pal
Abstract:
Background: We aim to develop an integrated device comprised of single-probe EEG and CCD-based motion sensors for a more objective measure of Attention-deficit Hyperactivity Disorder (ADHD). While the integrated device (MAHD) relies on the EEG signal (spectral density of beta wave) for the assessment of attention during a given structured task (painting three segments of a circle using three different colors, namely red, green and blue), the CCD sensor depicts movement pattern of the subjects engaged in a continuous performance task (CPT). A statistical analysis of the attention and movement patterns was performed, and the accuracy of the completed tasks was analysed using indigenously developed software. The device with the embedded software, called MAHD, is intended to improve certainty with criterion E (i.e. whether symptoms are better explained by another condition). Methods: We have used the EEG signal from a single-channel dry sensor placed on the frontal lobe of the head of the subjects (3-5 years old pre-schoolers). During the painting of three segments of a circle using three distinct colors (red, green, and blue), absolute power for delta and beta EEG waves from the subjects are found to be correlated with relaxation and attention/cognitive load conditions. While the relaxation condition of the subject hints at hyperactivity, a more direct CCD-based motion sensor is used to track the physical movement of the subject engaged in a continuous performance task (CPT) i.e., separation of the various colored balls from one table to another. We have used our indigenously developed software for the statistical analysis to derive a scale for the objective assessment of ADHD. We have also compared our scale with clinical ADHD evaluation. Results: In a limited clinical trial with preliminary statistical analysis, we have found a significant correlation between the objective assessment of the ADHD subjects with that of the clinician’s conventional evaluation. Conclusion: MAHD, the integrated device, is supposed to be an auxiliary tool to improve the accuracy of ADHD diagnosis by supporting greater criterion E certainty.Keywords: ADHD, CPT, EEG signal, motion sensor, psychometric test
Procedia PDF Downloads 9933254 Platform-as-a-Service Sticky Policies for Privacy Classification in the Cloud
Authors: Maha Shamseddine, Amjad Nusayr, Wassim Itani
Abstract:
In this paper, we present a Platform-as-a-Service (PaaS) model for controlling the privacy enforcement mechanisms applied on user data when stored and processed in Cloud data centers. The proposed architecture consists of establishing user configurable ‘sticky’ policies on the Graphical User Interface (GUI) data-bound components during the application development phase to specify the details of privacy enforcement on the contents of these components. Various privacy classification classes on the data components are formally defined to give the user full control on the degree and scope of privacy enforcement including the type of execution containers to process the data in the Cloud. This not only enhances the privacy-awareness of the developed Cloud services, but also results in major savings in performance and energy efficiency due to the fact that the privacy mechanisms are solely applied on sensitive data units and not on all the user content. The proposed design is implemented in a real PaaS cloud computing environment on the Microsoft Azure platform.Keywords: privacy enforcement, platform-as-a-service privacy awareness, cloud computing privacy
Procedia PDF Downloads 22733253 Shock Response Analysis of Soil-Structure Systems Induced by Near-Fault Pulses
Authors: H. Masaeli, R. Ziaei, F. Khoshnoudian
Abstract:
Shock response analysis of the soil–structure systems induced by near–fault pulses is investigated. Vibration transmissibility of the soil–structure systems is evaluated by Shock Response Spectra (SRS). Medium–to–high rise buildings with different aspect ratios located on different soil types as well as different foundations with respect to vertical load bearing safety factors are studied. Two types of mathematical near–fault pulses, i.e. forward directivity and fling step, with different pulse periods as well as pulse amplitudes are selected as incident ground shock. Linear versus nonlinear Soil–Structure Interaction (SSI) condition are considered alternatively and the corresponding results are compared. The results show that nonlinear SSI is likely to amplify the acceleration responses when subjected to long–period incident pulses with normalized period exceeding a threshold. It is also shown that this threshold correlates with soil type, so that increased shear–wave velocity of the underlying soil makes the threshold period decrease.Keywords: nonlinear soil–structure interaction, shock response spectrum, near–fault ground shock, rocking isolation
Procedia PDF Downloads 31633252 Effect of Bilateral and Unilateral Castration on Feed Utilization and Carcass Characteristics of Growers Rabbit (Orytolagus cunniculus)
Authors: A. H. Dikko, D. N Tsado, M. S. T. Rita, D. S. Umar
Abstract:
This study was conducted on eighteen (18) New Zealand and chinchilla breeds of rabbits were used. The rabbits were allotted to 3 treatments with each treatment having six (6) animals with two (2) replicates. T1 were castrated, which both testes was removed (Bilateral); T2 were castrated, which only one testes was removed (unilateral) and T3 were not castrated (control). In nutrient digestibility, T1 and T2 (p>0.05) has a higher rate than T3. There was no significant (p<0.05) difference in live weight and dressing weight among the treatment groups. There is a significant (p > 0.05) difference in visceral organs in the treatment groups.Keywords: New Zealand, chinchilla, castration, bilateral, unilateral
Procedia PDF Downloads 66333251 Examining Ethiopian Banking Industry in Relation to Factors Affecting Profitability: From 2008 to 2012
Authors: Zelalem Zerihun
Abstract:
In this study, attempts were made to assess the bank-specific, industry-specific, and macro-economic factors affecting bank profitability. Data were collected from ten commercial banks in Ethiopia, covering the period of 2008-2012. A mixed method research approach was adopted for this research. Documentary analysis and in-depth interview were also used to substantiate the data. The study found out that capital strength, income diversification, bank size and gross domestic product are statistically significant and they have a positive relationship with banks’ profitability. However, operational efficiency and asset quality have a negative relationship with banks’ profitability. The relationship for liquidity risk, concentration and inflation were found to be statistically insignificant. The study revealed that focusing and reengineering the banks in light of the key internal drivers could enhance the profitability as well as the performance of the commercial banks in Ethiopia. In addition to this, the study suggests that banks in Ethiopia should not only be concerned about internal structures but also they must consider both the internal environment and the macro-economic environment in designing strategies to improve their profit or their performance.Keywords: Ethiopian banking industry, macro-economic factors, documentary analysis, capital strength, income diversification
Procedia PDF Downloads 34133250 Estimating Tree Height and Forest Classification from Multi Temporal Risat-1 HH and HV Polarized Satellite Aperture Radar Interferometric Phase Data
Authors: Saurav Kumar Suman, P. Karthigayani
Abstract:
In this paper the height of the tree is estimated and forest types is classified from the multi temporal RISAT-1 Horizontal-Horizontal (HH) and Horizontal-Vertical (HV) Polarised Satellite Aperture Radar (SAR) data. The novelty of the proposed project is combined use of the Back-scattering Coefficients (Sigma Naught) and the Coherence. It uses Water Cloud Model (WCM). The approaches use two main steps. (a) Extraction of the different forest parameter data from the Product.xml, BAND-META file and from Grid-xxx.txt file come with the HH & HV polarized data from the ISRO (Indian Space Research Centre). These file contains the required parameter during height estimation. (b) Calculation of the Vegetation and Ground Backscattering, Coherence and other Forest Parameters. (c) Classification of Forest Types using the ENVI 5.0 Tool and ROI (Region of Interest) calculation.Keywords: RISAT-1, classification, forest, SAR data
Procedia PDF Downloads 40733249 An Evaluation of the Use of Telematics for Improving the Driving Behaviours of Young People
Authors: James Boylan, Denny Meyer, Won Sun Chen
Abstract:
Background: Globally, there is an increasing trend of road traffic deaths, reaching 1.35 million in 2016 in comparison to 1.3 million a decade ago, and overall, road traffic injuries are ranked as the eighth leading cause of death for all age groups. The reported death rate for younger drivers aged 16-19 years is almost twice the rate reported for older drivers aged 25 and above, with a rate of 3.5 road traffic fatalities per annum for every 10,000 licenses held. Telematics refers to a system with the ability to capture real-time data about vehicle usage. The data collected from telematics can be used to better assess a driver's risk. It is typically used to measure acceleration, turn, braking, and speed, as well as to provide locational information. With the Australian government creating the National Telematics Framework, there has been an increase in the government's focus on using telematics data to improve road safety outcomes. The purpose of this study is to test the hypothesis that improvements in telematics measured driving behaviour to relate to improvements in road safety attitudes measured by the Driving Behaviour Questionnaire (DBQ). Methodology: 28 participants were recruited and given a telematics device to insert into their vehicles for the duration of the study. The participant's driving behaviour over the course of the first month will be compared to their driving behaviour in the second month to determine whether feedback from telematics devices improves driving behaviour. Participants completed the DBQ, evaluated using a 6-point Likert scale (0 = never, 5 = nearly all the time) at the beginning, after the first month, and after the second month of the study. This is a well-established instrument used worldwide. Trends in the telematics data will be captured and correlated with the changes in the DBQ using regression models in SAS. Results: The DBQ has provided a reliable measure (alpha = .823) of driving behaviour based on a sample of 23 participants, with an average of 50.5 and a standard deviation of 11.36, and a range of 29 to 76, with higher scores, indicating worse driving behaviours. This initial sample is well stratified in terms of gender and age (range 19-27). It is expected that in the next six weeks, a larger sample of around 40 will have completed the DBQ after experiencing in-vehicle telematics for 30 days, allowing a comparison with baseline levels. The trends in the telematics data over the first 30 days will be compared with the changes observed in the DBQ. Conclusions: It is expected that there will be a significant relationship between the improvements in the DBQ and the trends in reduced telematics measured aggressive driving behaviours supporting the hypothesis.Keywords: telematics, driving behavior, young drivers, driving behaviour questionnaire
Procedia PDF Downloads 10633248 Simulating the Effect of Chlorine on Dynamic of Main Aquatic Species in Urban Lake with a Mini System Dynamic Model
Authors: Zhiqiang Yan, Chen Fan, Beicheng Xia
Abstract:
Urban lakes play an invaluable role in urban water systems such as flood control, landscape, entertainment, and energy utilization, and have suffered from severe eutrophication over the past few years. To investigate the ecological response of main aquatic species and system stability to chlorine interference in shallow urban lakes, a mini system dynamic model, based on the competition and predation of main aquatic species and TP circulation, was developed. The main species of submerged macrophyte, phytoplankton, zooplankton, benthos and TP in water and sediment were simulated as variables in the model with the interference of chlorine which effect function was attenuation equation. The model was validated by the data which was investigated in the Lotus Lake in Guangzhou from October 1, 2015 to January 31, 2016. Furthermore, the eco-exergy was used to analyze the change in complexity of the shallow urban lake. The results showed the correlation coefficient between observed and simulated values of all components presented significant. Chlorine showed a significant inhibitory effect on Microcystis aeruginosa,Rachionus plicatilis, Diaphanosoma brachyurum Liévin and Mesocyclops leuckarti (Claus).The outbreak of Spiroggra spp. inhibited the growth of Vallisneria natans (Lour.) Hara, caused a gradual decrease of eco-exergy, reflecting the breakdown of ecosystem internal equilibria. It was concluded that the study gives important insight into using chlorine to achieve eutrophication control and understand mechanism process.Keywords: system dynamic model, urban lake, chlorine, eco-exergy
Procedia PDF Downloads 20933247 Resilience of the American Agriculture Sector
Authors: Dipak Subedi, Anil Giri, Christine Whitt, Tia McDonald
Abstract:
This study aims to understand the impact of the pandemic on the overall economic well-being of the agricultural sector of the United States. The two key metrics used to examine the economic well-being are the bankruptcy rate of the U.S. farm operations and the operating profit margin. One of the primary reasons for farm operations (in the U.S.) to file for bankruptcy is continuous negative profit or a significant decrease in profit. The pandemic caused significant supply and demand shocks in the domestic market. Furthermore, the ongoing trade disruptions, especially with China, also impacted the prices of agricultural commodities. The significantly reduced demand for ethanol and closure of meat processing plants affected both livestock and crop producers. This study uses data from courts to examine the bankruptcy rate over time of U.S. farm operations. Preliminary results suggest there wasn’t an increase in farm operations filing for bankruptcy in 2020. This was most likely because of record high Government payments to producers in 2020. The Federal Government made direct payments of more than $45 billion in 2020. One commonly used economic metric to measure farm profitability is the operating profit margin (OPM). Operating profit margin measures profitability as a share of the total value of production and government payments. The Economic Research Service of the United States Department of Agriculture defines a farm operation to be in a) a high-risk zone if the OPM is less than 10 percent and b) a low-risk zone if the OPM is higher than 25 percent. For this study, OPM was calculated for small, medium, and large-scale farm operations using the data from the Agriculture Resource Management Survey (OPM). Results show that except for small family farms, the share of farms in high-risk zone decreased in 2020 compared to the most recent non-pandemic year, 2019. This was most likely due to higher commodity prices at the end of 2020 and record-high government payments. Further investigation suggests a lower share of smaller farm operations receiving lower average government payments resulting in a large share (over 70 percent) being in the critical zone. This study should be of interest to multiple stakeholders, including policymakers across the globe, as it shows the resilience of the U.S. agricultural system as well as (some) impact of government payments.Keywords: U.S. farm sector, COVID-19, operating profit margin, farm bankruptcy, ag finance, government payments to the farm sector
Procedia PDF Downloads 9033246 The Practice and Research of Computer-Aided Language Learning in China
Authors: Huang Yajing
Abstract:
Context: Computer-aided language learning (CALL) in China has undergone significant development over the past few decades, with distinct stages marking its evolution. This paper aims to provide a comprehensive review of the practice and research in this field in China, tracing its journey from the early stages of audio-visual education to the current multimedia network integration stage. Research Aim: The study aims to analyze the historical progression of CALL in China, identify key developments in the field, and provide recommendations for enhancing CALL practices in the future. Methodology: The research employs document analysis and literature review to synthesize existing knowledge on CALL in China, drawing on a range of sources to construct a detailed overview of the evolution of CALL practices and research in the country. Findings: The review highlights the significant advancements in CALL in China, showcasing the transition from traditional audio-visual educational approaches to the current integrated multimedia network stage. The study identifies key milestones, technological advancements, and theoretical influences that have shaped CALL practices in China. Theoretical Importance: The evolution of CALL in China reflects not only technological progress but also shifts in educational paradigms and theories. The study underscores the significance of cognitive psychology as a theoretical underpinning for CALL practices, emphasizing the learner's active role in the learning process. Data Collection and Analysis Procedures: Data collection involved extensive review and analysis of documents and literature related to CALL in China. The analysis was carried out systematically to identify trends, developments, and challenges in the field. Questions Addressed: The study addresses the historical development of CALL in China, the impact of technological advancements on teaching practices, the role of cognitive psychology in shaping CALL methodologies, and the future outlook for CALL in the country. Conclusion: The review provides a comprehensive overview of the evolution of CALL in China, highlighting key stages of development and emerging trends. The study concludes by offering recommendations to further enhance CALL practices in the Chinese context.Keywords: English education, educational technology, computer-aided language teaching, applied linguistics
Procedia PDF Downloads 5533245 Presenting a Model for Predicting the State of Being Accident-Prone of Passages According to Neural Network and Spatial Data Analysis
Authors: Hamd Rezaeifar, Hamid Reza Sahriari
Abstract:
Accidents are considered to be one of the challenges of modern life. Due to the fact that the victims of this problem and also internal transportations are getting increased day by day in Iran, studying effective factors of accidents and identifying suitable models and parameters about this issue are absolutely essential. The main purpose of this research has been studying the factors and spatial data affecting accidents of Mashhad during 2007- 2008. In this paper it has been attempted to – through matching spatial layers on each other and finally by elaborating them with the place of accident – at the first step by adding landmarks of the accident and through adding especial fields regarding the existence or non-existence of effective phenomenon on accident, existing information banks of the accidents be completed and in the next step by means of data mining tools and analyzing by neural network, the relationship between these data be evaluated and a logical model be designed for predicting accident-prone spots with minimum error. The model of this article has a very accurate prediction in low-accident spots; yet it has more errors in accident-prone regions due to lack of primary data.Keywords: accident, data mining, neural network, GIS
Procedia PDF Downloads 4733244 Secure Content Centric Network
Authors: Syed Umair Aziz, Muhammad Faheem, Sameer Hussain, Faraz Idris
Abstract:
Content centric network is the network based on the mechanism of sending and receiving the data based on the interest and data request to the specified node (which has cached data). In this network, the security is bind with the content not with the host hence making it host independent and secure. In this network security is applied by taking content’s MAC (message authentication code) and encrypting it with the public key of the receiver. On the receiver end, the message is first verified and after verification message is saved and decrypted using the receiver's private key.Keywords: content centric network, client-server, host security threats, message authentication code, named data network, network caching, peer-to-peer
Procedia PDF Downloads 64433243 Authorship Profiling of Unidentified Corpora in Saudi Social Media
Authors: Abdulaziz Fageeh
Abstract:
In the bustling digital landscape of Saudi Arabia, a chilling wave of cybercrime has swept across the nation. Among the most nefarious acts are financial blackmail schemes, perpetrated by anonymous actors lurking within the shadows of social media platforms. This chilling reality necessitates the utilization of forensic linguistic techniques to unravel the identities of these virtual villains. This research delves into the complex world of authorship profiling, investigating the effectiveness of various linguistic features in identifying the perpetrators of malicious messages within the Saudi social media environment. By meticulously analyzing patterns of language, vocabulary choice, and stylistic nuances, the study endeavors to uncover the hidden characteristics of the individuals responsible for these heinous acts. Through this linguistic detective work, the research aims to provide valuable insights to investigators and policymakers in the ongoing battle against cybercrime and to shed light on the evolution of malicious online behavior within the Saudi context.Keywords: authorship profiling, arabic linguistics, saudi social media, cybercrime, financial blackmail, linguistic features, forensic linguistics, online threats
Procedia PDF Downloads 1333242 Correlation between Flexible Flatfoot and Lumbosacral Angle
Authors: Moustafa Elwan, Sohier Shehata, Fatma Sedek, Manar Hussine
Abstract:
One of the most risky factors that lead to a foot injury during physical activities are both high and low arched feet. Normally the medial longitudinal arch of the foot develops in the first 10 years of life, so flexible flat foot has an inversely relationship with age in the first decade, all over the world, the prevalence of flat foot is increasing. In approximately 15% of foot deformities cases, the deformity does not disappear and remains throughout adulthood, 90% of the clinical cases are complaining from foot problems are due to flatfoot. Flatfoot creates subtalar over pronation, which creates tibial and femoral medial rotation, and that is accompanied with increases of pelvic tilting anteriorly, which may influence the lumbar vertebrae alignment by increasing muscle tension and rotation. Objective: To study the impact of the flexible flatfoot on lumbosacral angle (angle of Ferguson). Methods: This experiment included 40 volunteers (14 females &26 males) gathered from the Faculty of Physical Therapy, Modern University of Technology and Information, Cairo, Egypt, for each participant, four angles were measured in the foot( talar first metatarsal angle, lateral talocalcaneal angle, , Calcaneal first metatarsal angle, calcaneal inclination angle) and one angle in the lumbar region (lumbosacral angle). Measurement of these angles was conducted by using Surgimap Spine software (version 2.2.9.6). Results: The results demonstrated that there was no significant correlation betweenFerguson angle and lateral talocalcaneal (r=0.164, p=0.313). Also, there was no significant correlation between Ferguson angle and talo first metatarsal “Meary’s angle" (r=0.007, p=0.968). Moreover, there was no significant correlation between Ferguson angle and calcaneal-first metatarsal angle (r=0.083, p=0.612). Also, there was no significant correlation between Ferguson angle and calcaneal inclination angle (r= 0.032, p= 0.846). Conclusion: It can be concluded that there is no significant correlation between the flexible flat foot and lumbosacral angle So, more study should be conducted in large sample and different ages and conditions of foot problems.Keywords: calcaneal first metatarsal, calcaneal inclination, flatfoot, ferguson’s angle, lateral talocalcaneal angle, lumbosacral angle, and talar first metatarsal angle
Procedia PDF Downloads 13533241 Acoustic Partial Discharge Propagation and Perfectly Matched Layer in Acoustic Detection-Transformer
Authors: Nirav J. Patel, Kalpesh K. Dudani
Abstract:
Partial discharge (PD) is the dissipation of energy caused by localized breakdown of insulation. Power transformers are one of the most important components in the electrical energy network. Insulation degradation of transformer is frequently linked to PD. This is why PD detection is used in power system to monitor the health of high voltage transformer. If such problem are not detected and repaired, the strength and frequency of PD may increase and eventually lead to the catastrophic failure of the transformer. This can further cause external equipment damage, fires and loss of revenue due to an unscheduled outage. Hence, reliable online PD detection is a critical need for power companies to improve personnel safety and decrease the probability of loss of service. The PD phenomenon is manifested in a variety of physically observable signals including Ultra High Frequency (UHF) radiation and Acoustic Disturbances, Electrical pulses. Acoustic method is based on sensing the radiated acoustic emission from discharge sites in the insulation. Propagated wave from the PD fault site are captured sensor are consequently pre-amplified, filtered, recorded and analyze.Keywords: acoustic, partial discharge, perfectly matched layer, sensor
Procedia PDF Downloads 52733240 Socio-Emotional Skills of Children with Learning Disability, Their Perceived Self-Efficacy and Academic Achievement
Authors: P. Maheshwari, M. Brindavan
Abstract:
The present research aimed to study the level of socio-emotional skills and perceived self-efficacy of children with learning disability. The study further investigated the relationship between the levels of socio-emotional skills, perceived self-efficacy and academic achievement of children with learning disability. The sample comprised of 40 children with learning disability as their primary condition, belonging to middle or upper middle class, living with both the parents, residing in Mumbai. Purposive or Judgmental and snowball sampling technique was used to select the sample for the study. Proformas in the form of questionnaires were used to obtain the background information of the children with learning disability. A self-constructed Child’s Perceived Self-Efficacy Assessment Scale and Child’s Social and Emotional Skills Assessment Scale was used to measure the level of child’s perceived self-efficacy and their level of social and emotional skill respectively. Academic scores of the child were collected from the child’s parents or teachers and were converted into a percentage. The data was analyzed quantitatively using SPSS. Spearman rho or Pearson Product Moment correlation was used to ascertain the multiple relationships between child’s perceived self-efficacy, child’s social and emotional skills and child’s academic achievement. The findings revealed majority (27) of the children with learning disability perceived themselves having above average level of social and emotional skills while 13 out of 40 perceived their level of social and emotional skills at an average level. Domain wise analyses revealed that, in the domain of self- management (26) and relationship skills (22) more number of the children perceived themselves as having average or below average level of social and emotional skills indicating that they perceived themselves as having average or below average skills in regulating their emotions, thoughts, and behaviors effectively in different situations, establishing and maintaining healthy and rewarding relationships with diverse groups and individuals. With regard to perceived self-efficacy, the majority of the children with learning disability perceived themselves as having above average level of self-efficacy. Looking at the data domain wise it was found that, in the domains of self-regulated learning and emotional self-efficacy, 50% of the children perceived themselves at average or below average level, indicating that they perceived themselves as average on competencies like organizing academic activities, structuring environment to make it conducive for learning, expressing emotions in a socially acceptable manner. Further, the correlations were computed, and significant positive correlations were found between children’s social and emotional skills and academic achievement (r=.378, p < .01), and between children’s social and emotional skills and child’s perceived self-efficacy (r = .724, p < .01) and a positive significant correlation was also found between children’s perceived self-efficacy and academic achievement (r=.332, p < .05). Results of the study emphasize on planning intervention for children with learning disability focusing on improving self-management and relationship skills, self-regulated learning and emotional self-efficacy.Keywords: learning disability, social and emotional skills, perceived self-efficacy, academic achievement
Procedia PDF Downloads 24133239 Fuel Inventory/ Depletion Analysis for a Thorium-Uranium Dioxide (Th-U) O2 Pin Cell Benchmark Using Monte Carlo and Deterministic Codes with New Version VIII.0 of the Evaluated Nuclear Data File (ENDF/B) Nuclear Data Library
Authors: Jamal Al-Zain, O. El Hajjaji, T. El Bardouni
Abstract:
A (Th-U) O2 fuel pin benchmark made up of 25 w/o U and 75 w/o Th was used. In order to analyze the depletion and inventory of the fuel for the pressurized water reactor pin-cell model. The new version VIII.0 of the ENDF/B nuclear data library was used to create a data set in ACE format at various temperatures and process the data using the MAKXSF6.2 and NJOY2016 programs to process the data at the various temperatures in order to conduct this study and analyze cross-section data. The infinite multiplication factor, the concentrations and activities of the main fission products, the actinide radionuclides accumulated in the pin cell, and the total radioactivity were all estimated and compared in this study using the Monte Carlo N-Particle 6 (MCNP6.2) and DRAGON5 programs. Additionally, the behavior of the Pressurized Water Reactor (PWR) thorium pin cell that is dependent on burn-up (BU) was validated and compared with the reference data obtained using the Massachusetts Institute of Technology (MIT-MOCUP), Idaho National Engineering and Environmental Laboratory (INEEL-MOCUP), and CASMO-4 codes. The results of this study indicate that all of the codes examined have good agreements.Keywords: PWR thorium pin cell, ENDF/B-VIII.0, MAKXSF6.2, NJOY2016, MCNP6.2, DRAGON5, fuel burn-up.
Procedia PDF Downloads 10333238 Intra-miR-ExploreR, a Novel Bioinformatics Platform for Integrated Discovery of MiRNA:mRNA Gene Regulatory Networks
Authors: Surajit Bhattacharya, Daniel Veltri, Atit A. Patel, Daniel N. Cox
Abstract:
miRNAs have emerged as key post-transcriptional regulators of gene expression, however identification of biologically-relevant target genes for this epigenetic regulatory mechanism remains a significant challenge. To address this knowledge gap, we have developed a novel tool in R, Intra-miR-ExploreR, that facilitates integrated discovery of miRNA targets by incorporating target databases and novel target prediction algorithms, using statistical methods including Pearson and Distance Correlation on microarray data, to arrive at high confidence intragenic miRNA target predictions. We have explored the efficacy of this tool using Drosophila melanogaster as a model organism for bioinformatics analyses and functional validation. A number of putative targets were obtained which were also validated using qRT-PCR analysis. Additional features of the tool include downloadable text files containing GO analysis from DAVID and Pubmed links of literature related to gene sets. Moreover, we are constructing interaction maps of intragenic miRNAs, using both micro array and RNA-seq data, focusing on neural tissues to uncover regulatory codes via which these molecules regulate gene expression to direct cellular development.Keywords: miRNA, miRNA:mRNA target prediction, statistical methods, miRNA:mRNA interaction network
Procedia PDF Downloads 51133237 Natural Language News Generation from Big Data
Authors: Bastian Haarmann, Likas Sikorski
Abstract:
In this paper, we introduce an NLG application for the automatic creation of ready-to-publish texts from big data. The fully automatic generated stories have a high resemblance to the style in which the human writer would draw up a news story. Topics may include soccer games, stock exchange market reports, weather forecasts and many more. The generation of the texts runs according to the human language production. Each generated text is unique. Ready-to-publish stories written by a computer application can help humans to quickly grasp the outcomes of big data analyses, save time-consuming pre-formulations for journalists and cater to rather small audiences by offering stories that would otherwise not exist.Keywords: big data, natural language generation, publishing, robotic journalism
Procedia PDF Downloads 43133236 Performance Evaluation of the Classic seq2seq Model versus a Proposed Semi-supervised Long Short-Term Memory Autoencoder for Time Series Data Forecasting
Authors: Aswathi Thrivikraman, S. Advaith
Abstract:
The study is aimed at designing encoders for deciphering intricacies in time series data by redescribing the dynamics operating on a lower-dimensional manifold. A semi-supervised LSTM autoencoder is devised and investigated to see if the latent representation of the time series data can better forecast the data. End-to-end training of the LSTM autoencoder, together with another LSTM network that is connected to the latent space, forces the hidden states of the encoder to represent the most meaningful latent variables relevant for forecasting. Furthermore, the study compares the predictions with those of a traditional seq2seq model.Keywords: LSTM, autoencoder, forecasting, seq2seq model
Procedia PDF Downloads 156