Search results for: minimum root mean square (RMS) error matching algorithm
5763 Evaluation of a Data Fusion Algorithm for Detecting and Locating a Radioactive Source through Monte Carlo N-Particle Code Simulation and Experimental Measurement
Authors: Hadi Ardiny, Amir Mohammad Beigzadeh
Abstract:
Through the utilization of a combination of various sensors and data fusion methods, the detection of potential nuclear threats can be significantly enhanced by extracting more information from different data. In this research, an experimental and modeling approach was employed to track a radioactive source by combining a surveillance camera and a radiation detector (NaI). To run this experiment, three mobile robots were utilized, with one of them equipped with a radioactive source. An algorithm was developed in identifying the contaminated robot through correlation between camera images and camera data. The computer vision method extracts the movements of all robots in the XY plane coordinate system, and the detector system records the gamma-ray count. The position of the robots and the corresponding count of the moving source were modeled using the MCNPX simulation code while considering the experimental geometry. The results demonstrated a high level of accuracy in finding and locating the target in both the simulation model and experimental measurement. The modeling techniques prove to be valuable in designing different scenarios and intelligent systems before initiating any experiments.Keywords: nuclear threats, radiation detector, MCNPX simulation, modeling techniques, intelligent systems
Procedia PDF Downloads 1235762 In Online and Laboratory We Trust: Comparing Trust Game Behavior in Three Environments
Authors: Kaisa M. Herne, Hanna E. Björkstedt
Abstract:
Comparisons of online and laboratory environments are important for assessing whether the environment influences behavioral results. Trust game behavior was examined in three environments: 1) The standard laboratory setting with physically present participants (laboratory), 2) An online environment with an online meeting before playing the trust game (online plus a meeting); and 3) An online environment without a meeting (online without a meeting). In laboratory, participants were present in a classroom and played the trust game anonymously via computers. Online plus a meeting mimicked the laboratory in that participants could see each other in an online meeting before sessions started, whereas online without a meeting was a standard online experiment in which participants did not see each other at any stages of the experiment. Participants were recruited through pools of student subjects at two universities. The trust game was identical in all conditions; it was played with the same software, anonymously, and with stranger matching. There were no statistically significant differences between the treatment conditions regarding trust or trustworthiness. Results suggest that conducting trust game experiments online will yield similar results to experiments implemented in a laboratory.Keywords: laboratory vs. online experiment, trust behavior, trust game, trustworthiness behavior
Procedia PDF Downloads 785761 Design of Identification Based Adaptive Control for Fermentation Process in Bioreactor
Authors: J. Ritonja
Abstract:
The biochemical technology has been developing extremely fast since the middle of the last century. The main reason for such development represents a requirement for large production of high-quality biologically manufactured products such as pharmaceuticals, foods, and beverages. The impact of the biochemical industry on the world economy is enormous. The great importance of this industry also results in intensive development in scientific disciplines relevant to the development of biochemical technology. In addition to developments in the fields of biology and chemistry, which enable to understand complex biochemical processes, development in the field of control theory and applications is also very important. In the paper, the control for the biochemical reactor for the milk fermentation was studied. During the fermentation process, the biophysical quantities must be precisely controlled to obtain the high-quality product. To control these quantities, the bioreactor’s stirring drive and/or heating system can be used. Available commercial biochemical reactors are equipped with open loop or conventional linear closed loop control system. Due to the outstanding parameters variations and the partial nonlinearity of the biochemical process, the results obtained with these control systems are not satisfactory. To improve the fermentation process, the self-tuning adaptive control system was proposed. The use of the self-tuning adaptive control is suggested because the parameters’ variations of the studied biochemical process are very slow in most cases. To determine the linearized mathematical model of the fermentation process, the recursive least square identification method was used. Based on the obtained mathematical model the linear quadratic regulator was tuned. The parameters’ identification and the controller’s synthesis are executed on-line and adapt the controller’s parameters to the fermentation process’ dynamics during the operation. The use of the proposed combination represents the original solution for the control of the milk fermentation process. The purpose of the paper is to contribute to the progress of the control systems for the biochemical reactors. The proposed adaptive control system was tested thoroughly. From the obtained results it is obvious that the proposed adaptive control system assures much better following of the reference signal as a conventional linear control system with fixed control parameters.Keywords: adaptive control, biochemical reactor, linear quadratic regulator, recursive least square identification
Procedia PDF Downloads 1255760 Classification of Myoelectric Signals Using Multilayer Perceptron Neural Network with Back-Propagation Algorithm in a Wireless Surface Myoelectric Prosthesis of the Upper-Limb
Authors: Kevin D. Manalo, Jumelyn L. Torres, Noel B. Linsangan
Abstract:
This paper focuses on a wireless myoelectric prosthesis of the upper-limb that uses a Multilayer Perceptron Neural network with back propagation. The algorithm is widely used in pattern recognition. The network can be used to train signals and be able to use it in performing a function on their own based on sample inputs. The paper makes use of the Neural Network in classifying the electromyography signal that is produced by the muscle in the amputee’s skin surface. The gathered data will be passed on through the Classification Stage wirelessly through Zigbee Technology. The signal will be classified and trained to be used in performing the arm positions in the prosthesis. Through programming using Verilog and using a Field Programmable Gate Array (FPGA) with Zigbee, the EMG signals will be acquired and will be used for classification. The classified signal is used to produce the corresponding Hand Movements (Open, Pick, Hold, and Grip) through the Zigbee controller. The data will then be processed through the MLP Neural Network using MATLAB which then be used for the surface myoelectric prosthesis. Z-test will be used to display the output acquired from using the neural network.Keywords: field programmable gate array, multilayer perceptron neural network, verilog, zigbee
Procedia PDF Downloads 3895759 Examining the Current Divisive State of American Political Discourse through the Lens of Peirce's Triadic Logical Structure and Pragmatist Metaphysics
Authors: Nathan Garcia
Abstract:
The polarizing dialogue of contemporary political America results from core philosophical differences. But these differences are beyond ideological and reach metaphysical distinction. Good intellectual historians have theorized that fundamental concepts such as freedom, God, and nature have been sterilized of their intellectual vigor. They are partially correct. 19th-century pragmatist Charles Sanders Peirce offers a penetrating philosophy which can yield greater insight into the contemporary political divide. Peirce argues that metaphysical and ethical issues are derivative of operational logic. His triadic logical structure and ensuing metaphysical principles constructed therefrom is contemporaneously applicable for three reasons. First, Peirce’s logic aptly scrutinizes the logical processes of liberal and conservative mindsets. Each group arrives at a cosmological root metaphor (abduction), resulting in a contemporary assessment (deduction), ultimately prompting attempts to verify the original abduction (induction). Peirce’s system demonstrates that liberal citizens develop a cosmological root metaphor in the concept of fairness (abduction), resulting in a contemporary assessment of, for example, underrepresented communities being unfairly preyed upon (deduction), thereby inciting anger toward traditional socio-political structures suspected of purposefully destabilizing minority communities (induction). Similarly, conservative citizens develop a cosmological root metaphor in the concept of freedom (abduction), resulting in a contemporary assessment of, for example, liberal citizens advocating an expansion of governmental powers (deduction), thereby inciting anger towards liberal communities suspected of attacking freedoms of ordinary Americans in a bid to empower their interests through the government (induction). The value of this triadic assessment is the categorization of distinct types of inferential logic by their purpose and boundaries. Only deductive claims can be concretely proven, while abductive claims are merely preliminary hypotheses, and inductive claims are accountable to interdisciplinary oversight. Liberals and conservative logical processes preclude constructive dialogue because of (a) an unshared abductive framework, and (b) misunderstanding the rules and responsibilities of their types of claims. Second, Peircean metaphysical principles offer a greater summary of the contemporaneously divisive political climate. His insights can weed through the partisan theorizing to unravel the underlying philosophical problems. Corrosive nominalistic and essentialistic presuppositions weaken the ability to share experiences and communicate effectively, both requisite for any promising constructive dialogue. Peirce’s pragmatist system can expose and evade fallacious thinking in pursuit of a refreshing alternative framework. Finally, Peirce’s metaphysical foundation enables a logically coherent, scientifically informed orthopraxis well-suited for American dialogue. His logical structure necessitates radically different anthropology conducive to shared experiences and dialogue within a dynamic, cultural continuum. Pierce’s fallibilism and sensitivity to religious sentiment successfully navigate between liberal and conservative values. In sum, he provides a normative paradigm for intranational dialogue that privileges individual experience and values morally defensible notions of freedom, God, and nature. Utilizing Peirce’s thought will yield fruitful analysis and offers a promising philosophical alternative for framing and engaging in contemporary American political discourse.Keywords: Charles s. Peirce, american politics, logic, pragmatism
Procedia PDF Downloads 1175758 Going beyond Elementary Algebraic Identities: The Expectation of a Gifted Child, an Indian Scenario
Authors: S. R. Santhanam
Abstract:
A gifted child is one who gives evidence of creativity, good memory, rapid learning. In mathematics, a teacher often comes across some gifted children and they exhibit the following characteristics: unusual alertness, enjoying solving problems, getting bored on repetitions, self-taught, going beyond what teacher taught, ask probing questions, connecting unconnected concepts, vivid imagination, readiness for research work, perseverance of a topic. There are two main areas of research carried out on them: 1)identifying gifted children, 2) interacting and channelizing them. A lack of appropriate recognition will lead the gifted child demotivated. One of the main findings is if proper attention and nourishment are not given then it leads a gifted child to become depressed, underachieving, fail to reach their full potential and sometimes develop negative attitude towards school and study. After identifying them, a mathematics teacher has to develop them into a fall fledged achiever. The responsibility of the teacher is enormous. The teacher has to be resourceful and patient. But interacting with them one finds a lot of surprises and awesomeness. The elementary algebraic identities like (a+b)(a-b)=a²-b², expansion of like (a+b)²(a-b)² and others are taught to students, of age group 13-15 in India. An average child will be satisfied with a single proof and immediate application of these identities. But a gifted child expects more from the teacher and at one stage after a little training will surpass the teacher also. In this short paper, the author shares his experience regarding teaching algebraic identities to gifted children. The following problem was given to a set of 10 gifted children of the specified age group: If a natural number ‘n’ to expressed as the sum of the two squares, will 2n also be expressed as the sum of two squares? An investigation has been done on what multiples of n satisfying the criterion. The attempts of the gifted children were consolidated and conclusion was drawn. A second problem was given to them as: can two natural numbers be found such that the difference of their square is 3? After a successful solution, more situations were analysed. As a third question, the finding of the sign of an algebraic expression in three variables was analysed. As an example: if a,b,c are real and unequal what will be sign of a²+4b²+9c²-4ab-12bc-6ca? Apart from an expression as a perfect square what other methods can be employed to prove an algebraic expression as positive negative or non negative has been analysed. Expressions like 4x²+2y²+13y²-2xy-4yz-6zx were given, and the children were asked to find the sign of the expression for all real values of x,y and z. In all investigations, only basic algebraic identities were used. As a next probe, a divisibility problem was initiated. When a,b,c are natural numbers such that a+b+c is at least 6, and if a+b+c is divisible by 6 then will 6 divide a³+b³+c³. The gifted children solved it in two different ways.Keywords: algebraic identities, gifted children, Indian scenario, research
Procedia PDF Downloads 1805757 Evaluation of Rhizobia for Nodulation, Shoot and Root Biomass from Host Range Studies Using Soybean, Common Bean, Bambara Groundnut and Mung Bean
Authors: Sharon K. Mahlangu, Mustapha Mohammed, Felix D. Dakora
Abstract:
Rural households in Africa depend largely on legumes as a source of high-protein food due to N₂-fixation by rhizobia when they infect plant roots. However, the legume/rhizobia symbiosis can exhibit some level of specificity such that some legumes may be selectively nodulated by only a particular group of rhizobia. In contrast, some legumes are highly promiscuous and are nodulated by a wide range of rhizobia. Little is known about the nodulation promiscuity of bacterial symbionts from wild legumes such as Aspalathus linearis, especially if they can nodulate cultivated grain legumes such as cowpea and Kersting’s groundnut. Determining the host range of the symbionts of wild legumes can potentially reveal novel rhizobial strains that can be used to increase nitrogen fixation in cultivated legumes. In this study, bacteria were isolated and tested for their ability to induce root nodules on their homologous hosts. Seeds were surface-sterilized with alcohol and sodium hypochlorite and planted in sterile sand contained in plastic pots. The pot surface was covered with sterile non-absorbent cotton wool to avoid contamination. The plants were watered with nitrogen-free nutrient solution and sterile water in alternation. Three replicate pots were used per isolate. The plants were grown for 90 days in a naturally-lit glasshouse and assessed for nodulation (nodule number and nodule biomass) and shoot biomass. Seven isolates from each of Kersting’s groundnut and cowpea and two from Rooibos tea plants were tested for their ability to nodulate soybean, mung bean, common bean and Bambara groundnut. The results showed that of the isolates from cowpea, where VUSA55 and VUSA42 could nodulate all test host plants, followed by VUSA48 which nodulated cowpea, Bambara groundnut and soybean. The two isolates from Rooibos tea plants nodulated Bambara groundnut, soybean and common bean. However, isolate L1R3.3.1 also nodulated mung bean. There was a greater accumulation of shoot biomass when cowpea isolate VUSA55 nodulated common bean. Isolate VUSA55 produced the highest shoot biomass, followed by VUSA42 and VUSA48. The two Kersting’s groundnut isolates, MGSA131 and MGSA110, accumulated average shoot biomass. In contrast, the two Rooibos tea isolates induced a higher accumulation of biomass in Bambara groundnut, followed by common bean. The results suggest that inoculating these agriculturally important grain legumes with cowpea isolates can contribute to improved soil fertility, especially soil nitrogen levels.Keywords: legumes, nitrogen fixation, nodulation, rhizobia
Procedia PDF Downloads 2215756 Ethylene Sensitivity in Orchids and Its Control Using 1-MCP: A Review
Authors: Parviz Almasi
Abstract:
Ethylene is produced as a gaseous growth regulator in all plants and their constructive parts such as roots, stems, leaves, flowers and fruits. It is considered a multifunctional phytohormone that regulates both growths including flowering, fruit ripening, inhibition of root growth, and senescence such as senescence of leaves and flowers and etc. In addition, exposure to external ethylene is caused some changes that are often undesirable and harmful. Some flowers are more sensitive to others and when exposed to ethylene; their aging process is hastened. 1-MCP is an exogenous and endogenous ethylene action inhibitor, which binds to the ethylene receptors in the plants and prevents ethylene-dependent reactions. The binding affinity of 1- MCP for the receptors is about 10 times more than ethylene. Hence, 1-MCP can be a potential candidate for controlling of ethylene injury in horticultural crops. This review integrates knowledge of ethylene biosynthesis in the plants and also a mode of action of 1-MCP in preventing of ethylene injury.Keywords: ethylene injury, biosynthesis, ethylene sensitivity, 1-MCP
Procedia PDF Downloads 1015755 Prediction of Physical Properties and Sound Absorption Performance of Automotive Interior Materials
Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Seong-Jin Cho, Tae-Hyeon Oh, Dae-Kyu Park
Abstract:
Sound absorption coefficient is considered important when designing because noise affects emotion quality of car. It is designed with lots of experiment tunings in the field because it is unreliable to predict it for multi-layer material. In this paper, we present the design of sound absorption for automotive interior material with multiple layers using estimation software of sound absorption coefficient for reverberation chamber. Additionally, we introduce the method for estimation of physical properties required to predict sound absorption coefficient of car interior materials with multiple layers too. It is calculated by inverse algorithm. It is very economical to get information about physical properties without expensive equipment. Correlation test is carried out to ensure reliability for accuracy. The data to be used for the correlation is sound absorption coefficient measured in the reverberation chamber. In this way, it is considered economical and efficient to design automotive interior materials. And design optimization for sound absorption coefficient is also easy to implement when it is designed.Keywords: sound absorption coefficient, optimization design, inverse algorithm, automotive interior material, multiple layers nonwoven, scaled reverberation chamber, sound impedance tubes
Procedia PDF Downloads 3095754 Stray Light Reduction Methodology by a Sinusoidal Light Modulation and Three-Parameter Sine Curve Fitting Algorithm for a Reflectance Spectrometer
Authors: Hung Chih Hsieh, Cheng Hao Chang, Yun Hsiang Chang, Yu Lin Chang
Abstract:
In the applications of the spectrometer, the stray light that comes from the environment affects the measurement results a lot. Hence, environment and instrument quality control for the stray reduction is critical for the spectral reflectance measurement. In this paper, a simple and practical method has been developed to correct a spectrometer's response for measurement errors arising from the environment's and instrument's stray light. A sinusoidal modulated light intensity signal was incident on a tested sample, and then the reflected light was collected by the spectrometer. Since a sinusoidal signal modulated the incident light, the reflected light also had a modulated frequency which was the same as the incident signal. Using the three-parameter sine curve fitting algorithm, we can extract the primary reflectance signal from the total measured signal, which contained the primary reflectance signal and the stray light from the environment. The spectra similarity between the extracted spectra by this proposed method with extreme environment stray light is 99.98% similar to the spectra without the environment's stray light. This result shows that we can measure the reflectance spectra without the affection of the environment's stray light.Keywords: spectrometer, stray light, three-parameter sine curve fitting, spectra extraction
Procedia PDF Downloads 2485753 Best Practices and Recommendations for CFD Simulation of Hydraulic Spool Valves
Authors: Jérémy Philippe, Lucien Baldas, Batoul Attar, Jean-Charles Mare
Abstract:
The proposed communication deals with the research and development of a rotary direct-drive servo valve for aerospace applications. A key challenge of the project is to downsize the electromagnetic torque motor by reducing the torque required to drive the rotary spool. It is intended to optimize the spool and the sleeve geometries by combining a Computational Fluid Dynamics (CFD) approach with commercial optimization software. The present communication addresses an important phase of the project, which consists firstly of gaining confidence in the simulation results. It is well known that the force needed to pilot a sliding spool valve comes from several physical effects: hydraulic forces, friction and inertia/mass of the moving assembly. Among them, the flow force is usually a major contributor to the steady-state (or Root Mean Square) driving torque. In recent decades, CFD has gradually become a standard simulation tool for studying fluid-structure interactions. However, in the particular case of high-pressure valve design, the authors have experienced that the calculated overall hydraulic force depends on the parameterization and options used to build and run the CFD model. To solve this issue, the authors have selected the standard case of the linear spool valve, which is addressed in detail in numerous scientific references (analytical models, experiments, CFD simulations). The first CFD simulations run by the authors have shown that the evolution of the equivalent discharge coefficient vs. Reynolds number at the metering orifice corresponds well to the values that can be predicted by the classical analytical models. Oppositely, the simulated flow force was found to be quite different from the value calculated analytically. This drove the authors to investigate minutely the influence of the studied domain and the setting of the CFD simulation. It was firstly shown that the flow recirculates in the inlet and outlet channels if their length is not sufficient regarding their hydraulic diameter. The dead volume on the uncontrolled orifice side also plays a significant role. These examples highlight the influence of the geometry of the fluid domain considered. The second action was to investigate the influence of the type of mesh, the turbulence models and near-wall approaches, and the numerical solver and discretization scheme order. Two approaches were used to determine the overall hydraulic force acting on the moving spool. First, the force was deduced from the momentum balance on a control domain delimited by the valve inlet and outlet and the spool walls. Second, the overall hydraulic force was calculated from the integral of pressure and shear forces acting at the boundaries of the fluid domain. This underlined the significant contribution of the viscous forces acting on the spool between the inlet and outlet orifices, which are generally not considered in the literature. This also emphasized the influence of the choices made for the implementation of CFD calculation and results analysis. With the step-by-step process adopted to increase confidence in the CFD simulations, the authors propose a set of best practices and recommendations for the efficient use of CFD to design high-pressure spool valves.Keywords: computational fluid dynamics, hydraulic forces, servovalve, rotary servovalve
Procedia PDF Downloads 435752 DGA Data Interpretation Using Extension Theory for Power Transformer Diagnostics
Authors: O. P. Rahi, Manoj Kumar
Abstract:
Power transformers are essential and expensive equipments in electrical power system. Dissolved gas analysis (DGA) is one of the most useful techniques to detect incipient faults in power transformers. However, the identification of the faulted location by conventional method is not always an easy task due to variability of gas data and operational variables. In this paper, an extension theory based power transformer fault diagnosis method is presented. Extension theory tries to solve contradictions and incompatibility problems. This paper first briefly introduces the basic concept of matter element theory, establishes the matter element models for three-ratio method, and then briefly discusses extension set theory. Detailed analysis is carried out on the extended relation function (ERF) adopted in this paper for transformer fault diagnosis. The detailed diagnosing steps are offered. Simulation proves that the proposed method can overcome the drawbacks of the conventional three-ratio method, such as no matching and failure to diagnose multi-fault. It enhances diagnosing accuracy.Keywords: DGA, extension theory, ERF, fault diagnosis power transformers, fault diagnosis, fuzzy logic
Procedia PDF Downloads 4125751 Geomechanical Numerical Modeling of Well Wall in Drilling with Finite Difference Method
Authors: Marzieh Zarei
Abstract:
Well instability is one of the most fundamental challenges faced by the oil and gas industry. Well wall stability analysis is a gap to be filled in the oil industry. The collection of static data such as well logging leads to the construction of a geomechanical numerical model, which will help in assessing the probable risks in future drilling. In this paper, geomechanical model was designed, and mechanical properties of the rock was determined at all points of the model. It was found the safe mud window was determined and the minimum and maximum mud pressures were determined in the ranges of 70-60 MPa and 110-100 MPa, respectively.Keywords: geomechanics, numerical model, well stability, in-situ stress, underbalanced drilling
Procedia PDF Downloads 1295750 The Trajectory of the Ball in Football Game
Authors: Mahdi Motahari, Mojtaba Farzaneh, Ebrahim Sepidbar
Abstract:
Tracking of moving and flying targets is one of the most important issues in image processing topic. Estimating of trajectory of desired object in short-term and long-term scale is more important than tracking of moving and flying targets. In this paper, a new way of identifying and estimating of future trajectory of a moving ball in long-term scale is estimated by using synthesis and interaction of image processing algorithms including noise removal and image segmentation, Kalman filter algorithm in order to estimating of trajectory of ball in football game in short-term scale and intelligent adaptive neuro-fuzzy algorithm based on time series of traverse distance. The proposed system attain more than 96% identify accuracy by using aforesaid methods and relaying on aforesaid algorithms and data base video in format of synthesis and interaction. Although the present method has high precision, it is time consuming. By comparing this method with other methods we realize the accuracy and efficiency of that.Keywords: tracking, signal processing, moving targets and flying, artificial intelligent systems, estimating of trajectory, Kalman filter
Procedia PDF Downloads 4615749 Islamic Architecture and the Challenges against It
Authors: Mohammad Torabiyan, Kazem Mosawi Nejad
Abstract:
Today architecture has become as a powerful media for introducing cultures to the world, which in turn brings about a change in the global insight, power gaining, investment and development. Islamic architecture is based on the language of Koran and shows the depth and richness of Islam through spiritual soul. This is in a way that belief in monotheism and faith in Islamic teachings are manifested as Islam's aesthetic thought in Islamic architecture. Unfortunately, Islamic architecture has been damaged a lot due to lack of necessary information and also successive wars which have overtaken the Muslims as well as the dominance of colonizing counties. Islamic architecture is rooted in the history, culture and civilization of Muslims but its deficiencies and shortcomings should be removed through systematizing the Islamic architecture researchers. Islamic countries should act in a way that the art of Islamic architecture shows its true place in different architecture eras and makes everybody aware that Islamic architecture has a historical root and is connected eternally to the genuineness, religious art and culture of Muslims and civilization.Keywords: art, culture, civilization, Islamic architecture, Muslims
Procedia PDF Downloads 5295748 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN
Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy
Abstract:
The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.Keywords: deep learning, optical Soliton, neural network, partial differential equation
Procedia PDF Downloads 1275747 Characterization of CuO Incorporated CMOS Dielectric for Fast Switching System
Authors: Nissar Mohammad Karim, Norhayati Soin
Abstract:
To ensure fast switching in high-K incorporated Complementary Metal Oxide Semiconductor (CMOS) transistors, the results on the basis of d (NBTI) by incorporating SiO2 dielectric with aged samples of CuO sol-gels have been reported. Precursor ageing has been carried out for 4 days. The minimum obtained refractive index is 1.0099 which was found after 3 hours of adhesive UV curing. Obtaining a low refractive index exhibits a low dielectric constant and hence a faster system.Keywords: refractive index, Sol-Gel, precursor aging, aging
Procedia PDF Downloads 4775746 Study on the Geometric Similarity in Computational Fluid Dynamics Calculation and the Requirement of Surface Mesh Quality
Authors: Qian Yi Ooi
Abstract:
At present, airfoil parameters are still designed and optimized according to the scale of conventional aircraft, and there are still some slight deviations in terms of scale differences. However, insufficient parameters or poor surface mesh quality is likely to occur if these small deviations are embedded in a future civil aircraft with a size that is quite different from conventional aircraft, such as a blended-wing-body (BWB) aircraft with future potential, resulting in large deviations in geometric similarity in computational fluid dynamics (CFD) simulations. To avoid this situation, the study on the CFD calculation on the geometric similarity of airfoil parameters and the quality of the surface mesh is conducted to obtain the ability of different parameterization methods applied on different airfoil scales. The research objects are three airfoil scales, including the wing root and wingtip of conventional civil aircraft and the wing root of the giant hybrid wing, used by three parameterization methods to compare the calculation differences between different sizes of airfoils. In this study, the constants including NACA 0012, a Reynolds number of 10 million, an angle of attack of zero, a C-grid for meshing, and the k-epsilon (k-ε) turbulence model are used. The experimental variables include three airfoil parameterization methods: point cloud method, B-spline curve method, and class function/shape function transformation (CST) method. The airfoil dimensions are set to 3.98 meters, 17.67 meters, and 48 meters, respectively. In addition, this study also uses different numbers of edge meshing and the same bias factor in the CFD simulation. Studies have shown that with the change of airfoil scales, different parameterization methods, the number of control points, and the meshing number of divisions should be used to improve the accuracy of the aerodynamic performance of the wing. When the airfoil ratio increases, the most basic point cloud parameterization method will require more and larger data to support the accuracy of the airfoil’s aerodynamic performance, which will face the severe test of insufficient computer capacity. On the other hand, when using the B-spline curve method, average number of control points and meshing number of divisions should be set appropriately to obtain higher accuracy; however, the quantitative balance cannot be directly defined, but the decisions should be made repeatedly by adding and subtracting. Lastly, when using the CST method, it is found that limited control points are enough to accurately parameterize the larger-sized wing; a higher degree of accuracy and stability can be obtained by using a lower-performance computer.Keywords: airfoil, computational fluid dynamics, geometric similarity, surface mesh quality
Procedia PDF Downloads 2225745 Adaptive Swarm Balancing Algorithms for Rare-Event Prediction in Imbalanced Healthcare Data
Authors: Jinyan Li, Simon Fong, Raymond Wong, Mohammed Sabah, Fiaidhi Jinan
Abstract:
Clinical data analysis and forecasting have make great contributions to disease control, prevention and detection. However, such data usually suffer from highly unbalanced samples in class distributions. In this paper, we target at the binary imbalanced dataset, where the positive samples take up only the minority. We investigate two different meta-heuristic algorithms, particle swarm optimization and bat-inspired algorithm, and combine both of them with the synthetic minority over-sampling technique (SMOTE) for processing the datasets. One approach is to process the full dataset as a whole. The other is to split up the dataset and adaptively process it one segment at a time. The experimental results reveal that while the performance improvements obtained by the former methods are not scalable to larger data scales, the later one, which we call Adaptive Swarm Balancing Algorithms, leads to significant efficiency and effectiveness improvements on large datasets. We also find it more consistent with the practice of the typical large imbalanced medical datasets. We further use the meta-heuristic algorithms to optimize two key parameters of SMOTE. Leading to more credible performances of the classifier, and shortening the running time compared with the brute-force method.Keywords: Imbalanced dataset, meta-heuristic algorithm, SMOTE, big data
Procedia PDF Downloads 4415744 An Insite to the Probabilistic Assessment of Reserves in Conventional Reservoirs
Authors: Sai Sudarshan, Harsh Vyas, Riddhiman Sherlekar
Abstract:
The oil and gas industry has been unwilling to adopt stochastic definition of reserves. Nevertheless, Monte Carlo simulation methods have gained acceptance by engineers, geoscientists and other professionals who want to evaluate prospects or otherwise analyze problems that involve uncertainty. One of the common applications of Monte Carlo simulation is the estimation of recoverable hydrocarbon from a reservoir.Monte Carlo Simulation makes use of random samples of parameters or inputs to explore the behavior of a complex system or process. It finds application whenever one needs to make an estimate, forecast or decision where there is significant uncertainty. First, the project focuses on performing Monte-Carlo Simulation on a given data set using U. S Department of Energy’s MonteCarlo Software, which is a freeware e&p tool. Further, an algorithm for simulation has been developed for MATLAB and program performs simulation by prompting user for input distributions and parameters associated with each distribution (i.e. mean, st.dev, min., max., most likely, etc.). It also prompts user for desired probability for which reserves are to be calculated. The algorithm so developed and tested in MATLAB further finds implementation in Python where existing libraries on statistics and graph plotting have been imported to generate better outcome. With PyQt designer, codes for a simple graphical user interface have also been written. The graph so plotted is then validated with already available results from U.S DOE MonteCarlo Software.Keywords: simulation, probability, confidence interval, sensitivity analysis
Procedia PDF Downloads 3825743 Automatic Generating CNC-Code for Milling Machine
Authors: Chalakorn Chitsaart, Suchada Rianmora, Mann Rattana-Areeyagon, Wutichai Namjaiprasert
Abstract:
G-code is the main factor in computer numerical control (CNC) machine for controlling the tool-paths and generating the profile of the object’s features. For obtaining high surface accuracy of the surface finish, non-stop operation is required for CNC machine. Recently, to design a new product, the strategy that concerns about a change that has low impact on business and does not consume lot of resources has been introduced. Cost and time for designing minor changes can be reduced since the traditional geometric details of the existing models are applied. In order to support this strategy as the alternative channel for machining operation, this research proposes the automatic generating codes for CNC milling operation. Using this technique can assist the manufacturer to easily change the size and the geometric shape of the product during the operation where the time spent for setting up or processing the machine are reduced. The algorithm implemented on MATLAB platform is developed by analyzing and evaluating the geometric information of the part. Codes are created rapidly to control the operations of the machine. Comparing to the codes obtained from CAM, this developed algorithm can shortly generate and simulate the cutting profile of the part.Keywords: geometric shapes, milling operation, minor changes, CNC Machine, G-code, cutting parameters
Procedia PDF Downloads 3495742 Assessment of Soil Quality Indicators in Rice Soil of Tamil Nadu
Authors: Kaleeswari R. K., Seevagan L .
Abstract:
Soil quality in an agroecosystem is influenced by the cropping system, water and soil fertility management. A valid soil quality index would help to assess the soil and crop management practices for desired productivity and soil health. The soil quality indices also provide an early indication of soil degradation and needy remedial and rehabilitation measures. Imbalanced fertilization and inadequate organic carbon dynamics deteriorate soil quality in an intensive cropping system. The rice soil ecosystem is different from other arable systems since rice is grown under submergence, which requires a different set of key soil attributes for enhancing soil quality and productivity. Assessment of the soil quality index involves indicator selection, indicator scoring and comprehensive score into one index. The most appropriate indicator to evaluate soil quality can be selected by establishing the minimum data set, which can be screened by linear and multiple regression factor analysis and score function. This investigation was carried out in intensive rice cultivating regions (having >1.0 lakh hectares) of Tamil Nadu viz., Thanjavur, Thiruvarur, Nagapattinam, Villupuram, Thiruvannamalai, Cuddalore and Ramanathapuram districts. In each district, intensive rice growing block was identified. In each block, two sampling grids (10 x 10 sq.km) were used with a sampling depth of 10 – 15 cm. Using GIS coordinates, and soil sampling was carried out at various locations in the study area. The number of soil sampling points were 41, 28, 28, 32, 37, 29 and 29 in Thanjavur, Thiruvarur, Nagapattinam, Cuddalore, Villupuram, Thiruvannamalai and Ramanathapuram districts, respectively. Principal Component Analysis is a data reduction tool to select some of the potential indicators. Principal Component is a linear combination of different variables that represents the maximum variance of the dataset. Principal Component that has eigenvalues equal or higher than 1.0 was taken as the minimum data set. Principal Component Analysis was used to select the representative soil quality indicators in rice soils based on factor loading values and contribution percent values. Variables having significant differences within the production system were used for the preparation of the minimum data set. Each Principal Component explained a certain amount of variation (%) in the total dataset. This percentage provided the weight for variables. The final Principal Component Analysis based soil quality equation is SQI = ∑ i=1 (W ᵢ x S ᵢ); where S- score for the subscripted variable; W-weighing factor derived from PCA. Higher index scores meant better soil quality. Soil respiration, Soil available Nitrogen and Potentially Mineralizable Nitrogen were assessed as soil quality indicators in rice soil of the Cauvery Delta zone covering Thanjavur, Thiruvavur and Nagapattinam districts. Soil available phosphorus could be used as a soil quality indicator of rice soils in the Cuddalore district. In rain-fed rice ecosystems of coastal sandy soil, DTPA – Zn could be used as an effective soil quality indicator. Among the soil parameters selected from Principal Component Analysis, Microbial Biomass Nitrogen could be used quality indicator for rice soils of the Villupuram district. Cauvery Delta zone has better SQI as compared with other intensive rice growing zone of Tamil Nadu.Keywords: soil quality index, soil attributes, soil mapping, and rice soil
Procedia PDF Downloads 865741 Effect of Melatonin on Seed Germination and Seedling Growth of Catharanthus roseus under Cadmium Stress
Authors: Rayhaneh Amooaghaie, Masoomeh Nabaei
Abstract:
In this study, 200 µM Cd reduced relative seed germination, root elongation tolerance and seed germination tolerance index of Catharanthus roseus. The melatonin improved seed germination, germination velocity, seedling length and vigor index under Cd stress in a dose-dependent manner and the maximum biological responses obtained by 100 μM melatonin. However, 200-400 μM melatonin and 400 μM SNP had negative effects that evidenced as lower germination indices and poor establishment of seedlings. The cadmium suppressed amylase activity and contents of soluble and reducing sugars in germinating seeds, thereby reduced seed germination and subsequent seedling growth whereas increased electrolyte leakage. These Cd-induced inhibitory effects were ameliorated by melatonin.Keywords: cadmium, Catharanthus roseus, melatonin, seed germination
Procedia PDF Downloads 1775740 Effect of an Interface Defect in a Patch/Layer Joint under Dynamic Time Harmonic Load
Authors: Elisaveta Kirilova, Wilfried Becker, Jordanka Ivanova, Tatyana Petrova
Abstract:
The study is a continuation of the research on the hygrothermal piezoelectric response of a smart patch/layer joint with undesirable interface defect (gap) at dynamic time harmonic mechanical and electrical load and environmental conditions. In order to find the axial displacements, shear stress and interface debond length in a closed analytical form for different positions of the interface gap, the 1D modified shear lag analysis is used. The debond length is represented as a function of many parameters (frequency, magnitude, electric displacement, moisture and temperature, joint geometry, position of the gap along the interface, etc.). Then the Genetic algorithm (GA) is implemented to find this position of the gap along the interface at which a vanishing/minimal debond length is ensured, e.g to find the most harmless position for the safe work of the structure. The illustrative example clearly shows that analytical shear-lag solutions and GA method can be combined successfully to give an effective prognosis of interface shear stress and interface delamination in patch/layer structure at combined loading with existing defects. To show the effect of the position of the interface gap, all obtained results are given in figures and discussed.Keywords: genetic algorithm, minimal delamination, optimal gap position, shear lag solution
Procedia PDF Downloads 3025739 Economic Impacts of Sanctuary and Immigration and Customs Enforcement Policies Inclusive and Exclusive Institutions
Authors: Alexander David Natanson
Abstract:
This paper focuses on the effect of Sanctuary and Immigration and Customs Enforcement (ICE) policies on local economies. "Sanctuary cities" refers to municipal jurisdictions that limit their cooperation with the federal government's efforts to enforce immigration. Using county-level data from the American Community Survey and ICE data on economic indicators from 2006 to 2018, this study isolates the effects of local immigration policies on U.S. counties. The investigation is accomplished by simultaneously studying the policies' effects in counties where immigrants' families are persecuted via collaboration with Immigration and Customs Enforcement (ICE), in contrast to counties that provide protections. The analysis includes a difference-in-difference & two-way fixed effect model. Results are robust to nearest-neighbor matching, after the random assignment of treatment, after running estimations using different cutoffs for immigration policies, and with a regression discontinuity model comparing bordering counties with opposite policies. Results are also robust after restricting the data to a single-year policy adoption, using the Sun and Abraham estimator, and with event-study estimation to deal with the staggered treatment issue. In addition, the study reverses the estimation to understand what drives the decision to choose policies to detect the presence of reverse causality biases in the estimated policy impact on economic factors. The evidence demonstrates that providing protections to undocumented immigrants increases economic activity. The estimates show gains in per capita income ranging from 3.1 to 7.2, median wages between 1.7 to 2.6, and GDP between 2.4 to 4.1 percent. Regarding labor, sanctuary counties saw increases in total employment between 2.3 to 4 percent, and the unemployment rate declined from 12 to 17 percent. The data further shows that ICE policies have no statistically significant effects on income, median wages, or GDP but adverse effects on total employment, with declines from 1 to 2 percent, mostly in rural counties, and an increase in unemployment of around 7 percent in urban counties. In addition, results show a decline in the foreign-born population in ICE counties but no changes in sanctuary counties. The study also finds similar results for sanctuary counties when separating the data between urban, rural, educational attainment, gender, ethnic groups, economic quintiles, and the number of business establishments. The takeaway from this study is that institutional inclusion creates the dynamic nature of an economy, as inclusion allows for economic expansion due to the extension of fundamental freedoms to newcomers. Inclusive policies show positive effects on economic outcomes with no evident increase in population. To make sense of these results, the hypothesis and theoretical model propose that inclusive immigration policies play an essential role in conditioning the effect of immigration by decreasing uncertainties and constraints for immigrants' interaction in their communities, decreasing the cost from fear of deportation or the constant fear of criminalization and optimize their human capital.Keywords: inclusive and exclusive institutions, post matching, fixed effect, time trend, regression discontinuity, difference-in-difference, randomization inference and sun, Abraham estimator
Procedia PDF Downloads 885738 Metric Dimension on Line Graph of Honeycomb Networks
Authors: M. Hussain, Aqsa Farooq
Abstract:
Let G = (V,E) be a connected graph and distance between any two vertices a and b in G is a−b geodesic and is denoted by d(a, b). A set of vertices W resolves a graph G if each vertex is uniquely determined by its vector of distances to the vertices in W. A metric dimension of G is the minimum cardinality of a resolving set of G. In this paper line graph of honeycomb network has been derived and then we calculated the metric dimension on line graph of honeycomb network.Keywords: Resolving set, Metric dimension, Honeycomb network, Line graph
Procedia PDF Downloads 2025737 Study of Error Analysis and Sources of Uncertainty in the Measurement of Residual Stresses by the X-Ray Diffraction
Authors: E. T. Carvalho Filho, J. T. N. Medeiros, L. G. Martinez
Abstract:
Residual stresses are self equilibrating in a rigid body that acts on the microstructure of the material without application of an external load. They are elastic stresses and can be induced by mechanical, thermal and chemical processes causing a deformation gradient in the crystal lattice favoring premature failure in mechanicals components. The search for measurements with good reliability has been of great importance for the manufacturing industries. Several methods are able to quantify these stresses according to physical principles and the response of the mechanical behavior of the material. The diffraction X-ray technique is one of the most sensitive techniques for small variations of the crystalline lattice since the X-ray beam interacts with the interplanar distance. Being very sensitive technique is also susceptible to variations in measurements requiring a study of the factors that influence the final result of the measurement. Instrumental, operational factors, form deviations of the samples and geometry of analyzes are some variables that need to be considered and analyzed in order for the true measurement. The aim of this work is to analyze the sources of errors inherent to the residual stress measurement process by X-ray diffraction technique making an interlaboratory comparison to verify the reproducibility of the measurements. In this work, two specimens were machined, differing from each other by the surface finishing: grinding and polishing. Additionally, iron powder with particle size less than 45 µm was selected in order to be a reference (as recommended by ASTM E915 standard) for the tests. To verify the deviations caused by the equipment, those specimens were positioned and with the same analysis condition, seven measurements were carried out at 11Ψ tilts. To verify sample positioning errors, seven measurements were performed by positioning the sample at each measurement. To check geometry errors, measurements were repeated for the geometry and Bragg Brentano parallel beams. In order to verify the reproducibility of the method, the measurements were performed in two different laboratories and equipments. The results were statistically worked out and the quantification of the errors.Keywords: residual stress, x-ray diffraction, repeatability, reproducibility, error analysis
Procedia PDF Downloads 1815736 Condensation of Moist Air in Heat Exchanger Using CFD
Authors: Jan Barak, Karel Frana, Joerg Stiller
Abstract:
This work presents results of moist air condensation in heat exchanger. It describes theoretical knowledge and definition of moist air. Model with geometry of square canal was created for better understanding and post processing of condensation phenomena. Different approaches were examined on this model to find suitable software and model. Obtained knowledge was applied to geometry of real heat exchanger and results from experiment were compared with numerical results. One of the goals is to solve this issue without creating any user defined function in the applied code. It also contains summary of knowledge and outlook for future work.Keywords: condensation, exchanger, experiment, validation
Procedia PDF Downloads 4035735 Secure Message Transmission Using Meaningful Shares
Authors: Ajish Sreedharan
Abstract:
Visual cryptography encodes a secret image into shares of random binary patterns. If the shares are exerted onto transparencies, the secret image can be visually decoded by superimposing a qualified subset of transparencies, but no secret information can be obtained from the superposition of a forbidden subset. The binary patterns of the shares, however, have no visual meaning and hinder the objectives of visual cryptography. In the Secret Message Transmission through Meaningful Shares a secret message to be transmitted is converted to grey scale image. Then (2,2) visual cryptographic shares are generated from this converted gray scale image. The shares are encrypted using A Chaos-Based Image Encryption Algorithm Using Wavelet Transform. Two separate color images which are of the same size of the shares, taken as cover image of the respective shares to hide the shares into them. The encrypted shares which are covered by meaningful images so that a potential eavesdropper wont know there is a message to be read. The meaningful shares are transmitted through two different transmission medium. During decoding shares are fetched from received meaningful images and decrypted using A Chaos-Based Image Encryption Algorithm Using Wavelet Transform. The shares are combined to regenerate the grey scale image from where the secret message is obtained.Keywords: visual cryptography, wavelet transform, meaningful shares, grey scale image
Procedia PDF Downloads 4555734 Forecasting Optimal Production Program Using Profitability Optimization by Genetic Algorithm and Neural Network
Authors: Galal H. Senussi, Muamar Benisa, Sanja Vasin
Abstract:
In our business field today, one of the most important issues for any enterprises is cost minimization and profit maximization. Second issue is how to develop a strong and capable model that is able to give us desired forecasting of these two issues. Many researches deal with these issues using different methods. In this study, we developed a model for multi-criteria production program optimization, integrated with Artificial Neural Network. The prediction of the production cost and profit per unit of a product, dealing with two obverse functions at same time can be extremely difficult, especially if there is a great amount of conflict information about production parameters. Feed-Forward Neural Networks are suitable for generalization, which means that the network will generate a proper output as a result to input it has never seen. Therefore, with small set of examples the network will adjust its weight coefficients so the input will generate a proper output. This essential characteristic is of the most important abilities enabling this network to be used in variety of problems spreading from engineering to finance etc. From our results as we will see later, Feed-Forward Neural Networks has a strong ability and capability to map inputs into desired outputs.Keywords: project profitability, multi-objective optimization, genetic algorithm, Pareto set, neural networks
Procedia PDF Downloads 445