Search results for: minimum data set
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26547

Search results for: minimum data set

22977 Antifungal Susceptibility of Saprolegnia parasitica Isolated from Rainbow Trout and Its Host Pathogen Interaction in Zebrafish Disease Model

Authors: Sangyeop Shin, D. C. M. Kulatunga, S. H. S. Dananjaya, Chamilani Nikapitiya, Jehee Lee, Mahanama De Zoysa

Abstract:

Saprolegniasis is one of the most devastating fungal diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated fungi belong to the member of S. parasitica, supported by its typical fungal features including cotton-like whitish mycelium, zoospores (primary and secondary) and phylogenetic analysis with internal transcribed spacer (ITS) region. Pathogenicity of isolated S. parasitica was developed in embryo, larvae, juvenile and adult zebrafish as a disease model. Up regulation of host genes encoding ZfTnf-α, Zfc-Rel, ZfIl-12, ZfLyz-c, Zfβ-def, and ZfHsp-70 was identified in zebrafish larvae after experimental challenge of S. parasitica showing the host immune responses against the S. parasitica. Survival of the juveniles upon fungal infection might be due to the increased immune protection in the host. Investigation of antifungal susceptibility of S. parasitica with natural lawsone (2-hydroxy-1,4-naphthoquinone) revealed the minimum inhibitory concentration (MIC) and percentage inhibition of radial growth (PIRG %) as 200 µg/mL and 31.8%, respectively. Lawsone was able to change the membrane permeability, and cause irreversible damage and disintegration to the cellular membranes of S. parasitica which might have effect on fungi growth inhibition. Moreover, the mycelium exposed to lawsone (MIC level) changed the transcriptional responses of S. parasitica genes. Overall results indicate that lawsone could be a potential and novel anti-S. parasitica agent for controlling S. parasitica infection.

Keywords: host-pathogen interactions, lawsone, rainbow trout, Saprolegnia parasitica, Saprolegniasis, zebrafish

Procedia PDF Downloads 250
22976 Next-Generation Laser-Based Transponder and 3D Switch for Free Space Optics in Nanosatellite

Authors: Nadir Atayev, Mehman Hasanov

Abstract:

Future spacecraft will require a structural change in the way data is transmitted due to the increase in the volume of data required for space communication. Current radio frequency communication systems are already facing a bottleneck in the volume of data sent to the ground segment due to their technological and regulatory characteristics. To overcome these issues, free space optics communication plays an important role in the integrated terrestrial space network due to its advantages such as significantly improved data rate compared to traditional RF technology, low cost, improved security, and inter-satellite free space communication, as well as uses a laser beam, which is an optical signal carrier to establish satellite-ground & ground-to-satellite links. In this approach, there is a need for high-speed and energy-efficient systems as a base platform for sending high-volume video & audio data. Nano Satellite and its branch CubeSat platforms have more technical functionality than large satellites, wheres cover an important part of the space sector, with their Low-Earth-Orbit application area with low-cost design and technical functionality for building networks using different communication topologies. Along the research theme developed in this regard, the output parameter indicators for the FSO of the optical communication transceiver subsystem on the existing CubeSat platforms, and in the direction of improving the mentioned parameters of this communication methodology, 3D optical switch and laser beam controlled optical transponder with 2U CubeSat structural subsystems and application in the Low Earth Orbit satellite network topology, as well as its functional performance and structural parameters, has been studied accordingly.

Keywords: cubesat, free space optics, nano satellite, optical laser communication.

Procedia PDF Downloads 89
22975 Cloud-Based Multiresolution Geodata Cube for Efficient Raster Data Visualization and Analysis

Authors: Lassi Lehto, Jaakko Kahkonen, Juha Oksanen, Tapani Sarjakoski

Abstract:

The use of raster-formatted data sets in geospatial analysis is increasing rapidly. At the same time, geographic data are being introduced into disciplines outside the traditional domain of geoinformatics, like climate change, intelligent transport, and immigration studies. These developments call for better methods to deliver raster geodata in an efficient and easy-to-use manner. Data cube technologies have traditionally been used in the geospatial domain for managing Earth Observation data sets that have strict requirements for effective handling of time series. The same approach and methodologies can also be applied in managing other types of geospatial data sets. A cloud service-based geodata cube, called GeoCubes Finland, has been developed to support online delivery and analysis of most important geospatial data sets with national coverage. The main target group of the service is the academic research institutes in the country. The most significant aspects of the GeoCubes data repository include the use of multiple resolution levels, cloud-optimized file structure, and a customized, flexible content access API. Input data sets are pre-processed while being ingested into the repository to bring them into a harmonized form in aspects like georeferencing, sampling resolutions, spatial subdivision, and value encoding. All the resolution levels are created using an appropriate generalization method, selected depending on the nature of the source data set. Multiple pre-processed resolutions enable new kinds of online analysis approaches to be introduced. Analysis processes based on interactive visual exploration can be effectively carried out, as the level of resolution most close to the visual scale can always be used. In the same way, statistical analysis can be carried out on resolution levels that best reflect the scale of the phenomenon being studied. Access times remain close to constant, independent of the scale applied in the application. The cloud service-based approach, applied in the GeoCubes Finland repository, enables analysis operations to be performed on the server platform, thus making high-performance computing facilities easily accessible. The developed GeoCubes API supports this kind of approach for online analysis. The use of cloud-optimized file structures in data storage enables the fast extraction of subareas. The access API allows for the use of vector-formatted administrative areas and user-defined polygons as definitions of subareas for data retrieval. Administrative areas of the country in four levels are available readily from the GeoCubes platform. In addition to direct delivery of raster data, the service also supports the so-called virtual file format, in which only a small text file is first downloaded. The text file contains links to the raster content on the service platform. The actual raster data is downloaded on demand, from the spatial area and resolution level required in each stage of the application. By the geodata cube approach, pre-harmonized geospatial data sets are made accessible to new categories of inexperienced users in an easy-to-use manner. At the same time, the multiresolution nature of the GeoCubes repository facilitates expert users to introduce new kinds of interactive online analysis operations.

Keywords: cloud service, geodata cube, multiresolution, raster geodata

Procedia PDF Downloads 136
22974 Wind Velocity Climate Zonation Based on Observation Data in Indonesia Using Cluster and Principal Component Analysis

Authors: I Dewa Gede Arya Putra

Abstract:

Principal Component Analysis (PCA) is a mathematical procedure that uses orthogonal transformation techniques to change a set of data with components that may be related become components that are not related to each other. This can have an impact on clustering wind speed characteristics in Indonesia. This study uses data daily wind speed observations of the Site Meteorological Station network for 30 years. Multicollinearity tests were also performed on all of these data before doing clustering with PCA. The results show that the four main components have a total diversity of above 80% which will be used for clusters. Division of clusters using Ward's method obtained 3 types of clusters. Cluster 1 covers the central part of Sumatra Island, northern Kalimantan, northern Sulawesi, and northern Maluku with the climatological pattern of wind speed that does not have an annual cycle and a weak speed throughout the year with a low-speed ranging from 0 to 1,5 m/s². Cluster 2 covers the northern part of Sumatra Island, South Sulawesi, Bali, northern Papua with the climatological pattern conditions of wind speed that have annual cycle variations with low speeds ranging from 1 to 3 m/s². Cluster 3 covers the eastern part of Java Island, the Southeast Nusa Islands, and the southern Maluku Islands with the climatological pattern of wind speed conditions that have annual cycle variations with high speeds ranging from 1 to 4.5 m/s².

Keywords: PCA, cluster, Ward's method, wind speed

Procedia PDF Downloads 195
22973 Rescaled Range Analysis of Seismic Time-Series: Example of the Recent Seismic Crisis of Alhoceima

Authors: Marina Benito-Parejo, Raul Perez-Lopez, Miguel Herraiz, Carolina Guardiola-Albert, Cesar Martinez

Abstract:

Persistency, long-term memory and randomness are intrinsic properties of time-series of earthquakes. The Rescaled Range Analysis (RS-Analysis) was introduced by Hurst in 1956 and modified by Mandelbrot and Wallis in 1964. This method represents a simple and elegant analysis which determines the range of variation of one natural property (the seismic energy released in this case) in a time interval. Despite the simplicity, there is complexity inherent in the property measured. The cumulative curve of the energy released in time is the well-known fractal geometry of a devil’s staircase. This geometry is used for determining the maximum and minimum value of the range, which is normalized by the standard deviation. The rescaled range obtained obeys a power-law with the time, and the exponent is the Hurst value. Depending on this value, time-series can be classified in long-term or short-term memory. Hence, an algorithm has been developed for compiling the RS-Analysis for time series of earthquakes by days. Completeness time distribution and locally stationarity of the time series are required. The interest of this analysis is their application for a complex seismic crisis where different earthquakes take place in clusters in a short period. Therefore, the Hurst exponent has been obtained for the seismic crisis of Alhoceima (Mediterranean Sea) of January-March, 2016, where at least five medium-sized earthquakes were triggered. According to the values obtained from the Hurst exponent for each cluster, a different mechanical origin can be detected, corroborated by the focal mechanisms calculated by the official institutions. Therefore, this type of analysis not only allows an approach to a greater understanding of a seismic series but also makes possible to discern different types of seismic origins.

Keywords: Alhoceima crisis, earthquake time series, Hurst exponent, rescaled range analysis

Procedia PDF Downloads 322
22972 Environmental Effect on Yield and Quality of French Bean Genotypes Grown in Poly-Net House of India

Authors: Ramandeep Kaur, Tarsem Singh Dhillon, Rajinder Kumar Dhall, Ruma Devi

Abstract:

French bean (Phaseolous vulgaris L.) is an economically potential legume vegetable grown at high altitude (>1000 ft.). More recently, its cultivation in Northern Indian plans is gaining popularity but there is severe reduction in its yield and quality due to low temperature during extreme winter conditions of December-January in open field conditions. Therefore, present study was undertaken to evaluate 29 indeterminate French bean genotypes for various yield and quality traits in poly-net house with the objective to identify best performing genotypes during winter conditions. The significant variation was observed among all the genotypes for all the studied traits. The green pod yield was significantly higher in genotype Lakshmi (992.33 g/plant) followed by Star-I (955.50 g/plant) and FBK-4 (911.17 g/plant). However, the genotypes FBK-10 (105.50 days) and Lakshmi (106.83 days) took least number of days to first harvest and were significantly better than all other genotypes (109.00-136.83 days). The maximum numbers of 10 pickings were recorded in genotype Lakshmi whereas maximum harvesting span as also observed in Lakshmi (60.50 days) which was significantly higher than all other genotypes (31.17-56.50 days). Regarding quality traits, maximum dry matter was observed in FBK-13 (13.87%), protein content in FBK-1 (9.67%), sugar content in FBK-5 (9.60%) and minimum fiber content in FBK-12 (0.69%). It is hereby concluded that high productivity and better quality of French bean (genotypes: Lakshmi, Star-I, FBK-4) was produced in poly-net house conditions of Punjab, India and these pods fetches premium price in the market as there is no availability of green pods at that time in high altitudes. Hence, there is a great scope of cultivation of indeterminate French bean under poly-net house conditions in Punjab.

Keywords: earliness, pod, protected environment, quality, yield

Procedia PDF Downloads 106
22971 Topology Optimization of Heat and Mass Transfer for Two Fluids under Steady State Laminar Regime: Application on Heat Exchangers

Authors: Rony Tawk, Boutros Ghannam, Maroun Nemer

Abstract:

Topology optimization technique presents a potential tool for the design and optimization of structures involved in mass and heat transfer. The method starts with an initial intermediate domain and should be able to progressively distribute the solid and the two fluids exchanging heat. The multi-objective function of the problem takes into account minimization of total pressure loss and maximization of heat transfer between solid and fluid subdomains. Existing methods account for the presence of only one fluid, while the actual work extends optimization distribution of solid and two different fluids. This requires to separate the channels of both fluids and to ensure a minimum solid thickness between them. This is done by adding a third objective function to the multi-objective optimization problem. This article uses density approach where each cell holds two local design parameters ranging from 0 to 1, where the combination of their extremums defines the presence of solid, cold fluid or hot fluid in this cell. Finite volume method is used for direct solver coupled with a discrete adjoint approach for sensitivity analysis and method of moving asymptotes for numerical optimization. Several examples are presented to show the ability of the method to find a trade-off between minimization of power dissipation and maximization of heat transfer while ensuring the separation and continuity of the channel of each fluid without crossing or mixing the fluids. The main conclusion is the possibility to find an optimal bi-fluid domain using topology optimization, defining a fluid to fluid heat exchanger device.

Keywords: topology optimization, density approach, bi-fluid domain, laminar steady state regime, fluid-to-fluid heat exchanger

Procedia PDF Downloads 399
22970 Capturing Public Voices: The Role of Social Media in Heritage Management

Authors: Mahda Foroughi, Bruno de Anderade, Ana Pereira Roders

Abstract:

Social media platforms have been increasingly used by locals and tourists to express their opinions about buildings, cities, and built heritage in particular. Most recently, scholars have been using social media to conduct innovative research on built heritage and heritage management. Still, the application of artificial intelligence (AI) methods to analyze social media data for heritage management is seldom explored. This paper investigates the potential of short texts (sentences and hashtags) shared through social media as a data source and artificial intelligence methods for data analysis for revealing the cultural significance (values and attributes) of built heritage. The city of Yazd, Iran, was taken as a case study, with a particular focus on windcatchers, key attributes conveying outstanding universal values, as inscribed on the UNESCO World Heritage List. This paper has three subsequent phases: 1) state of the art on the intersection of public participation in heritage management and social media research; 2) methodology of data collection and data analysis related to coding people's voices from Instagram and Twitter into values of windcatchers over the last ten-years; 3) preliminary findings on the comparison between opinions of locals and tourists, sentiment analysis, and its association with the values and attributes of windcatchers. Results indicate that the age value is recognized as the most important value by all interest groups, while the political value is the least acknowledged. Besides, the negative sentiments are scarcely reflected (e.g., critiques) in social media. Results confirm the potential of social media for heritage management in terms of (de)coding and measuring the cultural significance of built heritage for windcatchers in Yazd. The methodology developed in this paper can be applied to other attributes in Yazd and also to other case studies.

Keywords: social media, artificial intelligence, public participation, cultural significance, heritage, sentiment analysis

Procedia PDF Downloads 115
22969 Hybrid Knowledge Approach for Determining Health Care Provider Specialty from Patient Diagnoses

Authors: Erin Lynne Plettenberg, Jeremy Vickery

Abstract:

In an access-control situation, the role of a user determines whether a data request is appropriate. This paper combines vetted web mining and logic modeling to build a lightweight system for determining the role of a health care provider based only on their prior authorized requests. The model identifies provider roles with 100% recall from very little data. This shows the value of vetted web mining in AI systems, and suggests the impact of the ICD classification on medical practice.

Keywords: electronic medical records, information extraction, logic modeling, ontology, vetted web mining

Procedia PDF Downloads 172
22968 Relationship between Gender and Performance with Respect to a Basic Math Skills Quiz in Statistics Courses in Lebanon

Authors: Hiba Naccache

Abstract:

The present research investigated whether gender differences affect performance in a simple math quiz in statistics course. Participants of this study comprised a sample of 567 statistics students in two different universities in Lebanon. Data were collected through a simple math quiz. Analysis of quantitative data indicated that there wasn’t a significant difference in math performance between males and females. The results suggest that improvements in student performance may depend on improved mastery of basic algebra especially for females. The implications of these findings and further recommendations were discussed.

Keywords: gender, education, math, statistics

Procedia PDF Downloads 377
22967 INCIPIT-CRIS: A Research Information System Combining Linked Data Ontologies and Persistent Identifiers

Authors: David Nogueiras Blanco, Amir Alwash, Arnaud Gaudinat, René Schneider

Abstract:

At a time when the access to and the sharing of information are crucial in the world of research, the use of technologies such as persistent identifiers (PIDs), Current Research Information Systems (CRIS), and ontologies may create platforms for information sharing if they respond to the need of disambiguation of their data by assuring interoperability inside and between other systems. INCIPIT-CRIS is a continuation of the former INCIPIT project, whose goal was to set up an infrastructure for a low-cost attribution of PIDs with high granularity based on Archival Resource Keys (ARKs). INCIPIT-CRIS can be interpreted as a logical consequence and propose a research information management system developed from scratch. The system has been created on and around the Schema.org ontology with a further articulation of the use of ARKs. It is thus built upon the infrastructure previously implemented (i.e., INCIPIT) in order to enhance the persistence of URIs. As a consequence, INCIPIT-CRIS aims to be the hinge between previously separated aspects such as CRIS, ontologies and PIDs in order to produce a powerful system allowing the resolution of disambiguation problems using a combination of an ontology such as Schema.org and unique persistent identifiers such as ARK, allowing the sharing of information through a dedicated platform, but also the interoperability of the system by representing the entirety of the data as RDF triplets. This paper aims to present the implemented solution as well as its simulation in real life. We will describe the underlying ideas and inspirations while going through the logic and the different functionalities implemented and their links with ARKs and Schema.org. Finally, we will discuss the tests performed with our project partner, the Swiss Institute of Bioinformatics (SIB), by the use of large and real-world data sets.

Keywords: current research information systems, linked data, ontologies, persistent identifier, schema.org, semantic web

Procedia PDF Downloads 135
22966 Investigating the Behaviour of Composite Floors (Steel Beams and Concrete Slabs) under Mans Rhythmical Movement

Authors: M. Ali Lotfollahi Yaghin, M. Reza Bagerzadeh Karimi, Ali Rahmani, V. Sadeghi Balkanlou

Abstract:

Structural engineers have long been trying to develop solutions using the full potential of its composing materials. Therefore, there is no doubt that the structural solution progress is directly related to an increase in materials science knowledge. These efforts in conjunction with up-to-date modern construction techniques have led to an extensive use of composite floors in large span structures. On the other hand, the competitive trends of the world market have long been forcing structural engineers to develop minimum weight and labour cost solutions. A direct consequence of this new design trend is a considerable increase in problems related to unwanted floor vibrations. For this reason, the structural floors systems become vulnerable to excessive vibrations produced by impacts such as human rhythmic activities. The main objective of this paper is to present an analysis methodology for the evaluation of the composite floors human comfort. This procedure takes into account a more realistic loading model developed to incorporate the dynamic effects induced by human walking. The investigated structural models were based on various composite floors, with main spans varying from 5 to 10 m. based on an extensive parametric study the composite floors dynamic response, in terms of peak accelerations, was obtained and compared to the limiting values proposed by several authors and design standards. This strategy was adopted to provide a more realistic evaluation for this type of structure when subjected to vibration due to human walking.

Keywords: vibration, resonance, composite floors, people’s rhythmic movement, dynamic analysis, Abaqus software

Procedia PDF Downloads 304
22965 MIMIC: A Multi Input Micro-Influencers Classifier

Authors: Simone Leonardi, Luca Ardito

Abstract:

Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.

Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media

Procedia PDF Downloads 183
22964 A Histopathological Study on Leech (Hirudo medicinalis) Application in the Management of Vicarcikā (Eczema)

Authors: K. M. Pratap Shankar, Dattatreya Rao, Sai Prasad

Abstract:

Background: Skin diseases are among the most common health problems worldwide and are associated with a considerable burden. Eczema is such a skin ailment which cause psychological, social and financial burden on the patient and their families. Management of eczema with antibiotics, antihistamines, steroids etc., are available but even after their use relapses, recurrences and other complications are very common. Aim: The aim of this study was to assess the efficacy of leech application in the management of vicarcikā (Eczema) with Histopathological study. Methods: For the present study 10 patients having the classical symptoms of Vicarcikā, were randomly selected as per the inclusion and exclusion criteria from O.P.D. & I.P.D. sections of Śalya department, S.V. Āyurvedic Hospital, Tirupati. Minimum 4 sittings of Leech application was carried out with seven days interval. Total duration of treatment was 6 weeks. Biopsy samples were collected from the lesion site before and after treatment. Histopathological examination was done by the pathologist. Results: In eczema (dermatitis) the leech application therapy gives excellent response by reducing the inflammatory component, hyperkeratosis, spongiosis, irregular acanthosis and by evoking a granulation tissue response in the dermis and in most of the cases with complete recovery from the lesion. Most of the cases in the study were chronic dermatitis and sebhoric keratosis, almost all local/focal pigmented lesions is totally relieved by leech therapy especially in cases of sebhoric keratosis. Conclusion: In the present study it was found that, leech application evokes significant changes at histological level specifically in reduction of inflammatory component, hyperkeratosis, spongiosis and irregular acanthosis. It was also found that there was a considerable formation of granulation tissue, which helps in formation of healthy new tissues.

Keywords: acanthosis, eczema, hyperkeratosis, leech application, spongiosis

Procedia PDF Downloads 298
22963 Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models

Authors: Suriya

Abstract:

Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models.

Keywords: deep learning, AOD, PM2.5, prediction, Ulaanbaatar

Procedia PDF Downloads 48
22962 Difficulties in Teaching and Learning English Pronunciation in Sindh Province, Pakistan

Authors: Majno Ajbani

Abstract:

Difficulties in teaching and learning English pronunciation in Sindh province, Pakistan Abstract Sindhi language is widely spoken in Sindh province, and it is one of the difficult languages of the world. Sindhi language has fifty-two alphabets which have caused a serious issue in learning and teaching of English pronunciation for teachers and students of Colleges and Universities. This study focuses on teachers’ and students’ need for extensive training in the pronunciation that articulates the real pronunciation of actual words. The study is set to contribute in the sociolinguistic studies of English learning communities in this region. Data from 200 English teachers and students was collected by already tested structured questionnaire. The data was analysed using SPSS 20 software. The data analysis clearly demonstrates the higher range of inappropriate pronunciations towards English learning and teaching. The anthropogenic responses indicate 87 percentages teachers and students had an improper pronunciation. This indicates the substantial negative effects on academic and sociolinguistic aspects. It is suggested an improper speaking of English, based on rapid changes in geopolitical and sociocultural surroundings.

Keywords: alphabets, pronunciation, sociolinguistic, anthropogenic, imprudent, malapropos

Procedia PDF Downloads 396
22961 Multi-scale Spatial and Unified Temporal Feature-fusion Network for Multivariate Time Series Anomaly Detection

Authors: Hang Yang, Jichao Li, Kewei Yang, Tianyang Lei

Abstract:

Multivariate time series anomaly detection is a significant research topic in the field of data mining, encompassing a wide range of applications across various industrial sectors such as traffic roads, financial logistics, and corporate production. The inherent spatial dependencies and temporal characteristics present in multivariate time series introduce challenges to the anomaly detection task. Previous studies have typically been based on the assumption that all variables belong to the same spatial hierarchy, neglecting the multi-level spatial relationships. To address this challenge, this paper proposes a multi-scale spatial and unified temporal feature fusion network, denoted as MSUT-Net, for multivariate time series anomaly detection. The proposed model employs a multi-level modeling approach, incorporating both temporal and spatial modules. The spatial module is designed to capture the spatial characteristics of multivariate time series data, utilizing an adaptive graph structure learning model to identify the multi-level spatial relationships between data variables and their attributes. The temporal module consists of a unified temporal processing module, which is tasked with capturing the temporal features of multivariate time series. This module is capable of simultaneously identifying temporal dependencies among different variables. Extensive testing on multiple publicly available datasets confirms that MSUT-Net achieves superior performance on the majority of datasets. Our method is able to model and accurately detect systems data with multi-level spatial relationships from a spatial-temporal perspective, providing a novel perspective for anomaly detection analysis.

Keywords: data mining, industrial system, multivariate time series, anomaly detection

Procedia PDF Downloads 15
22960 Impact Location From Instrumented Mouthguard Kinematic Data In Rugby

Authors: Jazim Sohail, Filipe Teixeira-Dias

Abstract:

Mild traumatic brain injury (mTBI) within non-helmeted contact sports is a growing concern due to the serious risk of potential injury. Extensive research is being conducted looking into head kinematics in non-helmeted contact sports utilizing instrumented mouthguards that allow researchers to record accelerations and velocities of the head during and after an impact. This does not, however, allow the location of the impact on the head, and its magnitude and orientation, to be determined. This research proposes and validates two methods to quantify impact locations from instrumented mouthguard kinematic data, one using rigid body dynamics, the other utilizing machine learning. The rigid body dynamics technique focuses on establishing and matching moments from Euler’s and torque equations in order to find the impact location on the head. The methodology is validated with impact data collected from a lab test with the dummy head fitted with an instrumented mouthguard. Additionally, a Hybrid III Dummy head finite element model was utilized to create synthetic kinematic data sets for impacts from varying locations to validate the impact location algorithm. The algorithm calculates accurate impact locations; however, it will require preprocessing of live data, which is currently being done by cross-referencing data timestamps to video footage. The machine learning technique focuses on eliminating the preprocessing aspect by establishing trends within time-series signals from instrumented mouthguards to determine the impact location on the head. An unsupervised learning technique is used to cluster together impacts within similar regions from an entire time-series signal. The kinematic signals established from mouthguards are converted to the frequency domain before using a clustering algorithm to cluster together similar signals within a time series that may span the length of a game. Impacts are clustered within predetermined location bins. The same Hybrid III Dummy finite element model is used to create impacts that closely replicate on-field impacts in order to create synthetic time-series datasets consisting of impacts in varying locations. These time-series data sets are used to validate the machine learning technique. The rigid body dynamics technique provides a good method to establish accurate impact location of impact signals that have already been labeled as true impacts and filtered out of the entire time series. However, the machine learning technique provides a method that can be implemented with long time series signal data but will provide impact location within predetermined regions on the head. Additionally, the machine learning technique can be used to eliminate false impacts captured by sensors saving additional time for data scientists using instrumented mouthguard kinematic data as validating true impacts with video footage would not be required.

Keywords: head impacts, impact location, instrumented mouthguard, machine learning, mTBI

Procedia PDF Downloads 217
22959 Using Mixed Methods in Studying Classroom Social Network Dynamics

Authors: Nashrawan Naser Taha, Andrew M. Cox

Abstract:

In a multi-cultural learning context, where ties are weak and dynamic, combining qualitative with quantitative research methods may be more effective. Such a combination may also allow us to answer different types of question, such as about people’s perception of the network. In this study the use of observation, interviews and photos were explored as ways of enhancing data from social network questionnaires. Integrating all of these methods was found to enhance the quality of data collected and its accuracy, also providing a richer story of the network dynamics and the factors that shaped these changes over time.

Keywords: mixed methods, social network analysis, multi-cultural learning, social network dynamics

Procedia PDF Downloads 511
22958 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data

Authors: M. Mueller, M. Kuehn, M. Voelker

Abstract:

In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).

Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing

Procedia PDF Downloads 131
22957 Destination Decision Model for Cruising Taxis Based on Embedding Model

Authors: Kazuki Kamada, Haruka Yamashita

Abstract:

In Japan, taxi is one of the popular transportations and taxi industry is one of the big businesses. However, in recent years, there has been a difficult problem of reducing the number of taxi drivers. In the taxi business, mainly three passenger catching methods are applied. One style is "cruising" that drivers catches passengers while driving on a road. Second is "waiting" that waits passengers near by the places with many requirements for taxies such as entrances of hospitals, train stations. The third one is "dispatching" that is allocated based on the contact from the taxi company. Above all, the cruising taxi drivers need the experience and intuition for finding passengers, and it is difficult to decide "the destination for cruising". The strong recommendation system for the cruising taxies supports the new drivers to find passengers, and it can be the solution for the decreasing the number of drivers in the taxi industry. In this research, we propose a method of recommending a destination for cruising taxi drivers. On the other hand, as a machine learning technique, the embedding models that embed the high dimensional data to a low dimensional space is widely used for the data analysis, in order to represent the relationship of the meaning between the data clearly. Taxi drivers have their favorite courses based on their experiences, and the courses are different for each driver. We assume that the course of cruising taxies has meaning such as the course for finding business man passengers (go around the business area of the city of go to main stations) and course for finding traveler passengers (go around the sightseeing places or big hotels), and extract the meaning of their destinations. We analyze the cruising history data of taxis based on the embedding model and propose the recommendation system for passengers. Finally, we demonstrate the recommendation of destinations for cruising taxi drivers based on the real-world data analysis using proposing method.

Keywords: taxi industry, decision making, recommendation system, embedding model

Procedia PDF Downloads 138
22956 The Predictive Value of Serum Bilirubin in the Post-Transplant De Novo Malignancy: A Data Mining Approach

Authors: Nasim Nosoudi, Amir Zadeh, Hunter White, Joshua Conrad, Joon W. Shim

Abstract:

De novo Malignancy has become one of the major causes of death after transplantation, so early cancer diagnosis and detection can drastically improve survival rates post-transplantation. Most previous work focuses on using artificial intelligence (AI) to predict transplant success or failure outcomes. In this work, we focused on predicting de novo malignancy after liver transplantation using AI. We chose the patients that had malignancy after liver transplantation with no history of malignancy pre-transplant. Their donors were cancer-free as well. We analyzed 254,200 patient profiles with post-transplant malignancy from the US Organ Procurement and Transplantation Network (OPTN). Several popular data mining methods were applied to the resultant dataset to build predictive models to characterize de novo malignancy after liver transplantation. Recipient's bilirubin, creatinine, weight, gender, number of days recipient was on the transplant waiting list, Epstein Barr Virus (EBV), International normalized ratio (INR), and ascites are among the most important factors affecting de novo malignancy after liver transplantation

Keywords: De novo malignancy, bilirubin, data mining, transplantation

Procedia PDF Downloads 105
22955 Life Cycle Assessment of Residential Buildings: A Case Study in Canada

Authors: Venkatesh Kumar, Kasun Hewage, Rehan Sadiq

Abstract:

Residential buildings consume significant amounts of energy and produce a large amount of emissions and waste. However, there is a substantial potential for energy savings in this sector which needs to be evaluated over the life cycle of residential buildings. Life Cycle Assessment (LCA) methodology has been employed to study the primary energy uses and associated environmental impacts of different phases (i.e., product, construction, use, end of life, and beyond building life) for residential buildings. Four different alternatives of residential buildings in Vancouver (BC, Canada) with a 50-year lifespan have been evaluated, including High Rise Apartment (HRA), Low Rise Apartment (LRA), Single family Attached House (SAH), and Single family Detached House (SDH). Life cycle performance of the buildings is evaluated for embodied energy, embodied environmental impacts, operational energy, operational environmental impacts, total life-cycle energy, and total life cycle environmental impacts. Estimation of operational energy and LCA are performed using DesignBuilder software and Athena Impact estimator software respectively. The study results revealed that over the life span of the buildings, the relationship between the energy use and the environmental impacts are identical. LRA is found to be the best alternative in terms of embodied energy use and embodied environmental impacts; while, HRA showed the best life-cycle performance in terms of minimum energy use and environmental impacts. Sensitivity analysis has also been carried out to study the influence of building service lifespan over 50, 75, and 100 years on the relative significance of embodied energy and total life cycle energy. The life-cycle energy requirements for SDH is found to be a significant component among the four types of residential buildings. The overall disclose that the primary operations of these buildings accounts for 90% of the total life cycle energy which far outweighs minor differences in embodied effects between the buildings.

Keywords: building simulation, environmental impacts, life cycle assessment, life cycle energy analysis, residential buildings

Procedia PDF Downloads 474
22954 Supply Chains Resilience within Machine-Made Rug Producers in Iran

Authors: Malihe Shahidan, Azin Madhi, Meisam Shahbaz

Abstract:

In recent decades, the role of supply chains in sustaining businesses and establishing their superiority in the market has been under focus. The realization of the goals and strategies of a business enterprise is largely dependent on the cooperation of the chain, including suppliers, distributors, retailers, etc. Supply chains can potentially be disrupted by both internal and external factors. In this paper, resilience strategies have been identified and analyzed in three levels: sourcing, producing, and distributing by considering economic depression as a current risk factor for the machine-made rugs industry. In this study, semi-structured interviews for data gathering and thematic analysis for data analysis are applied. Supply chain data has been gathered from seven rug factories before and after the economic depression through semi-structured interviews. The identified strategies were derived from literature review and validated by collecting data from a group of eighteen industry and university experts, and the results were analyzed using statistical tests. Finally, the outsourcing of new products and products in the new market, the development and completion of the product portfolio, the flexibility in the composition and volume of products, the expansion of the market to price-sensitive, direct sales, and disintermediation have been determined as strategies affecting supply chain resilience of machine-made rugs' industry during an economic depression.

Keywords: distribution, economic depression, machine-made rug, outsourcing, production, sourcing, supply chain, supply chain resilience

Procedia PDF Downloads 162
22953 Wake Effects of Wind Turbines and Its Impacts on Power Curve Measurements

Authors: Sajan Antony Mathew, Bhukya Ramdas

Abstract:

Abstract—The impetus of wind energy deployment over the last few decades has seen potential sites being harvested very actively for wind farm development. Due to the scarce availability of highly potential sites, the turbines are getting more optimized in its location wherein minimum spacing between the turbines are resorted without comprising on the optimization of its energy yield. The optimization of the energy yield from a wind turbine is achieved by effective micrositing techniques. These time-tested techniques which are applied from site to site on terrain conditions that meet the requirements of the International standard for power performance measurements of wind turbines result in the positioning of wind turbines for optimized energy yields. The international standard for Power Curve Measurements has rules of procedure and methodology to evaluate the terrain, obstacles and sector for measurements. There are many challenges at the sites for complying with the requirements for terrain, obstacles and sector for measurements. Studies are being attempted to carry out these measurements within the scope of the international standard as various other procedures specified in alternate standards or the integration of LIDAR for Power Curve Measurements are in the nascent stage. The paper strives to assist in the understanding of the fact that if positioning of a wind turbine at a site is based on an optimized output, then there are no wake effects seen on the power curve of an adjacent wind turbine. The paper also demonstrates that an invalid sector for measurements could be used in the analysis in alteration to the requirement as per the international standard for power performance measurements. Therefore the paper strives firstly to demonstrate that if a wind turbine is optimally positioned, no wake effects are seen and secondly the sector for measurements in such a case could include sectors which otherwise would have to be excluded as per the requirements of International standard for power performance measurements.

Keywords: micrositing, optimization, power performance, wake effects

Procedia PDF Downloads 461
22952 Programming Language Extension Using Structured Query Language for Database Access

Authors: Chapman Eze Nnadozie

Abstract:

Relational databases constitute a very vital tool for the effective management and administration of both personal and organizational data. Data access ranges from a single user database management software to a more complex distributed server system. This paper intends to appraise the use a programming language extension like structured query language (SQL) to establish links to a relational database (Microsoft Access 2013) using Visual C++ 9 programming language environment. The methodology used involves the creation of tables to form a database using Microsoft Access 2013, which is Object Linking and Embedding (OLE) database compliant. The SQL command is used to query the tables in the database for easy extraction of expected records inside the visual C++ environment. The findings of this paper reveal that records can easily be accessed and manipulated to filter exactly what the user wants, such as retrieval of records with specified criteria, updating of records, and deletion of part or the whole records in a table.

Keywords: data access, database, database management system, OLE, programming language, records, relational database, software, SQL, table

Procedia PDF Downloads 187
22951 Impact of Climate Variation on Natural Vegetations and Human Lives in Thar Desert, Pakistan

Authors: Sujo Meghwar, Zulfqar Ali laghari, Kanji Harijan, Muhib Ali Lagari, G. M. Mastoi, Ali Mohammad Rind

Abstract:

Thar Desert is the most populous Desert of the world. Climate variation in Thar Desert has induced an increase in the magnitude of drought. The variation in climate variation has caused a decrease in natural vegetations. Some plant species are eliminated forever. We have applied the SPI (standardized precipitation index) climate model to investigate the drought induced by climate change. We have gathered the anthropogenic response through a developed questionnaire. The data was analyzed in SPSS version 18. The met-data of two meteorological station elaborated by the time series has suggested an increase in temperature from 1-2.5 centigrade, the decrease in rain fall rainfall from 5-25% and reduction in humidity from 5-12 mm in the 20th century. The anthropogenic responses indicate high impact of climate change on human life and vegetations. Triangle data, we have collected, gives a new insight into the understanding of an association between climate change, drought and human activities.

Keywords: Thar desert, human impact, vegetations, temperature, rainfall, humidity

Procedia PDF Downloads 404
22950 Cytotoxic, Antimicrobial and Antiviral Activities of Acovenoside A: A Cardenolide Isolated from an Egyptian Cultivar of Acokanthera spectabilis Leaves

Authors: Howaida I. Abd-Alla, Amal Z. Hassan, Maha Soltan, Atef G. Hanna, Mounir M. El-Safty

Abstract:

Acokanthera oblongifolia (Apocynaceae) is used for treatment of several infection diseases and is a well-known cardiac glycoside-containing plant. The infusion of their leaves is gargled to treat tonsillitis and is used medicinally to treat snakebites. The total cardiac glycosides content in the leaves was determined by referring to gitoxigenin as a reference compound. Two triterpenes, lup-20(29)-en-3β-ol (1) and oleanolic acid (2); two cardenolides, acovenoside A (3) and acobioside A (4) were isolated from the ethyl acetate extract. Their structures were determined on the basis of spectral analysis. Major constituents isolated from this species were evaluated for cytotoxicity against normal lung cell line (Wi38) and antimicrobial activities against Gram-positive (two strains) and Gram-negative bacteria (four strains), yeast-like fungi (two strains) and fungi (five strains). The minimum inhibitory concentration (MIC) of the compounds was determined using broth microdilution method. Their viral inhibitory effects against avian influenza virus type A (AI-H5N1) and Newcastle disease virus (NDV) in specific pathogen free (SPF) embryonated chicken eggs (ECE), chicken embryo fibroblasts (CEF) and Vero cells were evaluated. The cardenolide (3) showed viral inhibitory effects against AI-H5N1 and NDV in SPF ECE. The two cardenolides isolated have shown potent cytotoxicity against Vero cells. Compound (3) showed potent anti-Gram-negative bacteria activity. These results suggested that acovenoside A might be promising for future antiviral and antimicrobial drug design.

Keywords: Acokanthera, AI-H5N1, Cardenolides, NDV, SPF-ECE, VERO, Wi38 , Microbe

Procedia PDF Downloads 178
22949 Measures of Phylogenetic Support for Phylogenomic and the Whole Genomes of Two Lungfish Restate Lungfish and Origin of Land Vertebrates

Authors: Yunfeng Shan, Xiaoliang Wang, Youjun Zhou

Abstract:

Whole-genome data from two lungfish species, along with other species, present a valuable opportunity to reassess the longstanding debate regarding the evolutionary relationships among tetrapods, lungfishes, and coelacanths. However, the use of bootstrap support has become outdated for large-scale phylogenomic data. Without robust phylogenetic support, the phylogenetic trees become meaningless. Therefore, it is necessary to re-evaluate the phylogenies of tetrapods, lungfishes, and coelacanths using novel measures of phylogenetic support specifically designed for phylogenomic data, as the previous phylogenies were based on 100% bootstrap support. Our findings consistently provide strong evidence favoring lungfish as the closest living relative of tetrapods. This conclusion is based on high gene support confidence with confidence intervals exceeding 95%, high internode certainty, and high gene concordance factor. The evidence stems from two datasets containing recently deciphered whole genomes of two lungfish species, as well as five previous datasets derived from lungfish transcriptomes. These results yield fresh insights into the three hypotheses regarding the phylogenies of tetrapods, lungfishes, and coelacanths. Importantly, these hypotheses are not mere conjectures but are substantiated by a significant number of genes. Analyzing real biological data further demonstrates that the inclusion of additional taxa diminishes the number of orthologues and leads to more diverse tree topologies. Consequently, gene trees and species trees may not be identical even when whole-genome sequencing data is utilized. However, it is worth noting that many gene trees can accurately reflect the species tree if an appropriate number of taxa, typically ranging from six to ten, are sampled. Therefore, it is crucial to carefully select the number of taxa and an appropriate outgroup while excluding fast-evolving taxa as outgroups to mitigate the adverse effects of long-branch attraction (LBA) and achieve an accurate reconstruction of the species tree. This is particularly important as more whole-genome sequencing data becomes available.

Keywords: gene support confidence (GSC), origin of land vertebrates, coelacanth, two whole genomes of lungfishes, confidence intervals

Procedia PDF Downloads 87
22948 Big Data for Local Decision-Making: Indicators Identified at International Conference on Urban Health 2017

Authors: Dana R. Thomson, Catherine Linard, Sabine Vanhuysse, Jessica E. Steele, Michal Shimoni, Jose Siri, Waleska Caiaffa, Megumi Rosenberg, Eleonore Wolff, Tais Grippa, Stefanos Georganos, Helen Elsey

Abstract:

The Sustainable Development Goals (SDGs) and Urban Health Equity Assessment and Response Tool (Urban HEART) identify dozens of key indicators to help local decision-makers prioritize and track inequalities in health outcomes. However, presentations and discussions at the International Conference on Urban Health (ICUH) 2017 suggested that additional indicators are needed to make decisions and policies. A local decision-maker may realize that malaria or road accidents are a top priority. However, s/he needs additional health determinant indicators, for example about standing water or traffic, to address the priority and reduce inequalities. Health determinants reflect the physical and social environments that influence health outcomes often at community- and societal-levels and include such indicators as access to quality health facilities, access to safe parks, traffic density, location of slum areas, air pollution, social exclusion, and social networks. Indicator identification and disaggregation are necessarily constrained by available datasets – typically collected about households and individuals in surveys, censuses, and administrative records. Continued advancements in earth observation, data storage, computing and mobile technologies mean that new sources of health determinants indicators derived from 'big data' are becoming available at fine geographic scale. Big data includes high-resolution satellite imagery and aggregated, anonymized mobile phone data. While big data are themselves not representative of the population (e.g., satellite images depict the physical environment), they can provide information about population density, wealth, mobility, and social environments with tremendous detail and accuracy when combined with population-representative survey, census, administrative and health system data. The aim of this paper is to (1) flag to data scientists important indicators needed by health decision-makers at the city and sub-city scale - ideally free and publicly available, and (2) summarize for local decision-makers new datasets that can be generated from big data, with layperson descriptions of difficulties in generating them. We include SDGs and Urban HEART indicators, as well as indicators mentioned by decision-makers attending ICUH 2017.

Keywords: health determinant, health outcome, mobile phone, remote sensing, satellite imagery, SDG, urban HEART

Procedia PDF Downloads 210