Search results for: intelligent green energy management system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30901

Search results for: intelligent green energy management system

27331 Optimizing Coal Yard Management Using Discrete Event Simulation

Authors: Iqbal Felani

Abstract:

A Coal-Fired Power Plant has some integrated facilities to handle coal from three separated coal yards to eight units power plant’s bunker. But nowadays the facilities are not reliable enough for supporting the system. Management planned to invest some facilities to increase the reliability. They also had a plan to make single spesification of coal used all of the units, called Single Quality Coal (SQC). This simulation would compare before and after improvement with two scenarios i.e First In First Out (FIFO) and Last In First Out (LIFO). Some parameters like stay time, reorder point and safety stock is determined by the simulation. Discrete event simulation based software, Flexsim 5.0, is used to help the simulation. Based on the simulation, Single Quality Coal with FIFO scenario has the shortest staytime with 8.38 days.

Keywords: Coal Yard Management, Discrete event simulation First In First Out, Last In First Out.

Procedia PDF Downloads 664
27330 An Investigation on MgAl₂O₄ Based Mould System in Investment Casting Titanium Alloy

Authors: Chen Yuan, Nick Green, Stuart Blackburn

Abstract:

The investment casting process offers a great freedom of design combined with the economic advantage of near net shape manufacturing. It is widely used for the production of high value precision cast parts in particularly in the aerospace sector. Various combinations of materials have been used to produce the ceramic moulds, but most investment foundries use a silica based binder system in conjunction with fused silica, zircon, and alumino-silicate refractories as both filler and coarse stucco materials. However, in the context of advancing alloy technologies, silica based systems are struggling to keep pace, especially when net-shape casting titanium alloys. Study has shown that the casting of titanium based alloys presents considerable problems, including the extensive interactions between the metal and refractory, and the majority of metal-mould interaction is due to reduction of silica, present as binder and filler phases, by titanium in the molten state. Cleaner, more refractory systems are being devised to accommodate these changes. Although yttria has excellent chemical inertness to titanium alloy, it is not very practical in a production environment combining high material cost, short slurry life, and poor sintering properties. There needs to be a cost effective solution to these issues. With limited options for using pure oxides, in this work, a silica-free magnesia spinel MgAl₂O₄ was used as a primary coat filler and alumina as a binder material to produce facecoat in the investment casting mould. A comparison system was also studied with a fraction of the rare earth oxide Y₂O₃ adding into the filler to increase the inertness. The stability of the MgAl₂O₄/Al₂O₃ and MgAl₂O₄/Y₂O₃/Al₂O₃ slurries was assessed by tests, including pH, viscosity, zeta-potential and plate weight measurement, and mould properties such as friability were also measured. The interaction between the face coat and titanium alloy was studied by both a flash re-melting technique and a centrifugal investment casting method. The interaction products between metal and mould were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). The depth of the oxygen hardened layer was evaluated by micro hardness measurement. Results reveal that introducing a fraction of Y₂O₃ into magnesia spinel can significantly increase the slurry life and reduce the thickness of hardened layer during centrifugal casting.

Keywords: titanium alloy, mould, MgAl₂O₄, Y₂O₃, interaction, investment casting

Procedia PDF Downloads 109
27329 Exergetic and Life Cycle Assessment Analyses of Integrated Biowaste Gasification-Combustion System: A Study Case

Authors: Anabel Fernandez, Leandro Rodriguez-Ortiz, Rosa RodríGuez

Abstract:

Due to the negative impact of fossil fuels, renewable energies are promising sources to limit global temperature rise and damage to the environment. Also, the development of technology is focused on obtaining energetic products from renewable sources. In this study, a thermodynamic model including Exergy balance and a subsequent Life Cycle Assessment (LCA) were carried out for four subsystems of the integrated gasification-combustion of pinewood. Results of exergy analysis and LCA showed the process feasibility in terms of exergy efficiency and global energy efficiency of the life cycle (GEELC). Moreover, the energy return on investment (EROI) index was calculated. The global exergy efficiency resulted in 67 %. For pretreatment, reaction, cleaning, and electric generation subsystems, the results were 85, 59, 87, and 29 %, respectively. Results of LCA indicated that the emissions from the electric generation caused the most damage to the atmosphere, water, and soil. GEELC resulted in 31.09 % for the global process. This result suggested the environmental feasibility of an integrated gasification-combustion system. EROI resulted in 3.15, which determinates the sustainability of the process.

Keywords: exergy analysis, life cycle assessment (LCA), renewability, sustainability

Procedia PDF Downloads 206
27328 Green Sustainability Using Radio Frequency Identification: Technology-Organization-Environment Perspective Using Two Case Studies

Authors: Rebecca Angeles

Abstract:

This qualitative case study seeks to understand and explain the deployment of radio frequency identification (RFID) systems in two countries (i.e. in Taiwan for the adoption of electric scooters and in Finland for supporting glass bottle recycling) using the 'Technology-Organization-Environment' theoretical framework. This study also seeks to highlight the relevance and importance of pursuing environmental sustainability in firms and in society in general due to the social urgency of the issues involved.

Keywords: environmental sustainability, radio frequency identification, technology-organization-environment framework, RFID system implementation, case study, content analysis

Procedia PDF Downloads 440
27327 Inspiring Woman: The Emotional Intelligence Leadership of Khadijah Bint Khuwaylid

Authors: Eman S. Soliman, Sana Hawamdeh, Najmus S. Mahfooz

Abstract:

Purpose: The purpose of this paper was to examine various components of applied emotional intelligence as demonstrated in the leadership style of Khadijah Bint Khuwaylid in pre and post-Islamic society. Methodology: The research used a qualitative research method, specifically historical and ethnographic techniques. Data collection included both primary and secondary sources. Data from sources were analyzed to document the use of emotional intelligent leadership behaviors throughout Khadijah Bint Khuwaylid leadership experience from 596 A.D. to 621 A.D. Findings: Demonstration of four cornerstones of emotional intelligence which are self-awareness, self-management, social awareness and relationship management. Apply them on khadejah Bint Khuwaylid leadership style reveal that she possess main behavioral competences in the form of emotionally self-aware, self-.confidence, adaptability, empathy and influence. Conclusions: Khadijah Bint Khuwaylid serves as a historical model of effective leadership that included the use of emotional intelligence in her leadership behavior. The inclusion of the effective portion of the brain created a successful leadership style that can be learned by present day and future leadership. The recommendations for future leaders are to include the use of emotionally self-aware and self-confidence, adaptability, empathy and influence as components of leadership. This will then demonstrate in a leadership a basic knowledge and understanding of feelings, the keenness to be emotionally open with others, the ability to prototype beliefs and values, and the use of emotions in future communications, vision and progress.

Keywords: emotional intelligence, leadership, Khadijah Bint Khuwaylid, women

Procedia PDF Downloads 272
27326 Investigation into the Effectiveness of Bacillus Mucilaginosus in Liberation of Platinum Group Metals Locked in Silicates

Authors: Nokubonga G. Zulu, Bongephiwe M. Thethwayo, Mapilane S. Madiba, Peter A. Olubambi

Abstract:

In South Africa, PGMs’ metallurgy industry is now leaned on the Upper Group 2 (UG2) reef for the beneficiation of 4PGEs (Platinum, Palladium, Rhodium, and Ruthenium). The current effective beneficiation method is direct froth flotation which uses the hydrophobicity of liberated valuables minerals to carefully float them while hydrophilic gangue minerals report to the residue. PGMs are known to be associated with base metal sulphides which are hydrophobic; however, approximately 25% of PGMs from UG2 are associated with hydrophilic silicates, which results in high PGMs grade in the flotation residue. Further, the smallest size in which UG2 PGMs occur is approximately 9 microns which demands high grinding for liberation, imposing energy and cost implications. The use of Bacillus mucilaginosus to liberate PGMs using Bio-leaching of PGMs bearing Silicates is a promising cost-effective, energy-saving, and green solution to liberate PGMs locked in silicates. This is due to the ability of Bacillus mucilaginosus to generate extracellular polysaccharides (EPS) that are responsible for the leaching of silicate minerals. The bioleaching is done at a laboratory beaker using a cultivated Bacillus mucilaginosus as a lixiviant. The bioleaching residue is expected to have a reduced particle size due to silicate consumption, which reduces the need and cost associated with a secondary milling circuit. Moreover, the grade of the bioleaching product is increased since the silicates (gangue minerals) are consumed by Bacillus mucilaginosus; this serves as a pre-concentration step. This paper discusses an alternative liberation and pre-concentrating technique of PGMs that are associated with silicates using Bacillus mucilaginosus leaching to dissolve silicates.

Keywords: Bacillus mucilaginosus, bio-leaching of PGMs bearing silicates, liberation of PGMs, pre-concentration of PGMs

Procedia PDF Downloads 125
27325 Blood Ketones as a Point of Care Testing in Paediatric Emergencies

Authors: Geetha Jayapathy, Lakshmi Muthukrishnan, Manoj Kumar Reddy Pulim , Radhika Raman

Abstract:

Introduction: Ketones are the end products of fatty acid metabolism and a source of energy for vital organs such as the brain, heart and skeletal muscles. Ketones are produced in excess when glucose is not available as a source of energy or it cannot be utilized as in diabetic ketoacidosis. Children admitted in the emergency department often have starvation ketosis which is not clinically manifested. Decision on admission of children to the emergency room with subtle signs can be difficult at times. Point of care blood ketone testing can be done at the bedside even in a primary level care setting to supplement and guide us in our management decisions. Hence this study was done to explore the utility of this simple bedside parameter as a supplement in assessing pediatric patients presenting to the emergency department. Objectives: To estimate blood ketones of children admitted in the emergency department. To analyze the significance of blood ketones in various disease conditions. Methods: Blood ketones using point of care testing instrument (ABOTTprecision Xceed Pro meters) was done in patients getting admitted in emergency room and in out-patients (through sample collection centre). Study population: Children aged 1 month to 18 years were included in the study. 250 cases (In-patients) and 250 controls (out-patients) were collected. Study design: Prospective observational study. Data on details of illness and physiological status were documented. Blood ketones were compared between the two groups and all in patients were categorized into various system groups and analysed. Results: Mean blood ketones were high in in-patients ranging from 0 to 7.2, with a mean of 1.28 compared to out-patients ranging from 0 to 1.9 with a mean of 0.35. This difference was statistically significant with a p value < 0.001. In-patients with shock (mean of 4.15) and diarrheal dehydration (mean of 1.85) had a significantly higher blood ketone values compared to patients with other system involvement. Conclusion: Blood ketones were significantly high (above the normal range) in pediatric patients who are sick requiring admission. Patients with various forms of shock had very high blood ketone values as found in diabetic ketoacidosis. Ketone values in diarrheal dehydration were moderately high correlating to the degree of dehydration.

Keywords: admission, blood ketones, paediatric emergencies, point of care testing

Procedia PDF Downloads 204
27324 New Kinetic Effects in Spatial Distribution of Electron Flux and Excitation Rates in Glow Discharge Plasmas in Middle and High Pressures

Authors: Kirill D. Kapustin, Mikhail B. Krasilnikov, Anatoly A. Kudryavtsev

Abstract:

Physical formation mechanisms of differential electron fluxes is high pressure positive column gas discharge are discussed. It is shown that the spatial differential fluxes of the electrons are directed both inward and outward depending on the energy relaxation law. In some cases the direction of energy differential flux at intermediate energies (5-10eV) in whole volume, except region near the wall, appeared to be down directed, so electron in this region dissipate more energy than gain from axial electric field. Paradoxical behaviour of electron flux in spatial-energy space is presented.

Keywords: plasma kinetics, electron distribution function, excitation and radiation rates, local and nonlocal EDF

Procedia PDF Downloads 395
27323 Techno Economic Analysis of CAES Systems Integrated into Gas-Steam Combined Plants

Authors: Coriolano Salvini

Abstract:

The increasing utilization of renewable energy sources for electric power production calls for the introduction of energy storage systems to match the electric demand along the time. Although many countries are pursuing as a final goal a “decarbonized” electrical system, in the next decades the traditional fossil fuel fed power plant still will play a relevant role in fulfilling the electric demand. Presently, such plants provide grid ancillary services (frequency control, grid balance, reserve, etc.) by adapting the output power to the grid requirements. An interesting option is represented by the possibility to use traditional plants to improve the grid storage capabilities. The present paper is addressed to small-medium size systems suited for distributed energy storage. The proposed Energy Storage System (ESS) is based on a Compressed Air Energy Storage (CAES) integrated into a Gas-Steam Combined Cycle (GSCC) or a Gas Turbine based CHP plants. The systems can be incorporated in an ex novo built plant or added to an already existing one. To avoid any geological restriction related to the availability of natural compressed air reservoirs, artificial storage is addressed. During the charging phase, electric power is absorbed from the grid by an electric driven intercooled/aftercooled compressor. In the course of the discharge phase, the compressed stored air is sent to a heat transfer device fed by hot gas taken upstream the Heat Recovery Steam Generator (HRSG) and subsequently expanded for power production. To maximize the output power, a staged reheated expansion process is adopted. The specific power production related to the kilogram per second of exhaust gas used to heat the stored air is two/three times larger than that achieved if the gas were used to produce steam in the HRSG. As a result, a relevant power augmentation is attained with respect to normal GSCC plant operations without additional use of fuel. Therefore, the excess of output power can be considered “fuel free” and the storage system can be compared to “pure” ESSs such as electrochemical, pumped hydro or adiabatic CAES. Representative cases featured by different power absorption, production capability, and storage capacity have been taken into consideration. For each case, a technical optimization aimed at maximizing the storage efficiency has been carried out. On the basis of the resulting storage pressure and volume, number of compression and expansion stages, air heater arrangement and process quantities found for each case, a cost estimation of the storage systems has been performed. Storage efficiencies from 0.6 to 0.7 have been assessed. Capital costs in the range of 400-800 €/kW and 500-1000 €/kWh have been estimated. Such figures are similar or lower to those featuring alternative storage technologies.

Keywords: artificial air storage reservoir, compressed air energy storage (CAES), gas steam combined cycle (GSCC), techno-economic analysis

Procedia PDF Downloads 209
27322 Impact of Knowledge Management on Learning Organizations

Authors: Gunmala Suri

Abstract:

The purpose of this study was to investigate the relationship between various dimensions of Knowledge Management and Learning Organizations. On the basis of the dimensions of Learning Organization, Hypothesis were formulated. Knowledge Management (KM) is taken as the independent variable and Learning Organization (LO) as a dependent variable. KM had 5 dimensions and LO had 7. For this study, a total of 92 participants took part and answered the questionnaire. The respondents were selected using Judgemental and Snowball sampling. The respondents were from SMEs in and around Chandigarh. SPSS was used to for the data analysis purposes. The results showed that the dimensions of KM had a positive influence on the dimensions of LO. The hypothesis were accepted.

Keywords: knowledge management leadership, knowledge management, learning organization, knowledge management culture

Procedia PDF Downloads 411
27321 Overcoming the Problems Affecting Drip Irrigation System through the Design of an Efficient Filtration and Flushing System

Authors: Stephen A. Akinlabi, Esther T. Akinlabi

Abstract:

The drip irrigation system is one of the important areas that affect the livelihood of farmers directly. The use of drip irrigation system has been the most efficient system compared to the other types of irrigations systems because the drip irrigation helps to save water and increase the productivity of crops. But like any other system, it can be considered inefficient when the filters and the emitters get clogged while in operation. The efficiency of the entire system is reduced when the emitters are clogged and blocked. This consequently impact and affect the farm operations which may result in scarcity of farm products and increase the demand. This design work focuses on how to overcome some of the challenges affecting drip irrigation system through the design of an efficient filtration and flushing system.

Keywords: drip irrigation system, filters, soil texture, mechanical engineering design, analysis

Procedia PDF Downloads 376
27320 Fluorescing Aptamer-Gold Nanoparticle Complex for the Sensitive Detection of Bisphenol A

Authors: Eunsong Lee, Gae Baik Kim, Young Pil Kim

Abstract:

Bisphenol A (BPA) is one of the endocrine disruptors (EDCs), which have been suspected to be associated with reproductive dysfunction and physiological abnormality in human. Since the BPA has been widely used to make plastics and epoxy resins, the leach of BPA from the lining of plastic products has been of major concern, due to its environmental or human exposure issues. The simple detection of BPA based on the self-assembly of aptamer-mediated gold nanoparticles (AuNPs) has been reported elsewhere, yet the detection sensitivity still remains challenging. Here we demonstrate an improved AuNP-based sensor of BPA by using fluorescence-combined AuNP colorimetry in order to overcome the drawback of traditional AuNP sensors. While the anti-BPA aptamer (full length or truncated ssDNA) triggered the self-assembly of unmodified AuNP (citrate-stabilized AuNP) in the presence of BPA at high salt concentrations, no fluorescence signal was observed by the subsequent addition of SYBR Green, due to a small amount of free anti-BPA aptamer. In contrast, the absence of BPA did not cause the self-assembly of AuNPs (no color change by salt-bridged surface stabilization) and high fluorescence signal by SYBP Green, which was due to a large amount of free anti-BPA aptamer. As a result, the quantitative analysis of BPA was achieved using the combination of absorption of AuNP with fluorescence intensity of SYBR green as a function of BPA concentration, which represented more improved detection sensitivity (as low as 1 ppb) than did in the AuNP colorimetric analysis. This method also enabled to detect high BPA in water-soluble extracts from thermal papers with high specificity against BPS and BPF. We suggest that this approach will be alternative for traditional AuNP colorimetric assays in the field of aptamer-based molecular diagnosis.

Keywords: bisphenol A, colorimetric, fluoroscence, gold-aptamer nanobiosensor

Procedia PDF Downloads 183
27319 Investigation of the Corrosion Inhibition Mechanism of Tagetes erecta Extract for Mild Steel in Nitric Acid: Gravimetric Studies

Authors: Selvam Noyel Victoria, Kavita Yadav, Manivannan Ramachandran

Abstract:

The extract of Tagetes erecta (marigold flower) was used as a green corrosion inhibitor for mild steel (MS) in nitric acid medium. The weight loss measurements were performed to understand the inhibition mechanism. The effect of temperature on the behaviour of mild steel corrosion without and with inhibitor was studied. The temperature studies revealed that the activation energy increased from 12 kJ/mol to 28.8 kJ/mol with the addition of 500 ppm inhibitor concentration. The thermodynamic analysis and the adsorption isotherm studies revealed that the molecules of inhibitor show physical adsorption on the surface of mild steel. Based on weight loss measurements, adsorption of the inhibitor on the surface of mild steel follows Langmuir isotherm.

Keywords: Tagetes erecta, corrosion, adsorption, inhibitor

Procedia PDF Downloads 241
27318 Innovative Power Engineering in a Selected Rural Commune

Authors: Pawel Sowa, Joachim Bargiel

Abstract:

This paper presents modern solutions of distributed generation in rural communities aiming at the improvement of energy and environmental security, as well as power supply reliability to important customers (e.g. health care, sensitive consumer required continuity). Distributed sources are mainly gas and biogas cogeneration units, as well as wind and photovoltaic sources. Some examples of their applications in a selected Silesian community are given.

Keywords: energy security, mini energy centres , power engineering, power supply reliability

Procedia PDF Downloads 296
27317 Tram Track Deterioration Modeling

Authors: Mohammad Yousefikia, Sara Moridpour, Ehsan Mazloumi

Abstract:

Perceiving track geometry deterioration decisively influences the optimization of track maintenance operations. The effective management of this deterioration and increasingly utilized system with limited financial resources is a significant challenge. This paper provides a review of degradation models relevant for railroad tracks. Furthermore, due to the lack of long term information on the condition development of tram infrastructures, presents the methodology which will be used to derive degradation models from the data of Melbourne tram network.

Keywords: deterioration modeling, asset management, railway, tram

Procedia PDF Downloads 373
27316 Effective Energy Saving of a Large Building through Multiple Approaches

Authors: Choo Hong Ang

Abstract:

The most popular approach to save energy for large commercial buildings in Malaysia is to replace the existing chiller plant of high kW/ton to one of lower kW/ton. This approach, however, entails large capital outlay with a long payment period of up to 7 years. This paper shows that by using multiple approaches, other than replacing the existing chiller plant, an energy saving of up to 20 %, is possible. The main methodology adopted was to identify and then plugged all heat ingress paths into a building, including putting up glass structures to prevent mixing of internal air-conditioned air with the ambient environment, and replacing air curtains with glass doors. This methodology could save up to 10 % energy bill. Another methodology was to change fixed speed motors of air handling units (AHU) to variable speed drive (VSD) and changing escalators to motion-sensor type. Other methodologies included reducing heat load by blocking air supply to non-occupied parcels, rescheduling chiller plant operation, changing of fluorescent lights to LED lights, and conversion from tariff B to C1. A case example of Komtar, the tallest building in Penang, is given here. The total energy bill for Komtar was USD2,303,341 in 2016 but was reduced to USD 1,842,927.39 in 2018, a significant saving of USD460,413.86 or 20 %. In terms of kWh, there was a reduction from 18, 302,204.00 kWh in 2016 to 14,877,105.00 kWh in 2018, a reduction of 3,425,099.00 kWh or 18.71 %. These methodologies used were relatively low cost and the payback period was merely 24 months. With this achievement, the Komtar building was awarded champion of the Malaysian National Energy Award 2019 and second runner up of the Asean Energy Award. This experience shows that a strong commitment to energy saving is the key to effective energy saving.

Keywords: chiller plant, energy saving measures, heat ingress, large building

Procedia PDF Downloads 95
27315 Survey of Related Field for Artificial Intelligence Window Development

Authors: Young Kwon Yang, Bo Rang Park, Hyo Eun Lee, Tea Won Kim, Eun Ji Choi, Jin Chul Park

Abstract:

To develop an artificial intelligence based automatic ventilation system, recent research trends were analyzed and analyzed. This research method is as follows. In the field of architecture and window technology, the use of artificial intelligence, the existing study of machine learning model and the theoretical review of the literature were carried out. This paper collected journals such as Journal of Energy and Buildings, Journal of Renewable and Sustainable Energy Reviews, and articles published on Web-sites. The following keywords were searched for articles from 2000 to 2016. We searched for the above keywords mainly in the title, keyword, and abstract. As a result, the global artificial intelligence market is expected to grow at a CAGR of 14.0% from USD127bn in 2015 to USD165bn in 2017. Start-up investments in artificial intelligence increased from the US $ 45 million in 2010 to the US $ 310 million in 2015, and the number of investments increased from 6 to 54. Although AI is making efforts to advance to advanced countries, the level of technology is still in its infant stage. Especially in the field of architecture, artificial intelligence (AI) is very rare. Based on the data of this study, it is expected that the application of artificial intelligence and the application of architectural field will be revitalized through the activation of artificial intelligence in the field of architecture and window.

Keywords: artificial intelligence, window, fine dust, thermal comfort, ventilation system

Procedia PDF Downloads 271
27314 Thermodynamics Analysis of Transcritical HTHP Cycles Using Eco-Friendly Refrigerant and low-Grade Waste Heat Recovery: A Theoretical Evaluation

Authors: Adam Y. Sulaiman, Donal F. Cotter, Ming J. Huang, Neil J. Hewitt

Abstract:

Decarbonization of the industrial sector in developed countries has become indispensable for addressing climate change. Industrial processes including drying, distillation, and injection molding require a process heat exceeding 180°C, rendering the subcriticalHigh-Temperature heat pump(HTHP) technique unsuitable. A transcritical HTHP utilizing ecologically friendly working fluids is a highly recommended system that incorporates the features of high-energy efficiency, extended operational range, and decarbonizing the industrial sector. This paper delves into the possibility and feasibility of leveraging the HTTP system to provide up to 200°C of heat using R1233zd(E) as a working fluid. Using a steady-state model, various transcritical HTHP cycle configurations aretheoretically compared,analyzed, and evaluatedin this study. The heat transfer characteristics for the evaporator and gas cooler are investigated, as well as the cycle's energy, exergetic, and environmental performance. Using the LMTD method, the gas cooler's heat transfer coefficient, overall length, and heat transfer area were calculated. The findings indicate that the heat sink pressure level, as well as the waste heat temperature provided to the evaporator, have a significant impact on overall cycle performance. The investigation revealed the potential challenges and barriers, including the length of the gas cooler and the lubrication of the compression process. The basic transcritical HTTP cycle with additional IHX was demonstrated to be the most efficient cycle across a variety of heat source temperatures ranging from 70 to 90 °C based on theoretical energetic and exergetic performance.

Keywords: high-temperature heat pump, transcritical cycle, refrigerants, gas cooler, energy, exergy

Procedia PDF Downloads 158
27313 Control Strategy for Two-Mode Hybrid Electric Vehicle by Using Fuzzy Controller

Authors: Jia-Shiun Chen, Hsiu-Ying Hwang

Abstract:

Hybrid electric vehicles can reduce pollution and improve fuel economy. Power-split hybrid electric vehicles (HEVs) provide two power paths between the internal combustion engine (ICE) and energy storage system (ESS) through the gears of an electrically variable transmission (EVT). EVT allows ICE to operate independently from vehicle speed all the time. Therefore, the ICE can operate in the efficient region of its characteristic brake specific fuel consumption (BSFC) map. The two-mode powertrain can operate in input-split or compound-split EVT modes and in four different fixed gear configurations. Power-split architecture is advantageous because it combines conventional series and parallel power paths. This research focuses on input-split and compound-split modes in the two-mode power-split powertrain. Fuzzy Logic Control (FLC) for an internal combustion engine (ICE) and PI control for electric machines (EMs) are derived for the urban driving cycle simulation. These control algorithms reduce vehicle fuel consumption and improve ICE efficiency while maintaining the state of charge (SOC) of the energy storage system in an efficient range.

Keywords: hybrid electric vehicle, fuel economy, two-mode hybrid, fuzzy control

Procedia PDF Downloads 379
27312 Hafnium Doped Zno Nanostructures: An Eco-Friendly Synthesis for Optoelectronic Applications

Authors: Mohamed Achehboune, Mohammed Khenfouch, Issam Boukhoubza, Bakang Mothudi, Izeddine Zorkani, Anouar Jorio

Abstract:

Zinc Oxide (ZnO) nanostructures have been attracting growing interest in recent years; their optical and electrical properties make them useful as attractive and promising materials for optoelectronic applications. In this study, pure and Hafnium doped ZnO nanostructures were synthesized using a green processing method. The structural, optical and electrical properties of samples were investigated structural and optical spectroscopies and electrical measurements. The synthesis and chemical composition of pure and Hafnium doped ZnO were confirmed by SEM observation. The XRD studies of Hafnium doped ZnO demonstrate the formation of wurtzite structure with preferred c-axis orientation. Moreover, the optical and electrical properties of doped material have improved after the doping process. The experimental results obtained for our material show that Hf doped ZnO nanostructures could be a promising material in optoelectronic applications such as photovoltaic cell and light emitting diode devices.

Keywords: green synthesis, hafnium-doped-zinc oxide, nanostructures, optoelectronic

Procedia PDF Downloads 257
27311 Long-term Care Facility for the Elderly and Its Relationship with Energy Efficiency

Authors: Gabriela Sardinha Pacheco

Abstract:

In a context of elderly population growth, the need to provide high quality infrastructure and services to these people becomes even more evident. The act of designing a space dedicated to elderly people goes beyond the concept of well-being and reaches to a point of evaluating and changing the way which society sees this part of the population as well as how it can build a relationship with energy efficiency. In this context, the care facilities for elderly have an extremely important role to provide this infrastructure to the population. A common issue is that, for many times, these facilities face financial issues, and the full operation of the establishment can be impacted. The intention of this work is to develop a project in which the energy efficiency measures can be lived daily and that the residents of the institution can participate actively, directly, or indirectly in the construction of this relationship. The use of energy efficiency strategies should become a natural process when thinking about buildings as it is an essential step to provide increased well-being, climate change mitigation, and cost reduction.

Keywords: energy efficiency, environmental comfort, long-term care facility, well-being

Procedia PDF Downloads 52
27310 Test Bench Development and Functional Analysis of a Reaction Wheel for an Attitude Determination and Control System Prototype

Authors: Pablo Raul Yanyachi, Alfredo Mamani Saico, Jorch Mendoza, Wang Xinsheng

Abstract:

The Attitude Determination and Control System (ADCS) plays a pivotal role in the operation of nanosatellites such as Cubesats, managing orientation and stability during space missions. Within the ADCS, Reaction Wheels (RW) are electromechanical devices responsible for adjusting and maintaining satellite orientation through the application of kinetic moments. This study focuses on the characterization and analysis of a specific Reaction Wheel integrated into an ADCS prototype developed at the National University of San Agust´ın, Arequipa (UNSA). To achieve this, a single-axis Test Bench was constructed, where the reaction wheel consists of a brushless motor and an inertia flywheel driven by an Electronic Speed Controller (ESC). The research encompasses RW characterization, energy consumption evaluation, dynamic modeling, and control. The results have allowed us to ensure the maneuverability of ADCS prototypes while maintaining energy consumption within acceptable limits. The characterization and linearity analysis provides valuable insights for sizing and optimizing future reaction wheel prototypes for nanosatellites. This contributes to the ongoing development of aerospace technology within the scientific community at UNSA.

Keywords: test bench, nanosatellite, control, reaction wheel

Procedia PDF Downloads 89
27309 Earnings Management and Firm’s Creditworthiness

Authors: Maria A. Murtiati, Ancella A. Hermawan

Abstract:

The objective of this study is to examine whether the firm’s eligibility to get a bank loan is influenced by earnings management. The earnings management is distinguished between accruals and real earnings management. Hypothesis testing is carried out with logistic regression model using sample of 285 companies listed at Indonesian Stock Exchange in 2010. The result provides evidence that a greater magnitude in accruals earnings management increases the firm’s probability to be eligible to get bank loan. In contrast, real earnings management through abnormal cash flow and abnormal discretionary expenses decrease firm’s probability to be eligible to get bank loan, while real management through abnormal production cost increases such probability. The result of this study suggests that if the earnings management is assumed to be opportunistic purpose, the accruals based earnings management can distort the banks credit analysis using financial statements. Real earnings management has more impact on the cash flows, and banks are very concerned on the firm’s cash flow ability. Therefore, this study indicates that banks are more able to detect real earnings management, except abnormal production cost in real earning management.

Keywords: discretionary accruals, real earning management, bank loan, credit worthiness

Procedia PDF Downloads 340
27308 Determination of Unknown Radionuclides Using High Purity Germanium Detectors

Authors: O. G. Onuk, L. S. Taura, C. M. Eze, S. M. Ngaram

Abstract:

The decay chain of radioactive elements in the laboratory and the verification of natural radioactivity of the human body was investigated using the High Purity Germanium (HPGe) detector. Properties of the HPGe detectors were also investigated. The efficiency and energy resolution of HPGe detector used in the laboratory was found to be excellent. The detector was calibrated three times so as to cover a wider energy range. Also the Centroid C of the detector was found to have a linear relationship with the energies of the known gamma-rays. Using the three calibrations of the detector, the energy of an unknown radionuclide was found to follow the decay chain of thorium-232 (232Th) and it was also found that an average adult has about 2.5g Potasium-40 (40K) in the body.

Keywords: detector, efficiency, energy, radionuclides, resolution

Procedia PDF Downloads 245
27307 Life Cycle Assessment of Rare Earth Metals Production: Hotspot Analysis of Didymium Electrolysis Process

Authors: Sandra H. Fukurozaki, Andre L. N. Silva, Joao B. F. Neto, Fernando J. G. Landgraf

Abstract:

Nowadays, the rare earth (RE) metals play an important role in emerging technologies that are crucial for the decarbonisation of the energy sector. Their unique properties have led to increasing clean energy applications, such as wind turbine generators, and hybrid and electric vehicles. Despite the substantial media coverage that has recently surrounded the mining and processing of rare earth metals, very little quantitative information is available concerning their subsequent life stages, especially related to the metallic production of didymium (Nd-Pr) in fluoride molten salt system. Here we investigate a gate to gate scale life cycle assessment (LCA) of the didymium electrolysis based on three different scenarios of operational conditions. The product system is modeled with SimaPro Analyst 8.0.2 software, and IMPACT 2002+ was applied as an impact assessment tool. In order to develop a life cycle inventories built in software databases, patents, and other published sources together with energy/mass balance were utilized. Analysis indicates that from the 14 midpoint impact categories evaluated, the global warming potential (GWP) is the main contributors to the total environmental burden, ranging from 2.7E2 to 3.2E2 kg CO2eq/kg Nd-Pr. At the damage step assessment, the results suggest that slight changes in materials flows associated with enhancement of current efficiency (between 2.5% and 5%), could lead a reduction up to 12% and 15% of human health and climate change damage, respectively. Additionally, this paper highlights the knowledge gaps and future research efforts needing to understand the environmental impacts of Nd-Pr electrolysis process from the life cycle perspective.

Keywords: didymium electrolysis, environmental impacts, life cycle assessment, rare earth metals

Procedia PDF Downloads 177
27306 Survey Research Assessment for Renewable Energy Integration into the Mining Industry

Authors: Kateryna Zharan, Jan C. Bongaerts

Abstract:

Mining operations are energy intensive, and the share of energy costs in total costs is often quoted in the range of 40 %. Saving on energy costs is, therefore, a key element of any mine operator. With the improving reliability and security of renewable energy (RE) sources, and requirements to reduce carbon dioxide emissions, perspectives for using RE in mining operations emerge. These aspects are stimulating the mining companies to search for ways to substitute fossil energy with RE. Hereby, the main purpose of this study is to present the survey research assessment in matter of finding out the key issues related to the integration of RE into mining activities, based on the mining and renewable energy experts’ opinion. The purpose of the paper is to present the outcomes of a survey conducted among mining and renewable energy experts about the feasibility of RE in mining operations. The survey research has been developed taking into consideration the following categories: first of all, the mining and renewable energy experts were chosen based on the specific criteria. Secondly, they were offered a questionnaire to gather their knowledge and opinions on incentives for mining operators to turn to RE, barriers and challenges to be expected, environmental effects, appropriate business models and the overall impact of RE on mining operations. The outcomes of the survey allow for the identification of factors which favor and disfavor decision-making on the use of RE in mining operations. It concludes with a set of recommendations for further study. One of them relates to a deeper analysis of benefits for mining operators when using RE, and another one suggests that appropriate business models considering economic and environmental issues need to be studied and developed. The results of the paper will be used for developing a hybrid optimized model which might be adopted at mines according to their operation processes as well as economic and environmental perspectives.

Keywords: carbon dioxide emissions, mining industry, photovoltaic, renewable energy, survey research, wind generation

Procedia PDF Downloads 354
27305 Evolution of Floating Photovoltaic System Technology and Future Prospect

Authors: Young-Kwan Choi, Han-Sang Jeong

Abstract:

Floating photovoltaic system is a technology that combines photovoltaic power generation with floating structure. However, since floating technology has not been utilized in photovoltaic generation, there are no standardized criteria. It is separately developed and used by different installation bodies. This paper aims to discuss the change of floating photovoltaic system technology based on examples of floating photovoltaic systems installed in Korea.

Keywords: floating photovoltaic system, floating PV installation, ocean floating photovoltaic system, tracking type floating photovoltaic system

Procedia PDF Downloads 555
27304 Flow-Induced Vibration Marine Current Energy Harvesting Using a Symmetrical Balanced Pair of Pivoted Cylinders

Authors: Brad Stappenbelt

Abstract:

The phenomenon of vortex-induced vibration (VIV) for elastically restrained cylindrical structures in cross-flows is relatively well investigated. The utility of this mechanism in harvesting energy from marine current and tidal flows is however arguably still in its infancy. With relatively few moving components, a flow-induced vibration-based energy conversion device augers low complexity compared to the commonly employed turbine design. Despite the interest in this concept, a practical device has yet to emerge. It is desirable for optimal system performance to design for a very low mass or mass moment of inertia ratio. The device operating range, in particular, is maximized below the vortex-induced vibration critical point where an infinite resonant response region is realized. An unfortunate consequence of this requirement is large buoyancy forces that need to be mitigated by gravity-based, suction-caisson or anchor mooring systems. The focus of this paper is the testing of a novel VIV marine current energy harvesting configuration that utilizes a symmetrical and balanced pair of horizontal pivoted cylinders. The results of several years of experimental investigation, utilizing the University of Wollongong fluid mechanics laboratory towing tank, are analyzed and presented. A reduced velocity test range of 0 to 60 was covered across a large array of device configurations. In particular, power take-off damping ratios spanning from 0.044 to critical damping were examined in order to determine the optimal conditions and hence the maximum device energy conversion efficiency. The experiments conducted revealed acceptable energy conversion efficiencies of around 16% and desirable low flow-speed operating ranges when compared to traditional turbine technology. The potentially out-of-phase spanwise VIV cells on each arm of the device synchronized naturally as no decrease in amplitude response and comparable energy conversion efficiencies to the single cylinder arrangement were observed. In addition to the spatial design benefits related to the horizontal device orientation, the main advantage demonstrated by the current symmetrical horizontal configuration is to allow large velocity range resonant response conditions without the excessive buoyancy. The novel configuration proposed shows clear promise in overcoming many of the practical implementation issues related to flow-induced vibration marine current energy harvesting.

Keywords: flow-induced vibration, vortex-induced vibration, energy harvesting, tidal energy

Procedia PDF Downloads 143
27303 Effect of Management Compensation and Auditor Reputation on Tax Management in the Listed Banking Companies in Indonesia

Authors: Fahreza, Yudhi Herliansyah, Harnovinsah

Abstract:

This study aims to examine how management compensation and auditor reputation effect on corporate tax management in banking using a sample banking companies listed in Indonesia Stock Exchange. At first, this study examines how the influence of management compensation on the implementation of tax management that may be made by management in order to improve the performance of the company. Second, this study also examines the effect of auditor reputation conducting audit on the implementation of the tax management. The population used in this study is the banking companies listed in Indonesia Stock Exchange. The method used was purposive sampling because the samples of this study have certain criteria that are tailored to the purpose of the study. Based on purposive sampling method, the number of samples in this study is 28 samples. Hypothesis tested using multiple regression analysis. The results of this study indicate that on the 5 % significance level, management compensation significantly influenced tax management as measured using the proxy book tax gap. Other result is management compensation does not significantly affect the tax management that measured using a proxy GAAP effective tax rate. In addition the auditor's reputation does significantly influence tax management as measured using the proxy book tax gap and GAAP effective tax rate.

Keywords: tax management, management compensation, auditor reputation, corporate characteristic

Procedia PDF Downloads 298
27302 A Hybrid Classical-Quantum Algorithm for Boundary Integral Equations of Scattering Theory

Authors: Damir Latypov

Abstract:

A hybrid classical-quantum algorithm to solve boundary integral equations (BIE) arising in problems of electromagnetic and acoustic scattering is proposed. The quantum speed-up is due to a Quantum Linear System Algorithm (QLSA). The original QLSA of Harrow et al. provides an exponential speed-up over the best-known classical algorithms but only in the case of sparse systems. Due to the non-local nature of integral operators, matrices arising from discretization of BIEs, are, however, dense. A QLSA for dense matrices was introduced in 2017. Its runtime as function of the system's size N is bounded by O(√Npolylog(N)). The run time of the best-known classical algorithm for an arbitrary dense matrix scales as O(N².³⁷³). Instead of exponential as in case of sparse matrices, here we have only a polynomial speed-up. Nevertheless, sufficiently high power of this polynomial, ~4.7, should make QLSA an appealing alternative. Unfortunately for the QLSA, the asymptotic separability of the Green's function leads to high compressibility of the BIEs matrices. Classical fast algorithms such as Multilevel Fast Multipole Method (MLFMM) take advantage of this fact and reduce the runtime to O(Nlog(N)), i.e., the QLSA is only quadratically faster than the MLFMM. To be truly impactful for computational electromagnetics and acoustics engineers, QLSA must provide more substantial advantage than that. We propose a computational scheme which combines elements of the classical fast algorithms with the QLSA to achieve the required performance.

Keywords: quantum linear system algorithm, boundary integral equations, dense matrices, electromagnetic scattering theory

Procedia PDF Downloads 147