Search results for: dataset generation
4175 The Droplet Generation and Flow in the T-Shape Microchannel with the Side Wall Fluctuation
Authors: Yan Pang, Xiang Wang, Zhaomiao Liu
Abstract:
Droplet microfluidics, in which nanoliter to picoliter droplets acted as individual compartments, are common to a diverse array of applications such as analytical chemistry, tissue engineering, microbiology and drug discovery. The droplet generation in a simplified two dimension T-shape microchannel with the main channel width of 50 μm and the side channel width of 25 μm, is simulated to investigate effects of the forced fluctuation of the side wall on the droplet generation and flow. The periodic fluctuations are applied on a length of the side wall in the main channel of the T-junction with the deformation shape of the double-clamped beam acted by the uniform force, which varies with the flow time and fluctuation periods, forms and positions. The fluctuations under most of the conditions expand the distribution range of the droplet size but have a little effect on the average size, while the shape of the fixed side wall changes the average droplet size chiefly. Droplet sizes show a periodic pattern along the relative time when the fluctuation is forced on the side wall near the T-junction. The droplet emerging frequency is not varied by the fluctuation of the side wall under the same flow rate and geometry conditions. When the fluctuation period is similar with the droplet emerging period, the droplet size shows a nice stability as the no fluctuation case.Keywords: droplet generation, droplet size, flow flied, forced fluctuation
Procedia PDF Downloads 2824174 Processes of Identity Construction for Generation 1.5 Students in Canada
Authors: Timothy Mossman
Abstract:
The number of adolescent children accompanying their immigrant parents to Canada has steadily increased since the 1990s. Much of the applied linguistics literature on these so-called ‘Generation 1.5’ youth has focused on their deficiencies as academic writers in US Rhetoric and Composition and ESL contexts in higher education and the stigma of ESL in US K-12 contexts. However, the literature on Generation 1.5 students and identity in Canadian higher education is limited. This qualitative study investigates the processes of identity construction of three Generation 1.5 students studying at a university in Metro Vancouver to find out what types of identities and representations of self and other they make relevant, the meanings they attribute to their identities, and what motivates them to construct these identities. The study analyzes the accounts and experiences of the participants in interviews, focus groups, and texts and as ‘culture-in-action,’ positing that they constructed identities as social categories associated with the languages and social practices of their countries of birth, in liminal spaces among a continuum between Canada and their countries of birth, and a spectrum of related cultural representations. Ideas and beliefs associated with broader ‘macro’ social structures in Canadian society related to language, culture, legitimacy, immigration, power, distinction, and racism were shown to be transcended in and through their representations of themselves and others. Data suggest that moving to Canada caused participants to experience discontinuities between their cultures, languages, and social practices, and in some cases a conflicting sense of self. The study brings implications for finding ways to understand the complexity of immigrant students, avoid reifying and generalizing about them, and not see them as stuck-in-between or lacking.Keywords: culture-in-action, generation 1.5, identity, membership categorization analysis
Procedia PDF Downloads 1484173 Visual Overloaded on User-Generated Content by the Net Generation: Participatory Cultural Viewpoint
Authors: Hasanah Md. Amin
Abstract:
The existence of cyberspace and its growing contents is real and overwhelming. Visual as one of the properties of cyber contents is increasingly becoming more significant and popular among creator and user. The visual and aesthetic of the content is consistent with many similarities. Aesthetic, although universal, has slight differences across the world. Aesthetic power could impress, influence, and cause bias among the users. The content creator who knows how to manipulate this visuals and aesthetic expression can dominate the scenario and the user who is ‘expressive literate’ will gain much from the scenes. User who understands aesthetic will be rewarded with competence, confidence, and certainly, a personality enhanced experience in carrying out a task when participating in this chaotic but promising cyberworld. The aim of this article is to gain knowledge from related literature and research regarding User-Generated Content (UGC), which focuses on aesthetic expression by the Net generation. The objective of this preliminary study is to analyze the aesthetic expression linked to visual from the participatory cultural viewpoint looking for meaning, value, patterns, and characteristics.Keywords: visual overloaded, user-generated content, net generation, visual arts
Procedia PDF Downloads 4384172 Evaluation of Sustainable Business Model Innovation in Increasing the Penetration of Renewable Energy in the Ghana Power Sector
Authors: Victor Birikorang Danquah
Abstract:
Ghana's primary energy supply is heavily reliant on petroleum, biomass, and hydropower. Currently, Ghana gets its energy from hydropower (Akosombo and Bui), thermal power plants powered by crude oil, natural gas, and diesel, solar power, and imports from La Cote d'Ivoire. Until the early 2000s, large hydroelectric dams dominated Ghana's electricity generation. Due to unreliable weather patterns, Ghana increased its reliance on thermal power. However, thermal power contributes the highest percentage in terms of electricity generation in Ghana and is predominantly supplied by Independent Power Producers (IPPs). Ghana's electricity industry operates the corporate utility model as its business model. This model is typically' vertically integrated,' with a single corporation selling the majority of power generated by its generation assets to its retail business, which then sells the electricity to retail market consumers. The corporate utility model has a straightforward value proposition that is based on increasing the number of energy units sold. The unit volume business model drives the entire energy value chain to increase throughput, locking system users into unsustainable practices. This report uses the qualitative research approach to explore the electricity industry in Ghana. There is a need for increasing renewable energy, such as wind and solar, in electricity generation. The research recommends two critical business models for the penetration of renewable energy in Ghana's power sector. The first model is the peer-to-peer electricity trading model, which relies on a software platform to connect consumers and generators in order for them to trade energy directly with one another. The second model is about encouraging local energy generation, incentivizing optimal time-of-use behaviour, and allowing any financial gains to be shared among the community members.Keywords: business model innovation, electricity generation, renewable energy, solar energy, sustainability, wind energy
Procedia PDF Downloads 1824171 Experimental Study on Thermomechanical Properties of New-Generation ODS Alloys
Authors: O. Khalaj, B. Mašek, H. Jirková, J. Svoboda
Abstract:
By using a combination of new technologies together with an unconventional use of different types of materials, specific mechanical properties and structures of the material can be achieved. Some possibilities are enabled by a combination of powder metallurgy in the preparation of a metal matrix with dispersed stable particles achieved by mechanical alloying and hot consolidation. This paper explains the thermomechanical properties of new generation of Oxide Dispersion Strengthened alloys (ODS) within three ranges of temperature with specified deformation profiles. The results show that the mechanical properties of new ODS alloys are significantly affected by the thermomechanical treatment.Keywords: hot forming, ODS, alloys, thermomechanical, Fe-Al, Al2O3
Procedia PDF Downloads 2804170 Millennials' Career Expectations: Exploring Attitudes and Individual Differences in Croatia
Authors: Lovorka Galetić, Maja Klindžić, Ivana Načinović Braje
Abstract:
Generation Y individuals or Millennials are known for their unique views, work values and motivational needs which implies that, in order to attract and retain those individuals, activities in the area of career management should be given special attention by HRM managers. After a theoretical background on Millennials’ life and work attitudes, an empirical research on career preferences of Millennials in Croatia was described. Empirical research was conducted among 249 members of generation Y. The data analysis revealed that respondents generally perceive promotion opportunities as the most important career aspect; however, job security and work-life balance are almost as important. Furthermore, it was shown that Generation Y is not necessarily a homogenous group. More precisely, women assign greater importance than men to work-life balance and job security. Therefore, HRM managers should adapt career planning activities not only with respect to generational preferences, but individual characteristics as well.Keywords: career, individual differences, millennials, work values
Procedia PDF Downloads 3994169 Chinese Sentence Level Lip Recognition
Authors: Peng Wang, Tigang Jiang
Abstract:
The computer based lip reading method of different languages cannot be universal. At present, for the research of Chinese lip reading, whether the work on data sets or recognition algorithms, is far from mature. In this paper, we study the Chinese lipreading method based on machine learning, and propose a Chinese Sentence-level lip-reading network (CNLipNet) model which consists of spatio-temporal convolutional neural network(CNN), recurrent neural network(RNN) and Connectionist Temporal Classification (CTC) loss function. This model can map variable-length sequence of video frames to Chinese Pinyin sequence and is trained end-to-end. More over, We create CNLRS, a Chinese Lipreading Dataset, which contains 5948 samples and can be shared through github. The evaluation of CNLipNet on this dataset yielded a 41% word correct rate and a 70.6% character correct rate. This evaluation result is far superior to the professional human lip readers, indicating that CNLipNet performs well in lipreading.Keywords: lipreading, machine learning, spatio-temporal, convolutional neural network, recurrent neural network
Procedia PDF Downloads 1284168 Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification
Authors: Haonan Hu, Shuge Lei, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Jijun Tang
Abstract:
This paper focuses on the classification task of breast ultrasound images and conducts research on the reliability measurement of classification results. A dual-channel evaluation framework was developed based on the proposed inference reliability and predictive reliability scores. For the inference reliability evaluation, human-aligned and doctor-agreed inference rationals based on the improved feature attribution algorithm SP-RISA are gracefully applied. Uncertainty quantification is used to evaluate the predictive reliability via the test time enhancement. The effectiveness of this reliability evaluation framework has been verified on the breast ultrasound clinical dataset YBUS, and its robustness is verified on the public dataset BUSI. The expected calibration errors on both datasets are significantly lower than traditional evaluation methods, which proves the effectiveness of the proposed reliability measurement.Keywords: medical imaging, ultrasound imaging, XAI, uncertainty measurement, trustworthy AI
Procedia PDF Downloads 1014167 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism
Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li
Abstract:
Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.Keywords: keypoint detection, feature fusion, attention, semantic segmentation
Procedia PDF Downloads 1194166 Ecosystems: An Analysis of Generation Z News Consumption, Its Impact on Evolving Concepts and Applications in Journalism
Authors: Bethany Wood
Abstract:
The world pandemic led to a change in the way social media was used by audiences, with young people spending more hours on the platform due to lockdown. Reports by Ofcom have demonstrated that the internet is the second most popular platform for accessing news after television in the UK with social media and the internet ranked as the most popular platform to access news for those aged between 16-24. These statistics are unsurprising considering that at the time of writing, 98 percent of Generation Z (Gen Z) owned a smartphone and the subsequent ease and accessibility of social media. Technology is constantly developing and with this, its importance is becoming more prevalent with each generation: the Baby Boomers (1946-1964) consider it something useful whereas millennials (1981-1997) believe it a necessity for day to day living. Gen Z, otherwise known as the digital native, have grown up with this technology at their fingertips and social media is a norm. It helps form their identity, their affiliations and opens gateways for them to engage with news in a new way. It is a common misconception that Gen Z do not consume news, they are simply doing so in a different way to their predecessors. Using a sample of 800 18-20 year olds whilst utilising Generational theory, Actor Network Theory and the Social Shaping of Technology, this research provides a critical analyse regarding how Gen Z’s news consumption and engagement habits are developing along with technology to sculpture the future format of news and its distribution. From that perspective, allied with the empirical approach, it is possible to provide research orientated advice for the industry and even help to redefine traditional concepts of journalism.Keywords: journalism, generation z, digital, social media
Procedia PDF Downloads 864165 Optimal Parameters of Two-Color Ionizing Laser Pulses for Terahertz Generation
Authors: I. D. Laryushin, V. A. Kostin, A. A. Silaev, N. V. Vvedenskii
Abstract:
Generation of broadband intense terahertz (THz) radiation attracts reasonable interest due to various applications, such as the THz time-domain spectroscopy, the probing and control of various ultrafast processes, the THz imaging with subwavelength resolution, and many others. One of the most promising methods for generating powerful and broadband terahertz pulses is based on focusing two-color femtosecond ionizing laser pulses in gases, including ambient air. For this method, the amplitudes of terahertz pulses are determined by the free-electron current density remaining in a formed plasma after the passage of the laser pulse. The excitation of this residual current density can be treated as multi-wave mixing: Аn effective generation of terahertz radiation is possible only when the frequency ratio of one-color components in the two-color pulse is close to irreducible rational fraction a/b with small odd sum a + b. This work focuses on the optimal parameters (polarizations and intensities) of laser components for the strongest THz generation. The optimal values of parameters are found numerically and analytically with the use of semiclassical approach for calculating the residual current density. For frequency ratios close to a/(a ± 1) with natural a, the strongest THz generation is shown to take place when the both laser components have circular polarizations and equal intensities. For this optimal case, an analytical formula for the residual current density was derived. For the frequency ratios such as 2/5, the two-color ionizing pulses with circularly polarized components practically do not excite the residual current density. However, the optimal parameters correspond generally to specific elliptical (not linear) polarizations of the components and intensity ratios close to unity.Keywords: broadband terahertz radiation, ionization, laser plasma, ultrashort two-color pulses
Procedia PDF Downloads 2114164 Perspectives of Renewable Energy in 21st Century in India: Statistics and Estimation
Authors: Manoj Kumar, Rajesh Kumar
Abstract:
With the favourable geographical conditions at Indian-subcontinent, it is suitable for flourishing renewable energy. Increasing amount of dependence on coal and other conventional sources is driving the world into pollution and depletion of resources. This paper presents the statistics of energy consumption and energy generation in Indian Sub-continent, which notifies us with the increasing energy demands surpassing energy generation. With the aggrandizement in demand for energy, usage of coal has increased, since the major portion of energy production in India is from thermal power plants. The increase in usage of thermal power plants causes pollution and depletion of reserves; hence, a paradigm shift to renewable sources is inevitable. In this work, the capacity and potential of renewable sources in India are analyzed. Based on the analysis of this work, future potential of these sources is estimated.Keywords: depletion of reserves, energy consumption and generation, emmissions, global warming, renewable sources
Procedia PDF Downloads 4324163 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs
Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye
Abstract:
This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label
Procedia PDF Downloads 1294162 Adjusted LOLE and EENS Indices for the Consideration of Load Excess Transfer in Power Systems Adequacy Studies
Authors: François Vallée, Jean-François Toubeau, Zacharie De Grève, Jacques Lobry
Abstract:
When evaluating the capacity of a generation park to cover the load in transmission systems, traditional Loss of Load Expectation (LOLE) and Expected Energy not Served (EENS) indices can be used. If those indices allow computing the annual duration and severity of load non-covering situations, they do not take into account the fact that the load excess is generally shifted from one penury state (hour or quarter of an hour) to the following one. In this paper, a sequential Monte Carlo framework is introduced in order to compute adjusted LOLE and EENS indices. Practically, those adapted indices permit to consider the effect of load excess transfer on the global adequacy of a generation park, providing thus a more accurate evaluation of this quantity.Keywords: expected energy not served, loss of load expectation, Monte Carlo simulation, reliability, wind generation
Procedia PDF Downloads 4104161 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement
Authors: Ferinar Moaidi, Mahdi Moaidi
Abstract:
Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.Keywords: distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement
Procedia PDF Downloads 1434160 Association Between Grandchild Caring With Different Household Structures and Depression at Later Life: A Cross-Sectional Study in India
Authors: Papai Barman, Harihar Sahoo
Abstract:
With increasing life expectancy, urbanization, and adult out migration, elder people live without adult child and most of time responsible for grandchild caring while the care is needed for them. On this line, the current study examined the association between grandchild caring (GCC) with different household structures and depression among elderly (60+) grandparents (GP) living in India using Longitudinal Aging Study in India (LASI), 2017-18. HH structure was defined as the skipped-generation household (SGH) where GP and GC lived together without middle generation and the multi-generation household (MGH) where more than two generations lived together. GCC was defined by two categories, compulsive and non-compulsive caring. CES-D depression scale was utilized to measure GP’s mental health. Socio-economic characteristics, chronic diseases, and health behavior were controlled to get the effect of HH structure and GCC considered key explanatory variables. Bivariate analyses showed that the prevalence of elderly lived in SGH in India (2.5%). Prevalence of compulsive caring was found 16.3% in MGH and 51.1% in SGH. Prevalence of depressions was found nearly 37.1 and 49.5% among the GPs responsible for GCC in MGH and SGH, respectively. Using Biprobit and margins results, GPs lived in SGH were 0.40 times (dy/dx=0.40, p<0.001) more likely to report depression than GPs lived in MGH, given the condition on compulsive caring. Ensuring SDG goal-3, health aging, and giving more social security to the elder people responsible for caring while they are needed care at later life, the current study may improve the existing knowledge and help policy makers to make an intervention on this most vulnerable people, especially for the elderly people living in SGH and responsible for caring.Keywords: household structure, grandchild caring, skipped-generation household, multi-generation household, depression, mental health, India
Procedia PDF Downloads 704159 Three-Dimensional Unsteady Natural Convection and Entropy Generation in an Inclined Cubical Trapezoidal Cavity Subjected to Uniformly Heated Bottom Wall
Authors: Farshid Fathinia
Abstract:
Numerical computation of unsteady laminar three-dimensional natural convection and entropy generation in an inclined cubical trapezoidal air-filled cavity is performed for the first time in this work. The vertical right and left sidewalls of the cavity are maintained at constant cold temperatures. The lower wall is subjected to a constant hot temperature, while the upper one is considered insulated. Computations are performed for Rayleigh numbers varied as 103 ≤ Ra ≤ 105, while the trapezoidal cavity inclination angle is varied as 0° ≤ ϕ ≤ 180°. Prandtl number is considered constant at Pr = 0.71. The second law of thermodynamics is applied to obtain thermodynamic losses inside the cavity due to both heat transfer and fluid friction irreversibilities. The variation of local and average Nusselt numbers are presented and discussed.While, streamlines, isotherms and entropy contours are presented in both two and three-dimensional pattern. The results show that when the Rayleigh number increases, the flow patterns are changed especially in three-dimensional results and the flow circulation increases. Also, the inclination angle effect on the total entropy generation becomes insignificant when the Rayleigh number is low.Moreover, when the Rayleigh number increases the average Nusselt number increases.Keywords: transient natural convection, trapezoidal cavity, three-dimensional flow, entropy generation, second law
Procedia PDF Downloads 3504158 Management Options and Life Cycle Assessment of Municipal Solid Waste in Madinah, KSA
Authors: Abdelkader T. Ahmed, Ayed E. Alluqmani
Abstract:
The population growth in the KSA beside the increase in the urbanization level and standard of living improvement have resulted in the rapid growth of the country’s Municipal Solid Waste (MSW) generation. Municipalities are managing the MSW system in the KSA by collecting and getting rid of it by dumping it in nearest open landfill sites. Solid waste management is one of the main critical issues considered worldwide due to its significant impact on the environment and the public health. In this study, municipal solid waste (MSW) generation, composition and collection of Madinah city, as one of largest cities in KSA, were examined to provide an overview of current state of MSW management, an analysis of existing problem in MSW management, and recommendations for improving the waste treatment and management system in this area. These recommendations would be not specific to Madinah region, but also would be applied to other cities in KSA or any other regions with similar features. The trend of waste generation showed that current waste generation would be increased as much as two to three folds in 2030. Approximately 25% of total generated waste is disposed to a sanitary landfill, while 75% is sent to normal dumpsites. This study also investigated the environmental impacts of MSW through the Life Cycle Assessment (LCA) of waste generations and related processes. LCA results revealed that among the seven scenarios, recycling and composting are the best scenario for the solid waste management in Madinah and similar regions.Keywords: municipal solid waste, waste recycling and land-filling, waste management, life cycle assessment
Procedia PDF Downloads 4644157 Energy Efficient Microgrid Design with Hybrid Power Systems
Authors: Pedro Esteban
Abstract:
Today’s electrical networks, including microgrids, are evolving into smart grids. The smart grid concept brings the idea that the power comes from various sources (continuous or intermittent), in various forms (AC or DC, high, medium or low voltage, etc.), and it must be integrated into the electric power system in a smart way to guarantee a continuous and reliable supply that complies with power quality and energy efficiency standards and grid code requirements. This idea brings questions for the different players like how the required power will be generated, what kind of power will be more suitable, how to store exceeding levels for short or long-term usage, and how to combine and distribute all the different generation power sources in an efficient way. To address these issues, there has been lots of development in recent years on the field of on-grid and off-grid hybrid power systems (HPS). These systems usually combine one or more modes of electricity generation together with energy storage to ensure optimal supply reliability and high level of energy security. Hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.Keywords: microgrids, hybrid power systems, energy storage, power quality improvement
Procedia PDF Downloads 1434156 Incorporating Spatial Transcriptome Data into Ligand-Receptor Analyses to Discover Regional Activation in Cells
Authors: Eric Bang
Abstract:
Interactions between receptors and ligands are crucial for many essential biological processes, including neurotransmission and metabolism. Ligand-receptor analyses that examine cell behavior and interactions often utilize cell type-specific RNA expressions from single-cell RNA sequencing (scRNA-seq) data. Using CellPhoneDB, a public repository consisting of ligands, receptors, and ligand-receptor interactions, the cell-cell interactions were explored in a specific scRNA-seq dataset from kidney tissue and portrayed the results with dot plots and heat maps. Depending on the type of cell, each ligand-receptor pair was aligned with the interacting cell type and calculated the positori probabilities of these associations, with corresponding P values reflecting average expression values between the triads and their significance. Using single-cell data (sample kidney cell references), genes in the dataset were cross-referenced with ones in the existing CellPhoneDB dataset. For example, a gene such as Pleiotrophin (PTN) present in the single-cell data also needed to be present in the CellPhoneDB dataset. Using the single-cell transcriptomics data via slide-seq and reference data, the CellPhoneDB program defines cell types and plots them in different formats, with the two main ones being dot plots and heat map plots. The dot plot displays derived measures of the cell to cell interaction scores and p values. For the dot plot, each row shows a ligand-receptor pair, and each column shows the two interacting cell types. CellPhoneDB defines interactions and interaction levels from the gene expression level, so since the p-value is on a -log10 scale, the larger dots represent more significant interactions. By performing an interaction analysis, a significant interaction was discovered for myeloid and T-cell ligand-receptor pairs, including those between Secreted Phosphoprotein 1 (SPP1) and Fibronectin 1 (FN1), which is consistent with previous findings. It was proposed that an effective protocol would involve a filtration step where cell types would be filtered out, depending on which ligand-receptor pair is activated in that part of the tissue, as well as the incorporation of the CellPhoneDB data in a streamlined workflow pipeline. The filtration step would be in the form of a Python script that expedites the manual process necessary for dataset filtration. Being in Python allows it to be integrated with the CellPhoneDB dataset for future workflow analysis. The manual process involves filtering cell types based on what ligand/receptor pair is activated in kidney cells. One limitation of this would be the fact that some pairings are activated in multiple cells at a time, so the manual manipulation of the data is reflected prior to analysis. Using the filtration script, accurate sorting is incorporated into the CellPhoneDB database rather than waiting until the output is produced and then subsequently applying spatial data. It was envisioned that this would reveal wherein the cell various ligands and receptors are interacting with different cell types, allowing for easier identification of which cells are being impacted and why, for the purpose of disease treatment. The hope is this new computational method utilizing spatially explicit ligand-receptor association data can be used to uncover previously unknown specific interactions within kidney tissue.Keywords: bioinformatics, Ligands, kidney tissue, receptors, spatial transcriptome
Procedia PDF Downloads 1394155 On the Catalytic Combustion Behaviors of CH4 in a MCFC Power Generation System
Authors: Man Young Kim
Abstract:
Catalytic combustion is generally accepted as an environmentally preferred alternative for the generation of heat and power from fossil fuels mainly due to its advantages related to the stable combustion under very lean conditions with low emissions of NOx, CO, and UHC at temperatures lower than those occurred in conventional flame combustion. Despite these advantages, the commercial application of catalytic combustion has been delayed because of complicated reaction processes and the difficulty in developing appropriate catalysts with the required stability and durability. To develop the catalytic combustors, detailed studies on the combustion characteristics of catalytic combustion should be conducted. To the end, in current research, quantitative studies on the combustion characteristics of the catalytic combustors, with a Pd-based catalyst for MCFC power generation systems, relying on numerical simulations have been conducted. In addition, data from experimental studies of variations in outlet temperatures and fuel conversion, taken after operating conditions have been used to validate the present numerical approach. After introducing the governing equations for mass, momentum, and energy equations as well as a description of catalytic combustion kinetics, the effects of the excess air ratio, space velocity, and inlet gas temperature on the catalytic combustion characteristics are extensively investigated. Quantitative comparisons are also conducted with previous experimental data. Finally, some concluding remarks are presented.Keywords: catalytic combustion, methane, BOP, MCFC power generation system, inlet temperature, excess air ratio, space velocity
Procedia PDF Downloads 2744154 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles
Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang
Abstract:
With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.Keywords: curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering
Procedia PDF Downloads 1284153 Role of Non-Renewable and Renewable Energy for Sustainable Electricity Generation in Malaysia
Authors: Hussain Ali Bekhet, Nor Hamisham Harun
Abstract:
The main objective of this paper is to give a comprehensive review of non-renewable energy and renewable energy utilization in Malaysia, including hydropower, solar photovoltaic, biomass and biogas technologies. Malaysia mainly depends on non-renewable energy (natural gas, coal and crude oil) for electricity generation. Therefore, this paper provides a comprehensive review of the energy sector and discusses diversification of electricity generation as a strategy for providing sustainable energy in Malaysia. Energy policies and strategies to protect the non-renewable energy utilization also are highlighted, focusing in the different sources of energy available for high and sustained economic growth. Emphasis is also placed on a discussion of the role of renewable energy as an alternative source for the increase of electricity supply security. It is now evident that to achieve sustainable development through renewable energy, energy policies and strategies have to be well designed and supported by the government, industries (firms), and individual or community participation. The hope is to create a positive impact on sustainable development through renewable sources for current and future generations.Keywords: Malaysia, non-renewable energy, renewable energy, sustainable energy
Procedia PDF Downloads 4034152 Analysis of Scaling Effects on Analog/RF Performance of Nanowire Gate-All-Around MOSFET
Authors: Dheeraj Sharma, Santosh Kumar Vishvakarma
Abstract:
We present a detailed analysis of analog and radiofrequency (RF) performance with different gate lengths for nanowire cylindrical gate (CylG) gate-all-around (GAA) MOSFET. CylG GAA MOSFET not only suppresses the short channel effects (SCEs), it is also a good candidate for analog/RF device due to its high transconductance (gm) and high cutoff frequency (fT ). The presented work would be beneficial for a new generation of RF circuits and systems in a broad range of applications and operating frequency covering the RF spectrum. For this purpose, the analog/RF figures of merit for CylG GAA MOSFET is analyzed in terms of gate to source capacitance (Cgs), gate to drain capacitance (Cgd), transconductance generation factor gm = Id (where Id represents drain current), intrinsic gain, output resistance, fT, maximum frequency of oscillation (fmax) and gain bandwidth (GBW) product.Keywords: Gate-All-Around MOSFET, GAA, output resistance, transconductance generation factor, intrinsic gain, cutoff frequency, fT
Procedia PDF Downloads 3974151 DMBR-Net: Deep Multiple-Resolution Bilateral Networks for Real-Time and Accurate Semantic Segmentation
Authors: Pengfei Meng, Shuangcheng Jia, Qian Li
Abstract:
We proposed a real-time high-precision semantic segmentation network based on a multi-resolution feature fusion module, the auxiliary feature extracting module, upsampling module, and atrous spatial pyramid pooling (ASPP) module. We designed a feature fusion structure, which is integrated with sufficient features of different resolutions. We also studied the effect of side-branch structure on the network and made discoveries. Based on the discoveries about the side-branch of the network structure, we used a side-branch auxiliary feature extraction layer in the network to improve the effectiveness of the network. We also designed upsampling module, which has better results than the original upsampling module. In addition, we also re-considered the locations and number of atrous spatial pyramid pooling (ASPP) modules and modified the network structure according to the experimental results to further improve the effectiveness of the network. The network presented in this paper takes the backbone network of Bisenetv2 as a basic network, based on which we constructed a network structure on which we made improvements. We named this network deep multiple-resolution bilateral networks for real-time, referred to as DMBR-Net. After experimental testing, our proposed DMBR-Net network achieved 81.2% mIoU at 119FPS on the Cityscapes validation dataset, 80.7% mIoU at 109FPS on the CamVid test dataset, 29.9% mIoU at 78FPS on the COCOStuff test dataset. Compared with all lightweight real-time semantic segmentation networks, our network achieves the highest accuracy at an appropriate speed.Keywords: multi-resolution feature fusion, atrous convolutional, bilateral networks, pyramid pooling
Procedia PDF Downloads 1514150 Comparison of Entropy Coefficient and Internal Resistance of Two (Used and Fresh) Cylindrical Commercial Lithium-Ion Battery (NCR18650) with Different Capacities
Authors: Sara Kamalisiahroudi, Zhang Jianbo, Bin Wu, Jun Huang, Laisuo Su
Abstract:
The temperature rising within a battery cell depends on the level of heat generation, the thermal properties and the heat transfer around the cell. The rising of temperature is a serious problem of Lithium-Ion batteries and the internal resistance of battery is the main reason for this heating up, so the heat generation rate of the batteries is an important investigating factor in battery pack design. The delivered power of a battery is directly related to its capacity, decreases in the battery capacity means the growth of the Solid Electrolyte Interface (SEI) layer which is because of the deposits of lithium from the electrolyte to form SEI layer that increases the internal resistance of the battery. In this study two identical cylindrical Lithium-Ion (NCR18650)batteries from the same company with noticeable different in capacity (a fresh and a used battery) were compared for more focusing on their heat generation parameters (entropy coefficient and internal resistance) according to Brandi model, by utilizing potentiometric method for entropy coefficient and EIS method for internal resistance measurement. The results clarify the effect of capacity difference on cell electrical (R) and thermal (dU/dT) parameters. It can be very noticeable in battery pack design for its Safety.Keywords: heat generation, Solid Electrolyte Interface (SEI), potentiometric method, entropy coefficient
Procedia PDF Downloads 4734149 Discrete Group Search Optimizer for the Travelling Salesman Problem
Authors: Raed Alnajjar, Mohd Zakree, Ahmad Nazri
Abstract:
In this study, we apply Discrete Group Search Optimizer (DGSO) for solving Traveling Salesman Problem (TSP). The DGSO is a nature inspired optimization algorithm that imitates the animal behavior, especially animal searching behavior. The proposed DGSO uses a vector representation and some discrete operators, such as destruction, construction, differential evolution, swap and insert. The TSP is a well-known hard combinatorial optimization problem, which seeks to find the shortest path among numbers of cities. The performance of the proposed DGSO is evaluated and tested on benchmark instances which listed in LIBTSP dataset. The experimental results show that the performance of the proposed DGSO is comparable with the other methods in the state of the art for some instances. The results show that DGSO outperform Ant Colony System (ACS) in some instances whilst outperform other metaheuristic in most instances. In addition to that, the new results obtained a number of optimal solutions and some best known results. DGSO was able to obtain feasible and good quality solution across all dataset. Procedia PDF Downloads 3244148 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method
Authors: Dangut Maren David, Skaf Zakwan
Abstract:
Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.Keywords: prognostics, data-driven, imbalance classification, deep learning
Procedia PDF Downloads 1744147 Integer Programming-Based Generation of Difficulty Level for a Racing Game
Authors: Sangchul Kim, Dosaeng Park
Abstract:
It is one of the important design issues to provide various levels of difficulty in order to suit the skillfulness of an individual. In this paper we propose an integer programming-based method for selecting a mixture of challenges for a racing game that meet a given degree of difficulty. The proposed method can also be used to dynamically adjust the difficulty of the game during the progression of playing. By experiments, it is shown that our method performs well enough to generate games with various degrees of difficulty that match the perception of players.Keywords: level generation, level adjustment, racing game, ip
Procedia PDF Downloads 3744146 Creating a Safe Learning Environment Based on the Experiences and Perceptions of a Millennial Generation
Authors: E. Kempen, M. J. Labuschagne, M. P. Jama
Abstract:
There is evidence that any learning experience should happen in a safe learning environment as students then will interact, experiment, and construct new knowledge. However, little is known about the specific elements required to create a safe learning environment for the millennial generation, especially in optometry education. This study aimed to identify the specific elements that will contribute to a safe learning environment for the millennial generation of optometry students. Methods: An intrinsic qualitative case study was undertaken with undergraduate students from the Department of Optometry at the University of the Free State, South Africa. An open-ended questionnaire survey was completed after the application of nine different teaching-learning methods based on the experiential learning cycle. A total number of 307 questionnaires were analyzed. Two focus group interviews were also conducted to provide additional data to supplement the data and ensure the triangulation of data. Results: Important elements based on the opinions, feelings, and perceptions of student respondents were analyzed. Students feel safe in an environment with which they are familiar, and when they are familiar with each other, the educators, and the surroundings. Small-group learning also creates a safe and familiar environment. Both these elements create an environment where they feel safe to ask questions. Students value an environment where they are able to learn without influencing their marks or disadvantaging the patients. They enjoy learning from their peers, but also need personal contact with educators. Elements such as consistency and an achievable objective also were also analyzed. Conclusion: The findings suggest that to respond to the real need of this generation of students, insight must be gained in students’ perceptions to identify their needs and the learning environment to optimize learning pedagogies. With the implementation of these personalized elements, optometry students will be able to take responsibility and accountability for their learning.Keywords: experiences and perceptions, safe learning environment, millennial generation, recommendation for optometry education
Procedia PDF Downloads 137