Search results for: dynamic positioning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4340

Search results for: dynamic positioning

830 Metal-Based Deep Eutectic Solvents for Extractive Desulfurization of Fuels: Analysis from Molecular Dynamics Simulations

Authors: Aibek Kukpayev, Dhawal Shah

Abstract:

Combustion of sour fuels containing high amount of sulfur leads to the formation of sulfur oxides, which adversely harm the environment and has a negative impact on human health. Considering this, several legislations have been imposed to bring down the sulfur content in fuel to less than 10 ppm. In recent years, novel deep eutectic solvents (DESs) have been developed to achieve deep desulfurization, particularly to extract thiophenic compounds from liquid fuels. These novel DESs, considered as analogous to ionic liquids are green, eco-friendly, inexpensive, and sustainable. We herein, using molecular dynamic simulation, analyze the interactions of metal-based DESs with model oil consisting of thiophenic compounds. The DES used consists of polyethylene glycol (PEG-200) as a hydrogen bond donor, choline chloride (ChCl) or tetrabutyl ammonium chloride (TBAC) as a hydrogen bond acceptor, and cobalt chloride (CoCl₂) as metal salt. In particular, the combination of ChCl: PEG-200:CoCl₂ at a ratio 1:2:1 and the combination of TBAC:PEG-200:CoCl₂ at a ratio 1:2:0.25 were simulated, separately, with model oil consisting of octane and thiophenes at 25ᵒC and 1 bar. The results of molecular dynamics simulations were analyzed in terms of interaction energies between different components. The simulations revealed a stronger interaction between DESs/thiophenes as compared with octane/thiophenes, suggestive of an efficient desulfurization process. In addition, our analysis suggests that the choice of hydrogen bond acceptor strongly influences the efficiency of the desulfurization process. Taken together, the results also show the importance of the metal ion, although present in small amount, in the process, and the role of the polymer in desulfurization of the model fuel.

Keywords: deep eutectic solvents, desulfurization, molecular dynamics simulations, thiophenes

Procedia PDF Downloads 146
829 Development of Personal Protection Equipment for Dental Surgeon

Authors: Thi. A. D. Tran, Matthieu Arnold, Dominique Adolphe, Laurence Schcher, Guillaume Reys

Abstract:

During daily oral health cares, dental surgeons are in contact with numerous potentially infectious germs from patients' saliva and blood. In order to take into account these risks, a product development process has been unrolled to propose to the dental surgeon a personal protection equipment that is suitable with their expectations in terms of images, protection and comfort. After a consumer study, to evaluate how the users wear the garment and their expectations, specifications have been carried out and technical solutions have been developed in order to answer to the maximum of the desiderata. Thermal studies and comfort studies have been performed. The obtained results lead to define the technical solutions concerning the design of the new scrub. Three main functions have been investigated, the ergonomic aspect, the protection and the thermal comfort. In terms of ergonomic aspect, instrumented garments have been worn and pressure measurements have been done. The results highlight that a raglan shape for the sleeves has to be selected for a better dynamic comfort. Moreover, spray tests helped us to localize the potential contamination area and therefore protection devices have been placed on the garment. Concerning the thermal comfort, an I-R study was conducted in consulting room under the real working conditions; the heating zones have been detected. Based on these results, solutions have been proposed and implemented in a new gown. This new gown is currently composed of three different parts; a protective layer placed in the chest area to avoid contamination; a breathable layer placed in the back and in the armpits and a normal PET/Cotton fabric for the rest of the gown. Through the fitting tests conducted in hospital, it was obtained that the new design was highly appreciated. Some points can nevertheless be further improved. A final product will be produced based on necessary improvements.

Keywords: comfort, dentists, garment, thermal

Procedia PDF Downloads 310
828 Synthesis of a Hybrid of PEG-b-PCL and G1-PEA Dendrimer Based Six-Armed Star Polymer for Nano Delivery of Vancomycin

Authors: Calvin A. Omolo, Rahul S. Kalhapure, Mahantesh Jadhav, Sanjeev Rambharose, Chunderika Mocktar, Thirumala Govender

Abstract:

Treatment of infections is compromised by limitations of conventional dosage forms and drug resistance. Nanocarrier system is a strategy to overcome these challenges and improve therapy. Thus, the development of novel materials for drug delivery via nanocarriers is essential. The aim of the study was to synthesize a multi-arm polymer (6-mPEPEA) for enhanced activity of vancomycin (VM) against susceptible and resistant Staphylococcus aureus (MRSA). The synthesis steps of the star polymer followed reported procedures. The synthesized 6-mPEPEA was characterized by FTIR, ¹H and ¹³CNMR and MTT assays. VM loaded micelles were prepared from 6-mPEPEA and characterized for size, polydispersity index (PI) and surface charge (ZP) (Dynamic Light Scattering), morphology by TEM, drug loading (UV Spectrophotometry), drug release (dialysis bag), in vitro and in vivo efficacy against sensitive and resistant S. aureus. 6-mPEPEA was synthesized, and its structure was confirmed. MTT assays confirmed its nontoxic nature with a high cell viability (77%-85%). Unimolecular spherical micelles were prepared. Size, PI, and ZP was 52.48 ± 2.6 nm, 0.103 ± 0.047, -7.3 ± 1.3 mV, respectively and drug loading was 62.24 ± 3.8%. There was a 91% drug release from VCM-6-mPEPEA after 72 hours. In vitro antibacterial test revealed that VM-6-mPEPEA had 8 and 16-fold greater activity against S. aureus and MRSA when compared to bare VM. Further investigations using flow cytometry showed that VM-6-mPEPEA had 99.5% killing rate of MRSA at the MIC concentration. In vivo antibacterial activity revealed that treatment with VM-6-mPEPEA had a 190 and a 15-fold reduction in the MRSA load in untreated and VM treated respectively. These findings confirmed the potential of 6-mPEPEA as a promising bio-degradable nanocarrier for antibiotic delivery to improve treatment of bacterial infections.

Keywords: biosafe, MRSA, nanocarrier, resistance, unimolecular-micelles

Procedia PDF Downloads 188
827 Effect of Microstructure and Texture of Magnesium Alloy Due to Addition of Pb

Authors: Yebeen Ji, Jimin Yun, Kwonhoo Kim

Abstract:

Magnesium alloys were limited for industrial applications due to having a limited slip system and high plastic anisotropy. It has been known that specific textures were formed during processing (rolling, etc.), and These textures cause poor formability. To solve these problems, many researchers have studied controlling texture by adding rare-earth elements. However, the high cost limits their use; therefore, alternatives are needed to replace them. Although Pb addition doesn’t directly improve magnesium properties, it has been known to suppress the diffusion of other alloying elements and reduce grain boundary energy. These characteristics are similar to the additions of rare-earth elements, and a similar texture behavior is expected as well. However, there is insufficient research on this. Therefore, this study investigates the behavior of texture and microstructure development after adding Pb to magnesium. This study compared and analyzed AZ61 alloy and Mg-15wt%Pb alloy to determine the effect of adding solute elements. The alloy was hot rolled and annealed to form a single phase and initial texture. Afterward, the specimen was set to contraction and elongate parallel to the rolling surface and the rolling direction and then subjected to high-temperature plane strain compression under the conditions of 723K and 0.05/s. Microstructural analysis and texture measurements were performed by SEM-EBSD. The peak stress in the true strain-stress curve after compression was higher in AZ61, but the shape of the flow curve was similar for both alloys. For both alloys, continuous dynamic recrystallization was confirmed to occur during the compression process. The basal texture developed parallel to the compressed surface, and the pole density was lower in the Mg-15wt%Pb alloy. It is confirmed that this change in behavior is because the orientation distribution of recrystallized grains has a more random orientation compared to the parent grains when Pb is added.

Keywords: Mg, texture, Pb, DRX

Procedia PDF Downloads 49
826 Rheological Evaluation of Wall Materials and β-Carotene Loaded Microencapsules

Authors: Gargi Ghoshal, Ashay Jain, Deepika Thakur, U. S. Shivhare, O. P. Katare

Abstract:

The main objectives of this work were the rheological characterization of dispersions, emulsions at different pH used in the microcapsules preparation and the microcapsules obtain from gum arabic (A), guar gum (G), casein (C) and whey protein isolate (W) to keep β-carotene protected from degradation using the complex coacervation microencapsulation technique (CCM). The evaluation of rheological properties of dispersions, emulsions of different pH and so obtained microencapsules manifest the changes occur in the molecular structure of wall materials during the encapsulation process of β-carotene. These dispersions, emulsions of different pH and formulated microencapsules were subjected to go through various conducted experiments (flow curve test, amplitude sweep, and frequency sweep test) using controlled stress dynamic rheometer. Flow properties were evaluated as a function of apparent viscosity under steady shear rate ranging from 0.1 to 100 s-1. The frequency sweep test was conducted to determine the extent of viscosity and elasticity present in the samples at constant strain under changing angular frequency range from 0.1 to 100 rad/s at 25ºC. The dispersions and emulsion exhibited a shear thinning non-Newtonian behavior whereas microencapsules are considered as shear-thickening respectively. The apparent viscosity for dispersion, emulsions were decreased at low shear rates 20 s-1 and for microencapsules, it decreases up to ~50 s-1 besides these value, it has shown constant pattern. Oscillatory shear experiments showed a predominant viscous liquid behavior up to crossover frequencies of dispersions of C, W, A at 49.47 rad/s, 57.60 rad/s and 21.45 rad/s emulsion sample of AW at pH 5.0 it was 17.85 rad/s and GW microencapsules 61.40 rad/s respectively whereas no such crossover was found in G dispersion, emulsion with C and microencapsules still it showed more viscous behavior. Storage and loss modulus decreases with time also a shift of the crossover towards lower frequencies for A, W and C was observed respectively. However, their microencapsules showed more viscous behavior as compared to samples prior to blending.

Keywords: viscosity, gums, proteins, frequency sweep test, apparent viscosity

Procedia PDF Downloads 247
825 Computational Aided Approach for Strut and Tie Model for Non-Flexural Elements

Authors: Mihaja Razafimbelo, Guillaume Herve-Secourgeon, Fabrice Gatuingt, Marina Bottoni, Tulio Honorio-De-Faria

Abstract:

The challenge of the research is to provide engineering with a robust, semi-automatic method for calculating optimal reinforcement for massive structural elements. In the absence of such a digital post-processing tool, design office engineers make intensive use of plate modelling, for which automatic post-processing is available. Plate models in massive areas, on the other hand, produce conservative results. In addition, the theoretical foundations of automatic post-processing tools for reinforcement are those of reinforced concrete beam sections. As long as there is no suitable alternative for automatic post-processing of plates, optimal modelling and a significant improvement of the constructability of massive areas cannot be expected. A method called strut-and-tie is commonly used in civil engineering, but the result itself remains very subjective to the calculation engineer. The tool developed will facilitate the work of supporting the engineers in their choice of structure. The method implemented consists of defining a ground-structure built on the basis of the main constraints resulting from an elastic analysis of the structure and then to start an optimization of this structure according to the fully stressed design method. The first results allow to obtain a coherent return in the first network of connecting struts and ties, compared to the cases encountered in the literature. The evolution of the tool will then make it possible to adapt the obtained latticework in relation to the cracking states resulting from the loads applied during the life of the structure, cyclic or dynamic loads. In addition, with the constructability constraint, a final result of reinforcement with an orthogonal arrangement with a regulated spacing will be implemented in the tool.

Keywords: strut and tie, optimization, reinforcement, massive structure

Procedia PDF Downloads 141
824 Use Cloud-Based Watson Deep Learning Platform to Train Models Faster and More Accurate

Authors: Susan Diamond

Abstract:

Machine Learning workloads have traditionally been run in high-performance computing (HPC) environments, where users log in to dedicated machines and utilize the attached GPUs to run training jobs on huge datasets. Training of large neural network models is very resource intensive, and even after exploiting parallelism and accelerators such as GPUs, a single training job can still take days. Consequently, the cost of hardware is a barrier to entry. Even when upfront cost is not a concern, the lead time to set up such an HPC environment takes months from acquiring hardware to set up the hardware with the right set of firmware, software installed and configured. Furthermore, scalability is hard to achieve in a rigid traditional lab environment. Therefore, it is slow to react to the dynamic change in the artificial intelligent industry. Watson Deep Learning as a service, a cloud-based deep learning platform that mitigates the long lead time and high upfront investment in hardware. It enables robust and scalable sharing of resources among the teams in an organization. It is designed for on-demand cloud environments. Providing a similar user experience in a multi-tenant cloud environment comes with its own unique challenges regarding fault tolerance, performance, and security. Watson Deep Learning as a service tackles these challenges and present a deep learning stack for the cloud environments in a secure, scalable and fault-tolerant manner. It supports a wide range of deep-learning frameworks such as Tensorflow, PyTorch, Caffe, Torch, Theano, and MXNet etc. These frameworks reduce the effort and skillset required to design, train, and use deep learning models. Deep Learning as a service is used at IBM by AI researchers in areas including machine translation, computer vision, and healthcare. 

Keywords: deep learning, machine learning, cognitive computing, model training

Procedia PDF Downloads 209
823 Genetic Programming: Principles, Applications and Opportunities for Hydrological Modelling

Authors: Oluwaseun K. Oyebode, Josiah A. Adeyemo

Abstract:

Hydrological modelling plays a crucial role in the planning and management of water resources, most especially in water stressed regions where the need to effectively manage the available water resources is of critical importance. However, due to the complex, nonlinear and dynamic behaviour of hydro-climatic interactions, achieving reliable modelling of water resource systems and accurate projection of hydrological parameters are extremely challenging. Although a significant number of modelling techniques (process-based and data-driven) have been developed and adopted in that regard, the field of hydrological modelling is still considered as one that has sluggishly progressed over the past decades. This is majorly as a result of the identification of some degree of uncertainty in the methodologies and results of techniques adopted. In recent times, evolutionary computation (EC) techniques have been developed and introduced in response to the search for efficient and reliable means of providing accurate solutions to hydrological related problems. This paper presents a comprehensive review of the underlying principles, methodological needs and applications of a promising evolutionary computation modelling technique – genetic programming (GP). It examines the specific characteristics of the technique which makes it suitable to solving hydrological modelling problems. It discusses the opportunities inherent in the application of GP in water related-studies such as rainfall estimation, rainfall-runoff modelling, streamflow forecasting, sediment transport modelling, water quality modelling and groundwater modelling among others. Furthermore, the means by which such opportunities could be harnessed in the near future are discussed. In all, a case for total embracement of GP and its variants in hydrological modelling studies is made so as to put in place strategies that would translate into achieving meaningful progress as it relates to modelling of water resource systems, and also positively influence decision-making by relevant stakeholders.

Keywords: computational modelling, evolutionary algorithms, genetic programming, hydrological modelling

Procedia PDF Downloads 298
822 Characterising the Dynamic Friction in the Staking of Plain Spherical Bearings

Authors: Jacob Hatherell, Jason Matthews, Arnaud Marmier

Abstract:

Anvil Staking is a cold-forming process that is used in the assembly of plain spherical bearings into a rod-end housing. This process ensures that the bearing outer lip conforms to the chamfer in the matching rod end to produce a lightweight mechanical joint with sufficient strength to meet the pushout load requirement of the assembly. Finite Element (FE) analysis is being used extensively to predict the behaviour of metal flow in cold forming processes to support industrial manufacturing and product development. On-going research aims to validate FE models across a wide range of bearing and rod-end geometries by systematically isolating and understanding the uncertainties caused by variations in, material properties, load-dependent friction coefficients and strain rate sensitivity. The improved confidence in these models aims to eliminate the costly and time-consuming process of experimental trials in the introduction of new bearing designs. Previous literature has shown that friction coefficients do not remain constant during cold forming operations, however, the understanding of this phenomenon varies significantly and is rarely implemented in FE models. In this paper, a new approach to evaluate the normal contact pressure versus friction coefficient relationship is outlined using friction calibration charts generated via iterative FE models and ring compression tests. When compared to previous research, this new approach greatly improves the prediction of forming geometry and the forming load during the staking operation. This paper also aims to standardise the FE approach to modelling ring compression test and determining the friction calibration charts.

Keywords: anvil staking, finite element analysis, friction coefficient, spherical plain bearing, ring compression tests

Procedia PDF Downloads 205
821 Retrofitting of Asymmetric Steel Structure Equipped with Tuned Liquid Column Dampers by Nonlinear Finite Element Modeling

Authors: A. Akbarpour, M. R. Adib Ramezani, M. Zhian, N. Ghorbani Amirabad

Abstract:

One way to improve the performance of structures against of earthquake is passive control which requires no external power source. In this research, tuned liquid column dampers which are among of systems with the capability to transfer energy between various modes of vibration, are used. For the first time, a liquid column damper for vibration control structure is presented. After modeling this structure in design building software and performing the static and dynamic analysis and obtaining the necessary parameters for the design of tuned liquid column damper, the whole structure will be analyzed in finite elements software. The tuned liquid column dampers are installed on the structure and nonlinear time-history analysis is done in two cases of structures; with and without dampers. Finally the seismic behavior of building in the two cases will be examined. In this study the nonlinear time-history analysis on a twelve-story steel structure equipped with damper subject to records of earthquake including Loma Prieta, Northridge, Imperiall Valley, Pertrolia and Landers was performed. The results of comparing between two cases show that these dampers have reduced lateral displacement and acceleration of levels on average of 10%. Roof displacement and acceleration also reduced respectively 5% and 12%. Due to structural asymmetric in the plan, the maximum displacements of surrounding structures as well as twisting were studied. The results show that the dampers lead to a 10% reduction in the maximum response of structure stories surrounding points. At the same time, placing the dampers, caused to reduce twisting on the floor plan of the structure, Base shear of structure in the different earthquakes also has been reduced on the average of 6%.

Keywords: retrofitting, passive control, tuned liquid column damper, finite element analysis

Procedia PDF Downloads 413
820 An Overview of Domain Models of Urban Quantitative Analysis

Authors: Mohan Li

Abstract:

Nowadays, intelligent research technology is more and more important than traditional research methods in urban research work, and this proportion will greatly increase in the next few decades. Frequently such analyzing work cannot be carried without some software engineering knowledge. And here, domain models of urban research will be necessary when applying software engineering knowledge to urban work. In many urban plan practice projects, making rational models, feeding reliable data, and providing enough computation all make indispensable assistance in producing good urban planning. During the whole work process, domain models can optimize workflow design. At present, human beings have entered the era of big data. The amount of digital data generated by cities every day will increase at an exponential rate, and new data forms are constantly emerging. How to select a suitable data set from the massive amount of data, manage and process it has become an ability that more and more planners and urban researchers need to possess. This paper summarizes and makes predictions of the emergence of technologies and technological iterations that may affect urban research in the future, discover urban problems, and implement targeted sustainable urban strategies. They are summarized into seven major domain models. They are urban and rural regional domain model, urban ecological domain model, urban industry domain model, development dynamic domain model, urban social and cultural domain model, urban traffic domain model, and urban space domain model. These seven domain models can be used to guide the construction of systematic urban research topics and help researchers organize a series of intelligent analytical tools, such as Python, R, GIS, etc. These seven models make full use of quantitative spatial analysis, machine learning, and other technologies to achieve higher efficiency and accuracy in urban research, assisting people in making reasonable decisions.

Keywords: big data, domain model, urban planning, urban quantitative analysis, machine learning, workflow design

Procedia PDF Downloads 177
819 The Psychology of Virtual Relationships Provides Solutions to the Challenges of Online Learning: A Pragmatic Review and Case Study from the University of Birmingham, UK

Authors: Catherine Mangan, Beth Anderson

Abstract:

There has been a significant drive to use online or hybrid learning in Higher Education (HE) over recent years. HEs with a virtual presence offer their communities a range of benefits, including the potential for greater inclusivity, diversity, and collaboration; more flexible learning packages; and more engaging, dynamic content. Institutions can also experience significant challenges when seeking to extend learning spaces in this way, as can learners themselves. For example, staff members’ and learners’ digital literacy varies (as do their perceptions of technologies in use), and there can be confusion about optimal approaches to implementation. Furthermore, the speed with which HE institutions have needed to shift to fully online or hybrid models, owing to the COVID19 pandemic, has highlighted the significant barriers to successful implementation. HE environments have been shown to predict a range of organisational, academic, and experiential outcomes, both positive and negative. Much research has focused on the social aspect of virtual platforms, as well as the nature and effectiveness of the technologies themselves. There remains, however, a relative paucity of synthesised knowledge on the psychology of learners’ relationships with their institutions; specifically, how individual difference and interpersonal factors predict students’ ability and willingness to engage with novel virtual learning spaces. Accordingly, extending learning spaces remains challenging for institutions, and wholly remote courses, in particular, can experience high attrition rates. Focusing on the last five years, this pragmatic review summarises evidence from the psychological and pedagogical literature. In particular, the review highlights the importance of addressing the psychological and relational complexities of students’ shift from offline to online engagement. In doing so, it identifies considerations for HE institutions looking to deliver in this way.

Keywords: higher education, individual differences, interpersonal relationships, online learning, virtual environment

Procedia PDF Downloads 175
818 Thermomechanical Deformation Response in Cold Sprayed SiCp/Al Composites: Strengthening, Microstructure Characterization, and Thermomechanical Properties

Authors: L. Gyansah, Yanfang Shen, Jiqiang Wang, Tianying Xiong

Abstract:

SiCₚ/ pure Al composites with different SiC fractions (20 wt %, 30 wt %, and 40 wt %) were precisely cold sprayed, followed by hot axial-compression tests at deformation temperatures of 473 K to 673 K, leading to failure of specimens through routine crack propagation in their multiphase. The plastic deformation behaviour with respect to the SiCₚ contents and the deformation temperatures were studied at strain rate 1s-1.As-sprayed and post-failure specimens were analyzed by X-ray computed tomography (XCT), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Quasi-static thermomechanical testing results revealed that compressive strength (UTS = 228 MPa and 30.4 %) was the highest in the composites that was thermomechanically compressed at 473 K compared to those of the as-sprayed, while the as-sprayed exhibited a compressive strength of 182.8 MPa related to the increment in SiC fraction. Strength—plasticity synergy was promoted by dynamic recrystallization (DRX) through strengthening and refinement of the grains. The DRX degree depends relevantly on retainment of the uniformly ultrafine SiCₚ particulates, the pinning effects of the interfaces promoted by the ultrafine grain structures (UFG), and the higher deformation temperature. Reconstructed X-ray computed tomography data revealed different crack propagation mechanisms. A single-plane shear crack with multi-laminates fracture morphology yields relatively through the as-sprayed and as-deformed at 473 K deposits, while a multiphase plane shear cracks preeminently existed in high temperature deformed deposits resulting in multiphase-interface delaminations. Three pertinent strengthening mechanisms, videlicet, SiCp dispersed strengthening, refined grain strengthening, and dislocation strengthening, existed in the gradient microstructure, and their detailed contributions to the thermomechanical properties were discussed.

Keywords: cold spraying, hot deformation, deformation temperature, thermomechancal properties, SiC/Al composite

Procedia PDF Downloads 108
817 Analysis and Design of Inductive Power Transfer Systems for Automotive Battery Charging Applications

Authors: Wahab Ali Shah, Junjia He

Abstract:

Transferring electrical power without any wiring has been a dream since late 19th century. There were some advances in this area as to know more about microwave systems. However, this subject has recently become very attractive due to their practiScal systems. There are low power applications such as charging the batteries of contactless tooth brushes or implanted devices, and higher power applications such as charging the batteries of electrical automobiles or buses. In the first group of applications operating frequencies are in microwave range while the frequency is lower in high power applications. In the latter, the concept is also called inductive power transfer. The aim of the paper is to have an overview of the inductive power transfer for electrical vehicles with a special concentration on coil design and power converter simulation for static charging. Coil design is very important for an efficient and safe power transfer. Coil design is one of the most critical tasks. Power converters are used in both side of the system. The converter on the primary side is used to generate a high frequency voltage to excite the primary coil. The purpose of the converter in the secondary is to rectify the voltage transferred from the primary to charge the battery. In this paper, an inductive power transfer system is studied. Inductive power transfer is a promising technology with several possible applications. Operation principles of these systems are explained, and components of the system are described. Finally, a single phase 2 kW system was simulated and results were presented. The work presented in this paper is just an introduction to the concept. A reformed compensation network based on traditional inductor-capacitor-inductor (LCL) topology is proposed to realize robust reaction to large coupling variation that is common in dynamic wireless charging application. In the future, this type compensation should be studied. Also, comparison of different compensation topologies should be done for the same power level.

Keywords: coil design, contactless charging, electrical automobiles, inductive power transfer, operating frequency

Procedia PDF Downloads 249
816 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks

Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton

Abstract:

Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.

Keywords: modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition

Procedia PDF Downloads 156
815 Hydrodynamic Analysis of Fish Fin Kinematics of Oreochromis Niloticus Using Machine Learning and Image Processing

Authors: Paramvir Singh

Abstract:

The locomotion of aquatic organisms has long fascinated biologists and engineers alike, with fish fins serving as a prime example of nature's remarkable adaptations for efficient underwater propulsion. This paper presents a comprehensive study focused on the hydrodynamic analysis of fish fin kinematics, employing an innovative approach that combines machine learning and image processing techniques. Through high-speed videography and advanced computational tools, we gain insights into the complex and dynamic motion of the fins of a Tilapia (Oreochromis Niloticus) fish. This study was initially done by experimentally capturing videos of the various motions of a Tilapia in a custom-made setup. Using deep learning and image processing on the videos, the motion of the Caudal and Pectoral fin was extracted. This motion included the fin configuration (i.e., the angle of deviation from the mean position) with respect to time. Numerical investigations for the flapping fins are then performed using a Computational Fluid Dynamics (CFD) solver. 3D models of the fins were created, mimicking the real-life geometry of the fins. Thrust Characteristics of separate fins (i.e., Caudal and Pectoral separately) and when the fins are together were studied. The relationship and the phase between caudal and pectoral fin motion were also discussed. The key objectives include mathematical modeling of the motion of a flapping fin at different naturally occurring frequencies and amplitudes. The interactions between both fins (caudal and pectoral) were also an area of keen interest. This work aims to improve on research that has been done in the past on similar topics. Also, these results can help in the better and more efficient design of the propulsion systems for biomimetic underwater vehicles that are used to study aquatic ecosystems, explore uncharted or challenging underwater regions, do ocean bed modeling, etc.

Keywords: biomimetics, fish fin kinematics, image processing, fish tracking, underwater vehicles

Procedia PDF Downloads 89
814 Job Stress Among the Nurses of the Emergency Department of Selected Saudi Hospital

Authors: Mahmoud Abdel Hameed Shahin

Abstract:

Job demands that are incompatible with an employee's skills, resources, or needs cause unpleasant emotional and physical reactions known as job stress. Nurses offer care in hospital emergency rooms all around the world, and since they operate in such a dynamic and unpredictable setting, they are constantly under pressure. It has been discovered that job stress has harmful impacts on nurses' health as well as their capacity to handle the demands of their jobs. The purpose of this study was to evaluate the level of job stress experienced by the emergency department nurses at King Fahad Specialist Hospital in Buraidah City, Saudi Arabia. In October 2021, a cross-sectional descriptive study was conducted. 80 nurses were conveniently selected for the study, the bulk of them worked at King Fahad Specialist Hospital's emergency department. An electronic questionnaire with a sociodemographic data sheet and a job stress scale was given to the participating nurses after ethical approval was received from the Ministry of Health's representative bodies. Using SPSS Version 26, both descriptive and inferential statistics were employed to analyze and tabulate the acquired data. According to the findings, the factors that contributed to the most job stress in the clinical setting were having an excessive amount of work to do and working under arbitrary deadlines, whereas the factors that contributed to the least stress were receiving the proper recognition or rewards for good work. In the emergency room of King Fahad Specialist Hospital, nurses had a moderate level of stress (M=3.32 ± 0.567/5). Based on their experience, emergency nurses' levels of job stress varied greatly, with nurses with less than a year of experience notably experiencing the lowest levels of job stress. The amount of job stress did not differ significantly based on the emergency nurses' age, nationality, gender, marital status, position, or level of education. The causes and impact of stress on emergency nurses should be identified and alleviated by hospitals through the implementation of interventional programs.

Keywords: emergency nurses, job pressure, Qassim, Saudi Arabia, job stress

Procedia PDF Downloads 189
813 The Impact of Board Characteristics on Firm Performance: Evidence from Banking Industry in India

Authors: Manmeet Kaur, Madhu Vij

Abstract:

The Board of Directors in a firm performs the primary role of an internal control mechanism. This Study seeks to understand the relationship between internal governance and performance of banks in India. The research paper investigates the effect of board structure (proportion of nonexecutive directors, gender diversity, board size and meetings per year) on the firm performance. This paper evaluates the impact of corporate governance mechanisms on bank’s financial performance using panel data for 28 listed banks in National Stock Exchange of India for the period of 2008-2014. Returns on Asset, Return on Equity, Tobin’s Q and Net Interest Margin were used as the financial performance indicators. To estimate the relationship among governance and bank performance initially the Study uses Pooled Ordinary Least Square (OLS) Estimation and Generalized Least Square (GLS) Estimation. Then a well-developed panel Generalized Method of Moments (GMM) Estimator is developed to investigate the dynamic nature of performance and governance relationship. The Study empirically confirms that two-step system GMM approach controls the problem of unobserved heterogeneity and endogeneity as compared to the OLS and GLS approach. The result suggests that banks with small board, boards with female members, and boards that meet more frequently tend to be more efficient and subsequently have a positive impact on performance of banks. The study offers insights to policy makers interested in enhancing the quality of governance of banks in India. Also, the findings suggest that board structure plays a vital role in the improvement of corporate governance mechanism for financial institutions. There is a need to have efficient boards in banks to improve the overall health of the financial institutions and the economic development of the country.

Keywords: board of directors, corporate governance, GMM estimation, Indian banking

Procedia PDF Downloads 260
812 Alcohol Septal Ablation in a 19-Year-Old with Hypertrophic Obstructive Cardiomyopathy Patient: A Case Report

Authors: Christine Ysabelle G. Roman, Pauline Torres

Abstract:

Background: Hypertrophic cardiomyopathy is a disease of marked heterogeneity. It is a genetically determined heart disease characterized by significant myocardium hypertrophy that results in diastolic dysfunction, left ventricular outflow tract obstruction, and an increased risk of arrhythmias. The primary treatment in patients with such conditions is negative inotropic drugs, such as beta-blockers, calcium channel antagonists, and disopyramide. However, for those who remain symptomatic and need septal reduction therapy, surgical septal myectomy or alcohol septal ablation are options. Case Summary: A 19 – year old female presented in the authors’ institution with easy fatigability. The consult was done a year prior, and 2D echocardiography was requested which showed concentric left ventricular hypertrophy, asymmetrically hypertrophied interventricular septum (IVS) with the largest diameter of 3.3cm & subaortic dynamic obstruction with a maximum gradient of 47 mmHg. A repeat echo a year later showed asymmetric septal hypertrophy (IVS measuring at 3cm) with the systolic anterior motion of anterior mitral valve leaflet and left ventricular outflow tract obstruction (peak gradient of 50mmHg). The patient then underwent alcohol septal ablation and was discharged stable after four days of admission. Conclusion: Hypertrophic obstructive cardiomyopathy, a cardiovascular genetic disease, results in various patterns of left ventricular hypertrophy and abnormality of mitral valve apparatus. The patient is managed medically initially. However, despite optimal drug therapy and significant left ventricular outflow tract obstruction, significant heart failure symptoms or syncope require invasive treatment.

Keywords: hypertrophic obstructive cardiomyopathy, left ventricular outflow tract obstruction, alcohol septal ablation, alcohol

Procedia PDF Downloads 80
811 Motivation in Online Instruction

Authors: David Whitehouse

Abstract:

Some of the strengths of online teaching include flexibility, creativity, and comprehensiveness. A challenge can be motivation. How can an instructor repeating the same lessons over and over, day in and day out, year after year, maintain motivation? Enthusiasm? Does motivating the student and creating enthusiasm in class build the same things inside the instructor? The answers lie in the adoption of what I label EUQ—The Empathy and Understanding Quotient. In the online environment, students who are adults have many demands on their time: civilian careers, families (spouse, children, older parents), and sometimes even military service. Empathetic responses on the part of the instructor will lead to open and honest communication on the part of the student, which will lead to understanding on the part of the instructor and a rise in motivation in both parties. Understanding the demands can inform an instructor’s relationship with the student throughout the temporal parameters of classwork. In practicing EUQ, instructors can build motivation in their students and find internal motivation in an enhanced classroom dynamic. The presentation will look at what motivates a student to accomplish more than the minimum required and how that can lead to excellent results for an instructor’s own motivation. Through direct experience of having students give high marks on post-class surveys and via direct messaging, the presentation will focus on how applying EUQ in granting extra time, searching for intent while grading, communicating with students via Quick Notes, responses in Forums, comments in Assignments, and comments in grading areas - - - how applying these things infuses enthusiasm and energy in the instructor which drive creativity in teaching. Three primary ways of communicating with students will be given as examples. The positive response and negative response each for a Forum, an Assignment, and a Message will be explored. If there is time, participants will be invited to craft their own EUQ responses in a role playing exercise involving two common classroom scenarios—late work and plagiarism.

Keywords: education, instruction, motivation, online, teaching

Procedia PDF Downloads 171
810 Analytical Model of Multiphase Machines Under Electrical Faults: Application on Dual Stator Asynchronous Machine

Authors: Nacera Yassa, Abdelmalek Saidoune, Ghania Ouadfel, Hamza Houassine

Abstract:

The rapid advancement in electrical technologies has underscored the increasing importance of multiphase machines across various industrial sectors. These machines offer significant advantages in terms of efficiency, compactness, and reliability compared to their single-phase counterparts. However, early detection and diagnosis of electrical faults remain critical challenges to ensure the durability and safety of these complex systems. This paper presents an advanced analytical model for multiphase machines, with a particular focus on dual stator asynchronous machines. The primary objective is to develop a robust diagnostic tool capable of effectively detecting and locating electrical faults in these machines, including short circuits, winding faults, and voltage imbalances. The proposed methodology relies on an analytical approach combining electrical machine theory, modeling of magnetic and electrical circuits, and advanced signal analysis techniques. By employing detailed analytical equations, the developed model accurately simulates the behavior of multiphase machines in the presence of electrical faults. The effectiveness of the proposed model is demonstrated through a series of case studies and numerical simulations. In particular, special attention is given to analyzing the dynamic behavior of machines under different types of faults, as well as optimizing diagnostic and recovery strategies. The obtained results pave the way for new advancements in the field of multiphase machine diagnostics, with potential applications in various sectors such as automotive, aerospace, and renewable energies. By providing precise and reliable tools for early fault detection, this research contributes to improving the reliability and durability of complex electrical systems while reducing maintenance and operation costs.

Keywords: faults, diagnosis, modelling, multiphase machine

Procedia PDF Downloads 63
809 Design Approach of the Turbocompressor for Aerospace Industry

Authors: Halil Baris Cit, Mert Durmaz

Abstract:

Subsequent to the design of the compact centrifugal compressor, which is specifically intended to be used in aviation platforms, the process has been evaluated within the context of this study. A trade-off study matrix for future studies has been formed after making comparison between the design and the previous studies taking part in literature. While the power consumption of the designed compressor will be approximately 25 kW, the working fluid will be refrigerant. Properties such as thermodynamic properties and Global Warmin Potential(GWP)-Ozone Depletion Potential(ODP) Values of the fluid have been taken into consideration during the selection process of the refrigerant. Concepts NREC and ANSYS Vista CCD software have been used in the part of conceptual design, and R1233ZD has been selected as the refrigerant. Real-gas Computational Fluid Dynamic(CFD) analysis has been carried out with different cubic equations of state in the ANSYS CFX solver so as to figure out the most suitable solution method. These equations are named as “The Redlich Kwong”, “Soave Redlich Kwong”, “Augnier Redlick Kwong,” and “Peng Robinson.” By being used the mentioned solution equations in the same compressor configuration, analysis also have been carried out with two gases having different characteristics. As a result of the 12 analysis carried out with three different refrigerants—R11, R134A, and R1233zd—and four different solution equations mentioned above, the most accurate solution method has been selected by comparing the densities of the gases at different pressure and temperature points. The results have been analyzed within two titles following to the completion of the design with the selected equation. The first one is a trade-off study matrix presenting a comparison regarding the compact centrifugal compressor operating with the refrigerant to be designed. This comparison is between some dimensionless and dimensional parameters determined before the design and their values in the literature. Second one will show the differences between the actual density and the density in the design software in each real gas analysis method, along with the effects of it on the design.

Keywords: turbocompressor, refrigerant, aviation, aerospace compressor

Procedia PDF Downloads 92
808 Ecocriticism and Sustainable Development: A Study of Kamila Shamsie's a God in Every Stone

Authors: Shaista Maseeh

Abstract:

English Literature from the beginning itself has had psychological, social and environment concerns. Virgil, Shakespeare, John Milton, William Wordsworth to the most current Robert Hass have shown and proved their environmental and ecological interests as well as distress related to its loss. Pastoral literature is also one such genre that links literature with environment. Thanks to the contemporary literary theories that they successfully are relating Literature formally to the subjects other than written text. One of such literary theory is 'Ecocriticism.' It stands under the umbrella of the Economics term, Sustainable Development,' or it can also be understood as an ecological extension of it. Ecocriticism helps the reader to study the dynamic relation between literature and our degrading environment. It draws attention towards the ravaged condition of nature and animals, that how nature is exploited by human beings for their own benefit leaving nature at a repairable loss. For instance, deforestation is reducing the size of forest every year, injuring permanently flora, fauna and also the habitat of animals. This paper will study the ecological and environmental concerns in the latest novel by Pakistani British writer Kamila Shamsie, A God in every Stone (2014). The book is not only a literary masterpiece in elegant prose, but also a novel posing a lot of questions about 'nature and environment' in general and 'animals' in particular. It gives the glimpses of the interesting history of Temple of Zeus in Greece and Ancient Caria, and covers many episodes of history the Indian freedom struggle. In course of novel's narrative Kamila Shamsie poses disturbing question about environmental abuse, about how human beings are more 'beasts' than so call beasts, poor animals. She also glorifies the simplicity of past. The novel has enough instances to prove Shamsie's positive stand on saving the earth that is being more abused than used by human beings. This paper will provide an ecocritical approach to study A God in Every Stone (2014).

Keywords: animals, ecocriticism, environment, nature

Procedia PDF Downloads 429
807 Vulnerability Assessment of Healthcare Interdependent Critical Infrastructure Coloured Petri Net Model

Authors: N. Nivedita, S. Durbha

Abstract:

Critical Infrastructure (CI) consists of services and technological networks such as healthcare, transport, water supply, electricity supply, information technology etc. These systems are necessary for the well-being and to maintain effective functioning of society. Critical Infrastructures can be represented as nodes in a network where they are connected through a set of links depicting the logical relationship among them; these nodes are interdependent on each other and interact with each at other at various levels, such that the state of each infrastructure influences or is correlated to the state of another. Disruption in the service of one infrastructure nodes of the network during a disaster would lead to cascading and escalating disruptions across other infrastructures nodes in the network. The operation of Healthcare Infrastructure is one such Critical Infrastructure that depends upon a complex interdependent network of other Critical Infrastructure, and during disasters it is very vital for the Healthcare Infrastructure to be protected, accessible and prepared for a mass casualty. To reduce the consequences of a disaster on the Critical Infrastructure and to ensure a resilient Critical Health Infrastructure network, knowledge, understanding, modeling, and analyzing the inter-dependencies between the infrastructures is required. The paper would present inter-dependencies related to Healthcare Critical Infrastructure based on Hierarchical Coloured Petri Nets modeling approach, given a flood scenario as the disaster which would disrupt the infrastructure nodes. The model properties are being analyzed for the various state changes which occur when there is a disruption or damage to any of the Critical Infrastructure. The failure probabilities for the failure risk of interconnected systems are calculated by deriving a reachability graph, which is later mapped to a Markov chain. By analytically solving and analyzing the Markov chain, the overall vulnerability of the Healthcare CI HCPN model is demonstrated. The entire model would be integrated with Geographic information-based decision support system to visualize the dynamic behavior of the interdependency of the Healthcare and related CI network in a geographically based environment.

Keywords: critical infrastructure interdependency, hierarchical coloured petrinet, healthcare critical infrastructure, Petri Nets, Markov chain

Procedia PDF Downloads 529
806 Integrating Artificial Intelligence (AI) into Education-Stakeholder Engagement and ICT Practices for Complex Systems: A Governance Framework for Addressing Counseling Gaps in Higher Education

Authors: Chinyere Ori Elom, Ikechukwu Ogeze Ukeje, Chukwudum Collins Umoke

Abstract:

This paper aims to stimulate scholarly interest in AI, ICT and the existing (complex) systems trajectory- theory, practice, and aspirations within the African continent and to shed fresh light on the shortcomings of the higher education sector (HEs) through the prism of AI-driven Solutions for enhancing Guidance and Counseling and sound governance framework (SGF) in higher education modeling. It further seeks to investigate existing prospects yet to be realized in Nigerian universities by probing innovation neglect in the localities, exploring practices in the global ICT spaces neglected by Nigeria universities’ governance regimes (UGRs), and suggesting area applicability, sustainability and solution modeling in response to peculiar ‘wicked ICT-driven problems’ and or issues facing the continent as well as other universities in emerging societies. This study will adopt a mixed-method approach to collect both qualitative and quantitative data. This paper argues that it will command great relevance in the local and global university system by developing ICT relevance sustainability policy initiatives (SPIs) powered by a multi-stakeholder engagement governance model (MSEGm) that is sufficiently dynamic, eclectic and innovative to surmount complex and constantly rising challenges of the modern-developing world. Hence, it will consider diverse actors both as producers and users alike as victims and beneficiaries of common concerns in the ICT world; thereby providing pathways on how AI’s integration into education governance can significantly reduce counseling gaps, ensuring more students are attended to especially when human counselors are unavailable.

Keywords: AI-counseling solution, stakeholder engagement, university governance, higher education

Procedia PDF Downloads 16
805 Self-Healing Composites of Silicone Rubber

Authors: Anna Strakowska, Marian Zaborski

Abstract:

This abstract focuses an overview of the methods used to create self-healing silicone composites. It has been shown how incorporating of polyhedral oligomeric silsesquioxanes (POSS) molecules with acid and basic groups to silicone rubber affects the barrier properties, mechanical properties in room and reduced temperature or the influence on relaxation rates of the methylvinylsilicone rubber vulcanizates. Moreover, the presence of silsesquioxanes, their content and the way of composites preparing affect the amount of ionic bonds, as indicated by dynamic - mechanical thermal analysis (DMTA) as well as measurements of equilibrium swelling in toluene. The aim of this work was to study the influence of concentration and different functional groups types selected silsesquioxanes compounds on self-healing effect of silicone rubber and obtain elastomers with good barrier and mechanical properties. Composites based on the methylvinylsilicone rubber with fumed silica as the fillers were manufactured and studied. To obtain self-healing effect various silsesquioxanes with amino and acid groups were used. Every tested sample demonstrated the ability to the self-treatment. The most significant effect was observed for system containing amic-acid isobytyl POSS/ aminopropylisobutyl POSS. Composite with this silsesquioxanes was exhibited the best improvement of gas permeability after heal. Moreover, the addition of POSS with acid and basic groups clearly affects the mechanical properties of the vulcanizates. The most significant effect was observed for the composite material consisting of amic-acid isobytyl POSS / aminoethylaminopropylisobutyl POSS, which tensile strength was even greater than the reference vulcanizate with fumed silica. The development of autonomous self-healing materials could have an enormous influence on all industry branches from motorization to power industry. Self-repairing materials would have a massive impact on lengthening product lifetimes, increasing safety, and lowering product costs by reducing maintenance requirements.

Keywords: barrier properties, mechanical properties, POSS, self-healing composites

Procedia PDF Downloads 341
804 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction

Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage

Abstract:

Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.

Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention

Procedia PDF Downloads 71
803 Interests and Perspectives of a Psychosocial Rehabilitation Diagnosis : A Useful Tool in the Evaluation About the Potentials of Long-Term Institutionalized Chronic Patients

Authors: I. Dumand, C. Clesse, M. Decker, C. Savini, J. Lighezzolo-Alnot

Abstract:

In the landscape of French psychiatry, long-term institutionalization of patients with severe and disabling chronics disorders is common. Faced with the failures of classical reinsertion, sometimes these users are hurriedly considered as 'insortables'. However, this representation is often swayed by the current behavior of the patient observed through the clinical observation. Unfortunately, it seems that this way of proceeding can not integrate the potentialities of the institutionalized patients and their possible evolution. Therefore, in order not to make hasty conclusions about the life perspectives of these individuals, it seems essential to associate with clinical observation a psycho social rehabilitation diagnosis. Multidisciplinary, it combine all the aspects that make up the life of the subject (the life aspirations, psycho social determinants, family support, cognitive potential, symptoms ...). In this paper, we will rank these different aspects necessary prerequisites to the realization of a psycho social rehabilitation diagnosis. Then, we will specifically speak of the issue of psychological evaluation. By adopting an integrative approach combining neuro psychological tools (Grober and Buschke, Stroop, WCST, AIPSS, WAIS, Eyes test ...) and projective tools interpreted under a psycho dynamic angle (Rorschach, TAT ..) we think that we can grasp the patient in his globality. Thus, during this process we will justify the interest of combining a cognitive and a psycho affective approach, we will identify the different items assessed and their future implications on the everyday life of the users. Finally, we show that this diagnosis can give a chance to reintegration to 30% of patients considered as ''insortables''. In conclusion, we will highlight the importance of this process dear to the community psychology emphasizing in the same time the interests of this approach in terms of empowerment, recovery and quality of life.

Keywords: assessment, potentiality, psychosocial rehabilitation diagnosis, tools

Procedia PDF Downloads 372
802 Two Dimensional Numerical Analysis for the Seismic Response of the Geosynthetic-Reinforced Soil Integral Abutments

Authors: Dawei Shen, Ming Xu, Pengfei Liu

Abstract:

The joints between simply supported bridge decks and abutments need to be regularly repaired, which would greatly increase the cost during the service life of the bridge. Simply supported girder bridges suffered the most severe damage during earthquakes. Another type of bridge, the integral bridge, of which the superstructure and abutment are rigidly connected, was also used in some European countries. Because no bearings or joints exit in the integral bridge, this type of bridge could significantly reduce maintenance requirements and costs. However, conventional integral bridge usually result in high earth pressure on the abutment and surface settlement in the backfill. To solve these problems, a new type of integral bridge, geosynthetic-reinforced soil (GRS) integral bridge, was come up in recent years. This newly invented bridge has not been used in engineering practices. There was a lack of research on the seismic behavior of the conventional and new type of integral abutments. In addition, no common design code could be found for the calculation of seismic pressure of soil behind the abutment. This paper developed a dynamic constitutive model, which can consider the soil behaviors under cyclic loading. Numerical analyses of the seismic response of a full height integral bridge and GRS integral bridge were carried out using the two-dimensional numerical code, FLAC. A parametric study was also performed to investigate the soil-structure interaction. The results are presented below. The seismic responses of GRS integral bridge together with conventional simply supported bridge, GRS conventional bridge and conventional integral bridge were investigated. The results show that the GRS integral bridge holds the highest seismic stability, followed by conventional integral bridge, GRS simply supported bridge and conventional simply supported bridge. Compared with the integral bridge with 1 m thick abutments, the GRS integral bridge with 0.4 m thick abutments is subjected to a smaller bending moment, and the natural frequency and horizontal displacement remains almost the same. Geosynthetic-reinforcement will be more effective when the abutment becomes thinner or the abutment is higher.

Keywords: geosynthetic-reinforced soil integral bridge, nonlinear hysteretic model, numerical analysis, seismic response

Procedia PDF Downloads 463
801 A Method Development for Improving the Efficiency of Solid Waste Collection System Using Network Analyst

Authors: Dhvanidevi N. Jadeja, Daya S. Kaul, Anurag A. Kandya

Abstract:

Municipal Solid Waste (MSW) collection in a city is performed in less effective manner which results in the poor management of the environment and natural resources. Municipal corporation does not possess efficient waste management and recycling programs because of the complex task involving many factors. Solid waste collection system depends upon various factors such as manpower, number and size of vehicles, transfer station size, dustbin size and weight, on-road traffic, and many others. These factors affect the collection cost, energy and overall municipal tax for the city. Generally, different types of waste are scattered throughout the city in a heterogeneous way that poses changes for efficient collection of solid waste. Efficient waste collection and transportation strategy must be effectively undertaken which will include optimization of routes, volume of waste, and manpower. Being these optimized, the overall cost can be reduced as the fuel and energy requirements would be less and also the municipal waste taxes levied will be less. To carry out the optimization study of collection system various data needs to be collected from the Ahmedabad municipal corporation such as amount of waste generated per day, number of workers, collection schedule, road maps, number of transfer station, location of transfer station, number of equipment (tractors, machineries), number of zones, route of collection etc. The ArcGis Network Analyst is introduced for the best routing identification applied in municipal waste collection. The simulation consists of scenarios of visiting loading spots in the municipality of Ahmedabad, considering dynamic factors like network traffic changes, closed roads due to natural or technical causes. Different routes were selected in a particular area of Ahmedabad city, and present routes were optimized to reduce the length of the routes, by using ArcGis Network Analyst. The result indicates up to 35% length minimization in the routes.

Keywords: collection routes, efficiency, municipal solid waste, optimization

Procedia PDF Downloads 136