Search results for: upper tail dependence coefficient
815 Time-Domain Expressions for Bridge Self-Excited Aerodynamic Forces by Modified Particle Swarm Optimizer
Authors: Hao-Su Liu, Jun-Qing Lei
Abstract:
This study introduces the theory of modified particle swarm optimizer and its application in time-domain expressions for bridge self-excited aerodynamic forces. Based on the indicial function expression and the rational function expression in time-domain expression for bridge self-excited aerodynamic forces, the characteristics of the two methods, i.e. the modified particle swarm optimizer and conventional search method, are compared in flutter derivatives’ fitting process. Theoretical analysis and numerical results indicate that adopting whether the indicial function expression or the rational function expression, the fitting flutter derivatives obtained by modified particle swarm optimizer have better goodness of fit with ones obtained from experiment. As to the flutter derivatives which have higher nonlinearity, the self-excited aerodynamic forces, using the flutter derivatives obtained through modified particle swarm optimizer fitting process, are much closer to the ones simulated by the experimental. The modified particle swarm optimizer was used to recognize the parameters of time-domain expressions for flutter derivatives of an actual long-span highway-railway truss bridge with double decks at the wind attack angle of 0°, -3° and +3°. It was found that this method could solve the bounded problems of attenuation coefficient effectively in conventional search method, and had the ability of searching in unboundedly area. Accordingly, this study provides a method for engineering industry to frequently and efficiently obtain the time-domain expressions for bridge self-excited aerodynamic forces.Keywords: time-domain expressions, bridge self-excited aerodynamic forces, modified particle swarm optimizer, long-span highway-railway truss bridge
Procedia PDF Downloads 314814 An Empirical Investigation on the Dynamics of Knowledge and IT Industries in Korea
Authors: Sang Ho Lee, Tae Heon Moon, Youn Taik Leem, Kwang Woo Nam
Abstract:
Knowledge and IT inputs to other industrial production have become more important as a key factor for the competitiveness of national and regional economies, such as knowledge economies in smart cities. Knowledge and IT industries lead the industrial innovation and technical (r)evolution through low cost, high efficiency in production, and by creating a new value chain and new production path chains, which is referred as knowledge and IT dynamics. This study aims to investigate the knowledge and IT dynamics in Korea, which are analyzed through the input-output model and structural path analysis. Twenty-eight industries were reclassified into seven categories; Agriculture and Mining, IT manufacture, Non-IT manufacture, Construction, IT-service, Knowledge service, Non-knowledge service to take close look at the knowledge and IT dynamics. Knowledge and IT dynamics were analyzed through the change of input output coefficient and multiplier indices in terms of technical innovation, as well as the changes of the structural paths of the knowledge and IT to other industries in terms of new production value creation from 1985 and 2010. The structural paths of knowledge and IT explain not only that IT foster the generation, circulation and use of knowledge through IT industries and IT-based service, but also that knowledge encourages IT use through creating, sharing and managing knowledge. As a result, this paper found the empirical investigation on the knowledge and IT dynamics of the Korean economy. Knowledge and IT has played an important role regarding the inter-industrial transactional input for production, as well as new industrial creation. The birth of the input-output production path has mostly originated from the knowledge and IT industries, while the death of the input-output production path took place in the traditional industries from 1985 and 2010. The Korean economy has been in transition to a knowledge economy in the Smart City.Keywords: knowledge and IT industries, input-output model, structural path analysis, dynamics of knowledge and it, knowledge economy, knowledge city and smart city
Procedia PDF Downloads 333813 Evaluation of Internal Friction Angle in Overconsolidated Granular Soil Deposits Using P- and S-Wave Seismic Velocities
Authors: Ehsan Pegah, Huabei Liu
Abstract:
Determination of the internal friction angle (φ) in natural soil deposits is an important issue in geotechnical engineering. The main objective of this study was to examine the evaluation of this parameter in overconsolidated granular soil deposits by using the P-wave velocity and the anisotropic components of S-wave velocity (i.e., both the vertical component (SV) and the horizontal component (SH) of S-wave). To this end, seventeen pairs of P-wave and S-wave seismic refraction profiles were carried out at three different granular sites in Iran using non-invasive seismic wave methods. The acquired shot gathers were processed, from which the P-wave, SV-wave and SH-wave velocities were derived. The reference values of φ and overconsolidation ratio (OCR) in the soil deposits were measured through laboratory tests. By assuming cross-anisotropy of the soils, the P-wave and S-wave velocities were utilized to develop an equation for calculating the coefficient of lateral earth pressure at-rest (K₀) based on the theory of elasticity for a cross-anisotropic medium. In addition, to develop an equation for OCR estimation in granular geomaterials in terms of SH/SV velocity ratios, a general regression analysis was performed on the resulting information from this research incorporated with the respective data published in the literature. The calculated K₀ values coupled with the estimated OCR values were finally employed in the Mayne and Kulhawy formula to evaluate φ in granular soil deposits. The results showed that reliable values of φ could be estimated based on the seismic wave velocities. The findings of this study may be used as the appropriate approaches for economic and non-invasive determination of in-situ φ in granular soil deposits using the surface seismic surveys.Keywords: angle of internal friction, overconsolidation ratio, granular soils, P-wave velocity, SV-wave velocity, SH-wave velocity
Procedia PDF Downloads 158812 3-D Numerical Simulation of Scraped Surface Heat Exchanger with Helical Screw
Authors: Rabeb Triki, Hassene Djemel, Mounir Baccar
Abstract:
Surface scraping is a passive heat transfer enhancement technique that is directly used in scraped surface heat exchanger (SSHE). The scraping action prevents the accumulation of the product on the inner wall, which intensifies the heat transfer and avoids the formation of dead zones. SSHEs are widely used in industry for several applications such as crystallization, sterilization, freezing, gelatinization, and many other continuous processes. They are designed to deal with products that are viscous, sticky or that contain particulate matter. This research work presents a three-dimensional numerical simulation of the coupled thermal and hydrodynamic behavior within a SSHE which includes Archimedes’ screw instead of scraper blades. The finite volume Fluent 15.0 was used to solve continuity, momentum and energy equations using multiple reference frame formulation. The process fluid investigated under this study is the pure glycerin. Different geometrical parameters were studied in the case of steady, non-isothermal, laminar flow. In particular, attention is focused on the effect of the conicity of the rotor and the pitch of Archimedes’ screw on temperature and velocity distribution and heat transfer rate. Numerical investigations show that the increase of the number of turns in the screw from five to seven turns leads to amelioration of heat transfer coefficient, and the increase of the conicity of the rotor from 0.1 to 0.15 leads to an increase in the rate of heat transfer. Further studies should investigate the effect of different operating parameters (axial and rotational Reynolds number) on the hydrodynamic and thermal behavior of the SSHE.Keywords: ANSYS-Fluent, hydrodynamic behavior, scraped surface heat exchange, thermal behavior
Procedia PDF Downloads 160811 Barriers to Marital Expectation among Individuals with Hearing Impairment in Oyo State
Authors: Adebomi M. Oyewumi, Sunday Amaize
Abstract:
The study was designed to examine the barriers to marital expectations among unmarried persons with hearing impairment in Oyo State, Nigeria. Descriptive survey research design was adopted. Purposive sampling technique was used to select one hundred participants made up forty-four (44) males and fifty-six (56) females, all with varying degrees of hearing impairment. Eight research questions were raised and answered. The instrument used was Marital Expectations Scale with reliability coefficient of 0.86. Data was analyzed using descriptive statistics tools of frequency count and simple percentage as well as inferential statistics tools of T-TEST and ANOVA. The findings revealed that there was a significant relationship existing among the main identified barriers (environmental barrier, communication barrier, hearing loss, unemployment and poor sexuality education) to the marital expectations of unmarried persons with hearing impairment. The joint contribution of the independent variables (identified barriers) to the dependent variable (marital expectations) was significant, F = 5.842, P < 0.05, accounting for about 89% of the variance. The relative contribution of the identified barriers to marital expectations of unmarried persons with hearing impairment is as follows: environmental barrier (β = 0.808, t = 5.176, P < 0.05), communication barrier (β = 0.533, t = 3.305, P < 0.05), hearing loss (β = 0.550, t = 2.233, P < 0.05), unemployment (β = 0.431, t = 2.102, P < 0.05), poor sexuality education (β = 0.361, t = 1.985, P < 0.05). Environmental barrier proved to be the most potent contributor to the poor marital expectations among unmarried persons with hearing impairment. Therefore, it is recommended that society dismantles the nagging environmental barrier through positive identification with individuals suffering from hearing impairment. In this connection, members of society should change their negative attitudes and do away with all the wrong notions about the marital ability of individuals with hearing impairment.Keywords: environmental barrier, hearing impairment, marriage, marital expectations
Procedia PDF Downloads 369810 Crop Leaf Area Index (LAI) Inversion and Scale Effect Analysis from Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Data
Authors: Xiaohua Zhu, Lingling Ma, Yongguang Zhao
Abstract:
Leaf Area Index (LAI) is a key structural characteristic of crops and plays a significant role in precision agricultural management and farmland ecosystem modeling. However, LAI retrieved from different resolution data contain a scaling bias due to the spatial heterogeneity and model non-linearity, that is, there is scale effect during multi-scale LAI estimate. In this article, a typical farmland in semi-arid regions of Chinese Inner Mongolia is taken as the study area, based on the combination of PROSPECT model and SAIL model, a multiple dimensional Look-Up-Table (LUT) is generated for multiple crops LAI estimation from unmanned aerial vehicle (UAV) hyperspectral data. Based on Taylor expansion method and computational geometry model, a scale transfer model considering both difference between inter- and intra-class is constructed for scale effect analysis of LAI inversion over inhomogeneous surface. The results indicate that, (1) the LUT method based on classification and parameter sensitive analysis is useful for LAI retrieval of corn, potato, sunflower and melon on the typical farmland, with correlation coefficient R2 of 0.82 and root mean square error RMSE of 0.43m2/m-2. (2) The scale effect of LAI is becoming obvious with the decrease of image resolution, and maximum scale bias is more than 45%. (3) The scale effect of inter-classes is higher than that of intra-class, which can be corrected efficiently by the scale transfer model established based Taylor expansion and Computational geometry. After corrected, the maximum scale bias can be reduced to 1.2%.Keywords: leaf area index (LAI), scale effect, UAV-based hyperspectral data, look-up-table (LUT), remote sensing
Procedia PDF Downloads 440809 Microplastics Accumulation and Abundance Standardization for Fluvial Sediments: Case Study for the Tena River
Authors: Mishell E. Cabrera, Bryan G. Valencia, Anderson I. Guamán
Abstract:
Human dependence on plastic products has led to global pollution, with plastic particles ranging in size from 0.001 to 5 millimeters, which are called microplastics (hereafter, MPs). The abundance of microplastics is used as an indicator of pollution. However, reports of pollution (abundance of MPs) in river sediments do not consider that the accumulation of sediments and MPs depends on the energy of the river. That is, the abundance of microplastics will be underestimated if the sediments analyzed come from places where the river flows with a lot of energy, and the abundance will be overestimated if the sediment analyzed comes from places where the river flows with less energy. This bias can generate an error greater than 300% of the MPs value reported for the same river and should increase when comparisons are made between 2 rivers with different characteristics. Sections where the river flows with higher energy allow sands to be deposited and limit the accumulation of MPs, while sections, where the same river has lower energy, allow fine sediments such as clays and silts to be deposited and should facilitate the accumulation of MPs particles. That is, the abundance of MPs in the same river is underrepresented when the sediment analyzed is sand, and the abundance of MPs is overrepresented if the sediment analyzed is silt or clay. The present investigation establishes a protocol aimed at incorporating sample granulometry to calibrate MPs quantification and eliminate over- or under-representation bias (hereafter granulometric bias). A total of 30 samples were collected by taking five samples within six work zones. The slope of the sampling points was less than 8 degrees, referred to as low slope areas, according to the Van Zuidam slope classification. During sampling, blanks were used to estimate possible contamination by MPs during sampling. Samples were dried at 60 degrees Celsius for three days. A flotation technique was employed to isolate the MPs using sodium metatungstate with a density of 2 gm/l. For organic matter digestion, 30% hydrogen peroxide and Fenton were used at a ratio of 6:1 for 24 hours. The samples were stained with rose bengal at a concentration of 200 mg/L and were subsequently dried in an oven at 60 degrees Celsius for 1 hour to be identified and photographed in a stereomicroscope with the following conditions: Eyepiece magnification: 10x, Zoom magnification (zoom knob): 4x, Objective lens magnification: 0.35x for analysis in ImageJ. A total of 630 fibers of MPs were identified, mainly red, black, blue, and transparent colors, with an overall average length of 474,310 µm and an overall median length of 368,474 µm. The particle size of the 30 samples was calculated using 100 g per sample using sieves with the following apertures: 2 mm, 1 mm, 500 µm, 250 µm, 125 µm and 0.63 µm. This sieving allowed a visual evaluation and a more precise quantification of the microplastics present. At the same time, the weight of sediment in each fraction was calculated, revealing an evident magnitude: as the presence of sediment in the < 63 µm fraction increases, a significant increase in the number of MPs particles is observed.Keywords: microplastics, pollution, sediments, Tena River
Procedia PDF Downloads 73808 Design of an Innovative Geothermal Heat Pump with a PCM Thermal Storage
Authors: Emanuele Bonamente, Andrea Aquino
Abstract:
This study presents an innovative design for geothermal heat pumps with the goal of maximizing the system efficiency (COP - Coefficient of Performance), reducing the soil use (e.g. length/depth of geothermal boreholes) and initial investment costs. Based on experimental data obtained from a two-year monitoring of a working prototype implemented for a commercial building in the city of Perugia, Italy, an upgrade of the system is proposed and the performance is evaluated via CFD simulations. The prototype was designed to include a thermal heat storage (i.e. water), positioned between the boreholes and the heat pump, acting as a flywheel. Results from the monitoring campaign show that the system is still capable of providing the required heating and cooling energy with a reduced geothermal installation (approx. 30% of the standard length). In this paper, an optimization of the system is proposed, re-designing the heat storage to include phase change materials (PCMs). Two stacks of PCMs, characterized by melting temperatures equal to those needed to maximize the system COP for heating and cooling, are disposed within the storage. During the working cycle, the latent heat of the PCMs is used to heat (cool) the water used by the heat pump while the boreholes independently cool (heat) the storage. The new storage is approximately 10 times smaller and can be easily placed close to the heat pump in the technical room. First, a validation of the CFD simulation of the storage is performed against experimental data. The simulation is then used to test possible alternatives of the original design and it is finally exploited to evaluate the PCM-storage performance for two different configurations (i.e. single- and double-loop systems).Keywords: geothermal heat pump, phase change materials (PCM), energy storage, renewable energies
Procedia PDF Downloads 314807 Validity and Reliability of a Questionaire for Measuring Behaviour Change of Low Performance Employee
Authors: Hazaila Binti Hassan, Abu Yazid Bin Abu Bakar, Salleh Amat
Abstract:
This study is to get the validity and reliability of the questionnaire for behaviour change on low-performing officers. This study aimed to develop and evaluate the behaviour of low performing officers. There are 75 items in this questionnaire which involves 5 subscales, which are the 5 dimensions intended to be studied: 1st emotional stability, 2nd psycho-spiritual enhancement, 3rd social skills development, 4th cognitive and rationality improvement and 5th behavioural alignment and adjustment. There are 2 processes in this research whereby to check the validity and reliability. Both use quantitative methods. Validity content testing has been conducted to validate the behavioural change questionnaire of the low performing officers. For the face validity, 4 people are involved, two are psychologists who carried out the program and the other two are officers of the same rank, i.e. supporting officers. They are involved in correction of sentences, languages, and grammar as well as the sentence structures so that it tallies with the purpose of studies. The questionnaire underwent content validity by the experts. Five experts are appointed to attend this session, 3 are directly involved in the construction of this questionnaire and 2 others are experts from the university with a background in questionnaire development. The result shows that the content validity obtained a high coefficient of 0.745 with a minimum and maximum value of more than 0.60 which satisfies the characteristic of Content Value Ratio. The Cronbach’s alpha result is 0.867. The highest scores are the behavioural alignment and adjustment sub-scale recorded the highest value, followed by social skills development sub-scale, cognitive and rational improvements sub-scale, psycho-spiritual enhancement sub-scale, and lastly emotional stability. Therefore, both of validity and reliability result were accepted that this questionnaire is valid and reliable can be used in the study of behaviour changes of low performing officers in the civil service.Keywords: content validity, reliability, five dimension, low-performing officers, questionnaire
Procedia PDF Downloads 283806 The Impact of Socio-Economic and Type of Religion on the Behavior of Obedience among Arab-Israeli Teenagers
Authors: Sadhana Ghnayem
Abstract:
This article examines the relationship between several socio-economic and background variables of Arab-Israeli families and their effect on the conflict management style of forcing, where teenage children are expected to obey their parents without questioning. The article explores the inter-generational gap and the desire of Arab-Israeli parents to force their teenage children to obey without questioning. The independent variables include: the sex of the parent, religion (Christian or Muslim), income of the parent, years of education of the parent, and the sex of the teenage child. We use the dependent variable of “Obedience Without Questioning” that is reported twice: by each of the parents as well as by the children. We circulated a questionnaire and collected data from a sample of 180 parents and their adolescent child living in the Galilee area during 2018. In this questionnaire we asked each of the parent and his/her teenage child about whether the latter is expected to follow the instructions of the former without questioning. The outcome of this article indicates, first, that Christian-Arab families are less authoritarian than Muslims families in demanding sheer obedience from their children. Second, female parents indicate more than male parents that their teenage child indeed obeys without questioning. Third, there is a negative correlation between the variable “Income” and “Obedience without Questioning.” Yet, the regression coefficient of this variable is close zero. Fourth, there is a positive correlation between years of education and obedience reported by the children. In other words, more educated parents are more likely to demand obedience from their children. Finally, after running the regression, the study also found that the impact of the variables of religion as well as the sex of the child on the dependent variable of obedience is also significant at above 95 and 90%, respectively.Keywords: conflict, religion, conflict management style, obedience
Procedia PDF Downloads 169805 Reuse of Wastewater After Pretreatment Under Teril and Sand in Bechar City
Authors: Sara Seddiki, Maazouzi Abdelhak
Abstract:
The main objective of this modest work is to follow the physicochemical and bacteriological evolution of the wastewater from the town of Bechar subjected to purification by filtration according to various local supports, namely Sable and Terrill by reducing nuisances that undergo the receiving environment (Oued Bechar) and therefore make this water source reusable in different areas. The study first made it possible to characterize the urban wastewater of the Bechar wadi, which presents an environmental threat, thus allowing an estimation of the pollutant load, the chemical oxygen demand COD (145 mg / l) and the biological oxygen demand BOD5 (72 mg / l) revealed that these waters are less biodegradable (COD / BOD5 ratio = 0.62), have a fairly high conductivity (2.76 mS/cm), and high levels of mineral matter presented by chlorides and sulphates 390 and 596.1 mg / l respectively, with a pH of 8.1. The characterization of the sand dune (Beni Abbes) shows that quartz (97%) is the most present mineral. The granular analysis allowed us to determine certain parameters like the uniformity coefficient (CU) and the equivalent diameter, and scanning electron microscope (SEM) observations and X-ray analysis were performed. The study of filtered wastewater shows satisfactory and very encouraging treatment results, with complete elimination of total coliforms and streptococci and a good reduction of total aerobic germs in the sand and clay-sand filter. A good yield has been reported in the sand Terrill filter for the reduction of turbidity. The rates of reduction of organic matter in terms of the biological oxygen demand, in chemical oxygen demand recorded, are of the order of 60%. The elimination of sulphates is 40% for the sand filter.Keywords: urban wastewater, filtration, bacteriological and physicochemical parameters, sand, Terrill, Oued Bechar
Procedia PDF Downloads 95804 Photoswitchable and Polar-Dependent Fluorescence of Diarylethenes
Authors: Sofia Lazareva, Artem Smolentsev
Abstract:
Fluorescent photochromic materials collect strong interest due to their possible application in organic photonics such as optical logic systems, optical memory, visualizing sensors, as well as characterization of polymers and biological systems. In photochromic fluorescence switching systems the emission of fluorophore is modulated between ‘on’ and ‘off’ via the photoisomerization of photochromic moieties resulting in effective resonance energy transfer (FRET). In current work, we have studied both photochromic and fluorescent properties of several diarylethenes. It was found that coloured forms of these compounds are not fluorescent because of the efficient intramolecular energy transfer. Spectral and photochromic parameters of investigated substances have been measured in five solvents having different polarity. Quantum yields of photochromic transformation A↔B ΦA→B and ΦB→A as well as B isomer extinction coefficients were determined by kinetic method. It was found that the photocyclization reaction quantum yield of all compounds decreases with the increase of solvent polarity. In addition, the solvent polarity is revealed to affect fluorescence significantly. Increasing of the solvent dielectric constant was found to result in a strong shift of emission band position from 450 nm (nhexane) to 550 nm (DMSO and ethanol) for all three compounds. Moreover, the emission intensive in polar solvents becomes weak and hardly detectable in n-hexane. The only one exception in the described dependence is abnormally low fluorescence quantum yield in ethanol presumably caused by the loss of electron-donating properties of nitrogen atom due to the protonation. An effect of the protonation was also confirmed by the addition of concentrated HCl in solution resulting in a complete disappearance of the fluorescent band. Excited state dynamics were investigated by ultrafast optical spectroscopy methods. Kinetic curves of excited states absorption and fluorescence decays were measured. Lifetimes of transient states were calculated from the data measured. The mechanism of ring opening reaction was found to be polarity dependent. Comparative analysis of kinetics measured in acetonitrile and hexane reveals differences in relaxation dynamics after the laser pulse. The most important fact is the presence of two decay processes in acetonitrile, whereas only one is present in hexane. This fact supports an assumption made on the basis of steady-state preliminary experiments that in polar solvents occur stabilization of TICT state. Thus, results achieved prove the hypothesis of two channel mechanism of energy relaxation of compounds studied.Keywords: diarylethenes, fluorescence switching, FRET, photochromism, TICT state
Procedia PDF Downloads 677803 Exploring 1,2,4-Triazine-3(2H)-One Derivatives as Anticancer Agents for Breast Cancer: A QSAR, Molecular Docking, ADMET, and Molecular Dynamics
Authors: Said Belaaouad
Abstract:
This study aimed to explore the quantitative structure-activity relationship (QSAR) of 1,2,4-Triazine-3(2H)-one derivative as a potential anticancer agent against breast cancer. The electronic descriptors were obtained using the Density Functional Theory (DFT) method, and a multiple linear regression techniques was employed to construct the QSAR model. The model exhibited favorable statistical parameters, including R2=0.849, R2adj=0.656, MSE=0.056, R2test=0.710, and Q2cv=0.542, indicating its reliability. Among the descriptors analyzed, absolute electronegativity (χ), total energy (TE), number of hydrogen bond donors (NHD), water solubility (LogS), and shape coefficient (I) were identified as influential factors. Furthermore, leveraging the validated QSAR model, new derivatives of 1,2,4-Triazine-3(2H)-one were designed, and their activity and pharmacokinetic properties were estimated. Subsequently, molecular docking (MD) and molecular dynamics (MD) simulations were employed to assess the binding affinity of the designed molecules. The Tubulin colchicine binding site, which plays a crucial role in cancer treatment, was chosen as the target protein. Through the simulation trajectory spanning 100 ns, the binding affinity was calculated using the MMPBSA script. As a result, fourteen novel Tubulin-colchicine inhibitors with promising pharmacokinetic characteristics were identified. Overall, this study provides valuable insights into the QSAR of 1,2,4-Triazine-3(2H)-one derivative as potential anticancer agent, along with the design of new compounds and their assessment through molecular docking and dynamics simulations targeting the Tubulin-colchicine binding site.Keywords: QSAR, molecular docking, ADMET, 1, 2, 4-triazin-3(2H)-ones, breast cancer, anticancer, molecular dynamic simulations, MMPBSA calculation
Procedia PDF Downloads 97802 FT-NIR Method to Determine Moisture in Gluten Free Rice-Based Pasta during Drying
Authors: Navneet Singh Deora, Aastha Deswal, H. N. Mishra
Abstract:
Pasta is one of the most widely consumed food products around the world. Rapid determination of the moisture content in pasta will assist food processors to provide online quality control of pasta during large scale production. Rapid Fourier transform near-infrared method (FT-NIR) was developed for determining moisture content in pasta. A calibration set of 150 samples, a validation set of 30 samples and a prediction set of 25 samples of pasta were used. The diffuse reflection spectra of different types of pastas were measured by FT-NIR analyzer in the 4,000-12,000 cm-1 spectral range. Calibration and validation sets were designed for the conception and evaluation of the method adequacy in the range of moisture content 10 to 15 percent (w.b) of the pasta. The prediction models based on partial least squares (PLS) regression, were developed in the near-infrared. Conventional criteria such as the R2, the root mean square errors of cross validation (RMSECV), root mean square errors of estimation (RMSEE) as well as the number of PLS factors were considered for the selection of three pre-processing (vector normalization, minimum-maximum normalization and multiplicative scatter correction) methods. Spectra of pasta sample were treated with different mathematic pre-treatments before being used to build models between the spectral information and moisture content. The moisture content in pasta predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (R2 = 0.983), which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of moisture content in pasta. The best calibration model was developed with min-max normalization (MMN) spectral pre-processing (R2 = 0.9775). The MMN pre-processing method was found most suitable and the maximum coefficient of determination (R2) value of 0.9875 was obtained for the calibration model developed.Keywords: FT-NIR, pasta, moisture determination, food engineering
Procedia PDF Downloads 258801 Flipped Learning in Interpreter Training: Technologies, Activities and Student Perceptions
Authors: Dohun Kim
Abstract:
Technological innovations have stimulated flipped learning in many disciplines, including language teaching. It is a specific type of blended learning, which combines onsite (i.e. face-to-face) with online experiences to produce effective, efficient and flexible learning. Flipped learning literally ‘flips’ conventional teaching and learning activities upside down: it leverages technologies to deliver a lecture and direct instruction—other asynchronous activities as well—outside the classroom to reserve onsite time for interaction and activities in the upper cognitive realms: applying, analysing, evaluating and creating. Unlike the conventional flipped approaches, which focused on video lecture, followed by face-to-face or on-site session, new innovative methods incorporate various means and structures to serve the needs of different academic disciplines and classrooms. In the light of such innovations, this study adopted ‘student-engaged’ approaches to interpreter training and contrasts them with traditional classrooms. To this end, students were also encouraged to engage in asynchronous activities online, and innovative technologies, such as Telepresence, were employed. Based on the class implementation, a thorough examination was conducted to examine how we can structure and implement flipped classrooms for language and interpreting training while actively engaging learners. This study adopted a quantitative research method, while complementing it with a qualitative one. The key findings suggest that the significance of the instructor’s role does not dwindle, but his/her role changes to a moderator and a facilitator. Second, we can apply flipped learning to both theory- and practice-oriented modules. Third, students’ integration into the community of inquiry is of significant importance to foster active and higher-order learning. Fourth, cognitive presence and competence can be enhanced through strengthened and integrated teaching and social presences. Well-orchestrated teaching presence stimulates students to find out the problems and voices the convergences and divergences, while fluid social presence facilitates the exchanges of knowledge and the adjustment of solutions, which eventually contributes to consolidating cognitive presence—a key ingredient that enables the application and testing of the solutions and reflection thereon.Keywords: blended learning, Community of Inquiry, flipped learning, interpreter training, student-centred learning
Procedia PDF Downloads 195800 Fast Aerodynamic Evaluation of Transport Aircraft in Early Phases
Authors: Xavier Bertrand, Alexandre Cayrel
Abstract:
The early phase of an aircraft development is instrumental as it really drives the potential of a new concept. Any weakness in the high-level design (wing planform, moveable surfaces layout etc.) will be extremely difficult and expensive to recover later in the aircraft development process. Aerodynamic evaluation in this very early development phase is driven by two main criteria: a short lead-time to allow quick iterations of the geometrical design, and a high quality of the calculations to get an accurate & reliable assessment of the current status. These two criteria are usually quite contradictory. Actually, short lead time of a couple of hours from end-to-end can be obtained with very simple tools (semi-empirical methods for instance) although their accuracy is limited, whereas higher quality calculations require heavier/more complex tools, which obviously need more complex inputs as well, and a significantly longer lead time. At this point, the choice has to be done between accuracy and lead-time. A brand new approach has been developed within Airbus, aiming at obtaining quickly high quality evaluations of the aerodynamic of an aircraft. This methodology is based on a joint use of Surrogate Modelling and a lifting line code. The Surrogate Modelling is used to get the wing sections characteristics (e.g. lift coefficient vs. angle of attack), whatever the airfoil geometry, the status of the moveable surfaces (aileron/spoilers) or the high-lift devices deployment. From these characteristics, the lifting line code is used to get the 3D effects on the wing whatever the flow conditions (low/high Mach numbers etc.). This methodology has been applied successfully to a concept of medium range aircraft.Keywords: aerodynamics, lifting line, surrogate model, CFD
Procedia PDF Downloads 359799 Plasma Spraying of 316 Stainless Steel on Aluminum and Investigation of Coat/Substrate Interface
Authors: P. Abachi, T. W. Coyle, P. S. Musavi Gharavi
Abstract:
By applying coating onto a structural component, the corrosion and/or wear resistance requirements of the surface can be fulfilled. Since the layer adhesion of the coating influences the mechanical integrity of the coat/substrate interface during the service time, it should be examined accurately. At the present work, the tensile bonding strength of the 316 stainless steel plasma sprayed coating on aluminum substrate was determined by using tensile adhesion test, TAT, specimen. The interfacial fracture toughness was specified using four-point bend specimen containing a saw notch and modified chevron-notched short-bar (SB) specimen. The coating microstructure and fractured specimen surface were examined by using scanning electron- and optical-microscopy. The investigation of coated surface after tensile adhesion test indicates that the failure mechanism is mostly cohesive and rarely adhesive type. The calculated value of critical strain energy release rate proposes relatively good interface status. It seems that four-point bending test offers a potentially more sensitive means for evaluation of mechanical integrity of coating/substrate interfaces than is possible with the tensile test. The fracture toughness value reported for the modified chevron-notched short-bar specimen testing cannot be taken as absolute value because its calculation is based on the minimum stress intensity coefficient value which has been suggested for the fracture toughness determination of homogeneous parts in the ASTM E1304-97 standard.Keywords: bonding strength, four-point bend test, interfacial fracture toughness, modified chevron-notched short-bar specimen, plasma sprayed coating, tensile adhesion test
Procedia PDF Downloads 260798 Enhanced Optical Nonlinearity in Bismuth Borate Glass: Effect of Size of Nanoparticles
Authors: Shivani Singla, Om Prakash Pandey, Gopi Sharma
Abstract:
Metallic nanoparticle doped glasses has lead to rapid development in the field of optics. Large third order non-linearity, ultrafast time response, and a wide range of resonant absorption frequencies make these metallic nanoparticles more important in comparison to their bulk material. All these properties are highly dependent upon the size, shape, and surrounding environment of the nanoparticles. In a quest to find a suitable material for optical applications, several efforts have been devoted to improve the properties of such glasses in the past. In the present study, bismuth borate glass doped with different size gold nanoparticles (AuNPs) has been prepared using the conventional melt-quench technique. Synthesized glasses are characterized by X-ray diffraction (XRD) and Fourier Transformation Infrared spectroscopy (FTIR) to observe the structural modification in the glassy matrix with the variation in the size of the AuNPs. Glasses remain purely amorphous in nature even after the addition of AuNPs, whereas FTIR proposes that the main structure contains BO₃ and BO₄ units. Field emission scanning electron microscopy (FESEM) confirms the existence and variation in the size of AuNPs. Differential thermal analysis (DTA) depicts that prepared glasses are thermally stable and are highly suitable for the fabrication of optical fibers. The nonlinear optical parameters (nonlinear absorption coefficient and nonlinear refractive index) are calculated out by using the Z-scan technique with a Ti: sapphire laser at 800 nm. It has been concluded that the size of the nanoparticles highly influences the structural thermal and optical properties system.Keywords: bismuth borate glass, different size, gold nanoparticles, nonlinearity
Procedia PDF Downloads 122797 Influence of Long-Term Variability in Atmospheric Parameters on Ocean State over the Head Bay of Bengal
Authors: Anindita Patra, Prasad K. Bhaskaran
Abstract:
The atmosphere-ocean is a dynamically linked system that influences the exchange of energy, mass, and gas at the air-sea interface. The exchange of energy takes place in the form of sensible heat, latent heat, and momentum commonly referred to as fluxes along the atmosphere-ocean boundary. The large scale features such as El Nino and Southern Oscillation (ENSO) is a classic example on the interaction mechanism that occurs along the air-sea interface that deals with the inter-annual variability of the Earth’s Climate System. Most importantly the ocean and atmosphere as a coupled system acts in tandem thereby maintaining the energy balance of the climate system, a manifestation of the coupled air-sea interaction process. The present work is an attempt to understand the long-term variability in atmospheric parameters (from surface to upper levels) and investigate their role in influencing the surface ocean variables. More specifically the influence of atmospheric circulation and its variability influencing the mean Sea Level Pressure (SLP) has been explored. The study reports on a critical examination of both ocean-atmosphere parameters during a monsoon season over the head Bay of Bengal region. A trend analysis has been carried out for several atmospheric parameters such as the air temperature, geo-potential height, and omega (vertical velocity) for different vertical levels in the atmosphere (from surface to the troposphere) covering a period from 1992 to 2012. The Reanalysis 2 dataset from the National Centers for Environmental Prediction-Department of Energy (NCEP-DOE) was used in this study. The study signifies that the variability in air temperature and omega corroborates with the variation noticed in geo-potential height. Further, the study advocates that for the lower atmosphere the geo-potential heights depict a typical east-west contrast exhibiting a zonal dipole behavior over the study domain. In addition, the study clearly brings to light that the variations over different levels in the atmosphere plays a pivotal role in supporting the observed dipole pattern as clearly evidenced from the trends in SLP, associated surface wind speed and significant wave height over the study domain.Keywords: air temperature, geopotential height, head Bay of Bengal, long-term variability, NCEP reanalysis 2, omega, wind-waves
Procedia PDF Downloads 225796 Marzuq Basin Palaeozoic Petroleum System
Authors: M. Dieb, T. Hodairi
Abstract:
In the Southwest Libya area, the Palaeozoic deposits are an important petroleum system, with Silurian shale considered a hydrocarbon source rock and Cambro-Ordovician recognized as a good reservoir. The Palaeozoic petroleum system has the greatest potential for conventional and is thought to represent the significant prospect of unconventional petroleum resources in Southwest Libya. Until now, the lateral and vertical heterogeneity of the source rock was not well evaluated, and oil-source correlation is still a matter of debate. One source rock, which is considered the main source potential in Marzuq Basin, was investigated for its uranium contents using gamma-ray logs, rock-eval pyrolysis, and organic petrography for their bulk kinetic characteristics to determine the petroleum potential qualitatively and quantitatively. Thirty source rock samples and fifteen oil samples from the Tannezzuft source rock were analyzed by Rock-Eval Pyrolysis, microscopely investigation, GC, and GC-MS to detect acyclic isoprenoids and aliphatic, aromatic, and NSO biomarkers. Geochemistry tools were applied to screen source and age-significant biomarkers to high-spot genetic relationships. A grating heterogeneity exists among source rock zones from different levels of depth with varying uranium contents according to gamma-ray logs, rock-eval pyrolysis results, and kinetic features. The uranium-rich Tannezzuft Formations (Hot Shales) produce oils and oil-to-gas hydrocarbons based on their richness, kerogen type, and thermal maturity. Biomarker results such as C₂₇, C₂₈, and C₂₉ steranes concentrations and C₂₄ tetracyclic terpane/C₂₉ tricyclic terpane ratios, with sterane and hopane ratios, are considered the most promising biomarker information in differentiating within the Silurian Shale Tannezzuft Formation and in correlating with its expelled oils. The Tannezzuft Hot Shale is considered the main source rock for oil and gas accumulations in the Cambro-Ordovician reservoirs within the Marzuq Basin. Migration of the generated and expelled oil and gas from the Tannezzuft source rock to the reservoirs of the Cambro-Ordovician petroleum system was interpreted to have occurred along vertical and lateral pathways along the faults in the Palaeozoic Strata. The Upper Tannezzuft Formation (cold shale) is considered the primary seal in the Marzuq Basin.Keywords: heterogeneity, hot shale, kerogen, Silurian, uranium
Procedia PDF Downloads 63795 Design, Development, and Performance Evaluation of Hybrid Cross Axis Wind Turbine
Authors: Gwani M., Umar M. Kangiwa, Bello A. Umar, Gado A. Abubakar
Abstract:
The increasing demand for sustainable energy solutions has driven significant interest in the development of innovative designs of wind turbines. The horizontal axis wind turbine (HAWT) and the vertical axis wind turbine (VAWT) are the dominant type of wind turbine used for power generation. However, these turbines have their respective merits and demerits, which affect their performance. This study introduces a Hybrid Cross Axis Wind Turbine (HCAWT), which integrates the blades of both horizontal axis wind turbines (HAWTs) and vertical axis wind turbines (VAWTs) in a cross-axis configuration with a Savonius rotor to form a hybrid system. The HCAWT combines the self-starting capabilities of Savonius rotors with the high-efficiency characteristics of Darrieus rotors and HAWT, aiming to optimize performance across a range of wind conditions. The performance of the HCAWT was tested and evaluated against a cross-axis wind turbine (CAWT) and a conventional VAWT under similar experimental conditions. The study’s results indicate that the HCAWT outperformed both the CAWT and the conventional VAWT. The power coefficient (Cp) of the HCAWT increases by 83% and 132% compared to that of the CAWT and conventional VAWT, respectively. The findings show that the HCAWT offers better start-up performance and maintains higher efficiency at lower wind speeds compared to CAWT and conventional VAWT. The findings suggest that the HCAWT offers significant improvements in energy capture, particularly in turbulent wind conditions, and greater adaptability to changing wind conditions, making it a viable option for both urban and rural energy applications.Keywords: renewable energy, hybrid, cross axis wind turbine, energy efficiency
Procedia PDF Downloads 10794 Seagrass Biomass Distribution in Mangrove Fringed Creeks of Gazi Bay, Kenya
Authors: Gabriel A. Juma, Adiel M. Magana, Githaiga N. Michael, James G. Kairo
Abstract:
Seagrass meadows are important carbon sinks, thus understanding this role and their conservation provides opportunities for their applications in climate change mitigation and adaptation. This study aimed at understanding seagrass contribution to ecosystem carbon at Gazi Bay; by comparing carbon stocks in seagrass beds of two mangroves fringed creeks of the bay. Specifically, the objectives included assessing the distribution and abundance of seagrass in the fringed creeks, and estimating above and below-ground biomass. Results obtained would be added to the mangrove and open bay carbon in estimating total ecosystem carbon of Gazi bay. The stratified random sampling strategy was applied in this study. Transects were laid perpendicular to the waterline at intervals of 50 meters from the upper region near the mangroves to the deeper end of the creek across seagrass meadows. Along these transects, 0.25m2 square quadrats were laid at 10 m to assess distribution and composition of seagrasses in the creeks. A total of 80 plots were sampled. Above-ground biomass was sampled by harvesting all the seagrass materials within the quadrat while four sediment cores were obtained from each quarter of the quadrat and then sorted into necromass, rhizomes and roots to determine below ground biomass. Samples were cleaned and dried in the oven for 72 hours at 60˚C in the laboratory. Total biomass was determined by multiplying biomass with carbon conversion factor of 0.34. In all the statistical tests, a significant level was set at α = 0.05. Eight species of seagrass were encountered in Western creek (WC) while seven in the Eastern creek (EC). Based on importance value, the dominant species in WC were Cymodocea rotundata and Halodule uninervis while Thalassodendron ciliatum and Enhalus acoroides dominated the eastern creek. The cover of seagrass in EC was 67.97% compared to 56.45% in WC. There was a significance difference in abundance of seagrass species between the two creeks (t = 1.97, D.F = 35, p < 0.05). Similarly, there was significance differences between total seagrass biomass (t= -8.44, D.F. = 53, p < 0.05) and species composition (F(7,79) = 14.6, p < 0.05) in the two creeks. Mean seagrass in the creeks was 7.25 ± 4.2 Mg C ha-1, (range: 4.1 - 12.9 Mg C ha-1). The findings of the current study reveal variations in biomass stocks of the two creeks of Gazi bay that have varying biophysical features. It is established that habitat heterogeneity between the creeks contributes to the variation in seagrass abundance and biomass stocking. This enhances understanding of these ecosystems hence the establishment of carbon offset project in seagrass for livelihood improvement and increased conservation.Keywords: seagrass, above-ground, below-ground, creeks, Gazi bay
Procedia PDF Downloads 132793 Rheological Properties of Red Beet Root Juice Squeezed from Ultrasounicated Red Beet Root Slices
Authors: M. Çevik, S. Sabancı, D. Tezcan, C. Çelebi, F. İçier
Abstract:
Ultrasound technology is the one of the non-thermal food processing method in recent years which has been used widely in the food industry. Ultrasound application in the food industry is divided into two groups: low and high intensity ultrasound application. While low intensity ultrasound is used to obtain information about physicochemical properties of foods, high intensity ultrasound is used to extract bioactive components and to inactivate microorganisms and enzymes. In this study, the ultrasound pre-treatment at a constant power (1500 W) and fixed frequency (20 kHz) was applied to the red beetroot slices having the dimension of 25×25×50 mm at the constant temperature (25°C) for different application times (0, 5, 10, 15 and 20 min). The red beet root slices pretreated with ultrasonication was squeezed immediately. The changes on rheological properties of red beet root juice depending on ultrasonication duration applied to slices were investigated. Rheological measurements were conducted by using Brookfield viscometer (LVDV-II Pro, USA). Shear stress-shear rate data was obtained from experimental measurements for 0-200 rpm range by using spindle 18. Rheological properties of juice were determined by fitting this data to some rheological models (Newtonian, Bingham, Power Law, Herschel Bulkley). It was investigated that the best model was Power Law model for both untreated red beet root juice (R2=0.991, χ2=0.0007, RMSE=0.0247) and red beetroot juice produced from ultrasonicated slices (R2=0.993, χ2=0.0006, RMSE=0.0216 for 20 min pre-treatment). k (consistency coefficient) and n (flow behavior index) values of red beetroot juices were not affected from the duration of ultrasonication applied to the slices. Ultrasound treatment does not result in any changes on the rheological properties of red beetroot juice. This can be explained by lack of ability to homogenize of the intensity of applied ultrasound.Keywords: ultrasonication, rheology, red beet root slice, juice
Procedia PDF Downloads 406792 Verification of Satellite and Observation Measurements to Build Solar Energy Projects in North Africa
Authors: Samy A. Khalil, U. Ali Rahoma
Abstract:
The measurements of solar radiation, satellite data has been routinely utilize to estimate solar energy. However, the temporal coverage of satellite data has some limits. The reanalysis, also known as "retrospective analysis" of the atmosphere's parameters, is produce by fusing the output of NWP (Numerical Weather Prediction) models with observation data from a variety of sources, including ground, and satellite, ship, and aircraft observation. The result is a comprehensive record of the parameters affecting weather and climate. The effectiveness of reanalysis datasets (ERA-5) for North Africa was evaluate against high-quality surfaces measured using statistical analysis. Estimating the distribution of global solar radiation (GSR) over five chosen areas in North Africa through ten-years during the period time from 2011 to 2020. To investigate seasonal change in dataset performance, a seasonal statistical analysis was conduct, which showed a considerable difference in mistakes throughout the year. By altering the temporal resolution of the data used for comparison, the performance of the dataset is alter. Better performance is indicate by the data's monthly mean values, but data accuracy is degraded. Solar resource assessment and power estimation are discuses using the ERA-5 solar radiation data. The average values of mean bias error (MBE), root mean square error (RMSE) and mean absolute error (MAE) of the reanalysis data of solar radiation vary from 0.079 to 0.222, 0.055 to 0.178, and 0.0145 to 0.198 respectively during the period time in the present research. The correlation coefficient (R2) varies from 0.93 to 99% during the period time in the present research. This research's objective is to provide a reliable representation of the world's solar radiation to aid in the use of solar energy in all sectors.Keywords: solar energy, ERA-5 analysis data, global solar radiation, North Africa
Procedia PDF Downloads 98791 Use of Cassava Waste and Its Energy Potential
Authors: I. Inuaeyen, L. Phil, O. Eni
Abstract:
Fossil fuels have been the main source of global energy for many decades, accounting for about 80% of global energy need. This is beginning to change however with increasing concern about greenhouse gas emissions which comes mostly from fossil fuel combustion. Greenhouse gases such as carbon dioxide are responsible for stimulating climate change. As a result, there has been shift towards more clean and renewable energy sources of energy as a strategy for stemming greenhouse gas emission into the atmosphere. The production of bio-products such as bio-fuel, bio-electricity, bio-chemicals, and bio-heat etc. using biomass materials in accordance with the bio-refinery concept holds a great potential for reducing high dependence on fossil fuel and their resources. The bio-refinery concept promotes efficient utilisation of biomass material for the simultaneous production of a variety of products in order to minimize or eliminate waste materials. This will ultimately reduce greenhouse gas emissions into the environment. In Nigeria, cassava solid waste from cassava processing facilities has been identified as a vital feedstock for bio-refinery process. Cassava is generally a staple food in Nigeria and one of the most widely cultivated foodstuff by farmers across Nigeria. As a result, there is an abundant supply of cassava waste in Nigeria. In this study, the aim is to explore opportunities for converting cassava waste to a range of bio-products such as butanol, ethanol, electricity, heat, methanol, furfural etc. using a combination of biochemical, thermochemical and chemical conversion routes. . The best process scenario will be identified through the evaluation of economic analysis, energy efficiency, life cycle analysis and social impact. The study will be carried out by developing a model representing different process options for cassava waste conversion to useful products. The model will be developed using Aspen Plus process simulation software. Process economic analysis will be done using Aspen Icarus software. So far, comprehensive survey of literature has been conducted. This includes studies on conversion of cassava solid waste to a variety of bio-products using different conversion techniques, cassava waste production in Nigeria, modelling and simulation of waste conversion to useful products among others. Also, statistical distribution of cassava solid waste production in Nigeria has been established and key literatures with useful parameters for developing different cassava waste conversion process has been identified. In the future work, detailed modelling of the different process scenarios will be carried out and the models validated using data from literature and demonstration plants. A techno-economic comparison of the various process scenarios will be carried out to identify the best scenario using process economics, life cycle analysis, energy efficiency and social impact as the performance indexes.Keywords: bio-refinery, cassava waste, energy, process modelling
Procedia PDF Downloads 373790 Investigation of Several New Ionic Liquids’ Behaviour during ²¹⁰PB/²¹⁰BI Cherenkov Counting in Waters
Authors: Nataša Todorović, Jovana Nikolov, Ivana Stojković, Milan Vraneš, Jovana Panić, Slobodan Gadžurić
Abstract:
The detection of ²¹⁰Pb levels in aquatic environments evokes interest in various scientific studies. Its precise determination is important not only for the radiological assessment of drinking waters but also ²¹⁰Pb, and ²¹⁰Po distribution in the marine environment are significant for the assessment of the removal rates of particles from the ocean and particle fluxes during transport along the coast, as well as particulate organic carbon export in the upper ocean. Measurement techniques for ²¹⁰Pb determination, gamma spectrometry, alpha spectrometry, or liquid scintillation counting (LSC) are either time-consuming or demand expensive equipment or complicated chemical pre-treatments. However, one other possibility is to measure ²¹⁰Pb on an LS counter if it is in equilibrium with its progeny ²¹⁰Bi - through the Cherenkov counting method. It is unaffected by the chemical quenching and assumes easy sample preparation but has the drawback of lower counting efficiencies than standard LSC methods, typically from 10% up to 20%. The aim of the presented research in this paper is to investigate the possible increment of detection efficiency of Cherenkov counting during ²¹⁰Pb/²¹⁰Bi detection on an LS counter Quantulus 1220. Considering naturally low levels of ²¹⁰Pb in aqueous samples, the addition of ionic liquids to the counting vials with the analysed samples has the benefit of detection limit’s decrement during ²¹⁰Pb quantification. Our results demonstrated that ionic liquid, 1-butyl-3-methylimidazolium salicylate, is more efficient in Cherenkov counting efficiency increment than the previously explored 2-hydroxypropan-1-amminium salicylate. Consequently, the impact of a few other ionic liquids that were synthesized with the same cation group (1-butyl-3-methylimidazolium benzoate, 1-butyl-3-methylimidazolium 3-hydroxybenzoate, and 1-butyl-3-methylimidazolium 4-hydroxybenzoate) was explored in order to test their potential influence on Cherenkov counting efficiency. It was confirmed that, among the explored ones, only ionic liquids in the form of salicylates exhibit a wavelength shifting effect. Namely, the addition of small amounts (around 0.8 g) of 1-butyl-3-methylimidazolium salicylate increases the detection efficiency from 16% to >70%, consequently reducing the detection threshold by more than four times. Moreover, the addition of ionic liquids could find application in the quantification of other radionuclides besides ²¹⁰Pb/²¹⁰Bi via Cherenkov counting method.Keywords: liquid scintillation counting, ionic liquids, Cherenkov counting, ²¹⁰PB/²¹⁰BI in water
Procedia PDF Downloads 102789 The Impression of Adaptive Capacity of the Rural Community in the Indian Himalayan Region: A Way Forward for Sustainable Livelihood Development
Authors: Rommila Chandra, Harshika Choudhary
Abstract:
The value of integrated, participatory, and community based sustainable development strategies is eminent, but in practice, it still remains fragmentary and often leads to short-lived results. Despite the global presence of climate change, its impacts are felt differently by different communities based on their vulnerability. The developing countries have the low adaptive capacity and high dependence on environmental variables, making them highly susceptible to outmigration and poverty. We need to understand how to enable these approaches, taking into account the various governmental and non-governmental stakeholders functioning at different levels, to deliver long-term socio-economic and environmental well-being of local communities. The research assessed the financial and natural vulnerability of Himalayan networks, focusing on their potential to adapt to various changes, through accessing their perceived reactions and local knowledge. The evaluation was conducted by testing indices for vulnerability, with a major focus on indicators for adaptive capacity. Data for the analysis were collected from the villages around Govind National Park and Wildlife Sanctuary, located in the Indian Himalayan Region. The villages were stratified on the basis of connectivity via road, thus giving two kinds of human settlements connected and isolated. The study focused on understanding the complex relationship between outmigration and the socio-cultural sentiments of local people to not abandon their land, assessing their adaptive capacity for livelihood opportunities, and exploring their contribution that integrated participatory methodologies can play in delivering sustainable development. The result showed that the villages having better road connectivity, access to market, and basic amenities like health and education have a better understanding about the climatic shift, natural hazards, and a higher adaptive capacity for income generation in comparison to the isolated settlements in the hills. The participatory approach towards environmental conservation and sustainable use of natural resources were seen more towards the far-flung villages. The study helped to reduce the gap between local understanding and government policies by highlighting the ongoing adaptive practices and suggesting precautionary strategies for the community studied based on their local conditions, which differ on the basis of connectivity and state of development. Adaptive capacity in this study has been taken as the externally driven potential of different parameters, leading to a decrease in outmigration and upliftment of the human environment that could lead to sustainable livelihood development in the rural areas of Himalayas.Keywords: adaptive capacity, Indian Himalayan region, participatory, sustainable livelihood development
Procedia PDF Downloads 118788 Meta Model for Optimum Design Objective Function of Steel Frames Subjected to Seismic Loads
Authors: Salah R. Al Zaidee, Ali S. Mahdi
Abstract:
Except for simple problems of statically determinate structures, optimum design problems in structural engineering have implicit objective functions where structural analysis and design are essential within each searching loop. With these implicit functions, the structural engineer is usually enforced to write his/her own computer code for analysis, design, and searching for optimum design among many feasible candidates and cannot take advantage of available software for structural analysis, design, and searching for the optimum solution. The meta-model is a regression model used to transform an implicit objective function into objective one and leads in turn to decouple the structural analysis and design processes from the optimum searching process. With the meta-model, well-known software for structural analysis and design can be used in sequence with optimum searching software. In this paper, the meta-model has been used to develop an explicit objective function for plane steel frames subjected to dead, live, and seismic forces. Frame topology is assumed as predefined based on architectural and functional requirements. Columns and beams sections and different connections details are the main design variables in this study. Columns and beams are grouped to reduce the number of design variables and to make the problem similar to that adopted in engineering practice. Data for the implicit objective function have been generated based on analysis and assessment for many design proposals with CSI SAP software. These data have been used later in SPSS software to develop a pure quadratic nonlinear regression model for the explicit objective function. Good correlations with a coefficient, R2, in the range from 0.88 to 0.99 have been noted between the original implicit functions and the corresponding explicit functions generated with meta-model.Keywords: meta-modal, objective function, steel frames, seismic analysis, design
Procedia PDF Downloads 243787 Femoral Neck Anteversion and Neck-Shaft Angles: Determination and Their Clinical Implications in Fetuses of Different Gestational Ages
Authors: Vrinda Hari Ankolekar, Anne D. Souza, Mamatha Hosapatna
Abstract:
Introduction: Precise anatomical assessment of femoral neck anteversion (FNA) and the neck shaft angles (NSA) would be essential in diagnosing the pathological conditions involving hip joint and its ligaments. FNA of greater than 20 degrees is considered excessive femoral anteversion, whereas a torsion angle of fewer than 10 degrees is considered femoral retroversion. Excessive femoral torsion is not uncommon and has been associated with certain neurologic and orthopedic conditions. The enlargement and maturation of the hip joint increases at the 20th week of gestation and the NSA ranges from 135- 140◦ at birth. Material and methods: 48 femurs were tagged according to the GA and two photographs for each femur were taken using Nikon digital camera. Each femur was kept on a horizontal hard desk and end on an image of the upper end was taken for the estimation of FNA and a photograph in a perpendicular plane was taken to calculate the NSA. The images were transferred to the computer and were stored in TIFF format. Microsoft Paint software was used to mark the points and Image J software was used to calculate the angles digitally. 1. Calculation of FNA: The midpoint of the femoral head and the neck were marked and a line was drawn joining these two points. The angle made by this line with the horizontal plane was measured as FNA. 2. Calculation of NSA: The midpoint of the femoral head and the neck were marked and a line was drawn joining these two points. A vertical line was drawn passing through the tip of the greater trochanter to the inter-condylar notch. The angle formed by these lines was calculated as NSA. Results: The paired t-test for the inter-observer variability showed no significant difference between the values of two observers. (FNA: t=-1.06 and p=0.31; NSA: t=-0.09 and p=0.9). The FNA ranged from 17.08º to 33.97 º on right and 17.32 º to 45.08 º on left. The NSA ranged from 139.33 º to 124.91 º on right and 143.98 º to 123.8 º on left. Unpaired t-test was applied to compare the mean angles between the second and third trimesters which did not show any statistical significance. This shows that the FNA and NSA of femur did not vary significantly during the third trimester. The FNA and NSA were correlated with the GA using Pearson’s correlation. FNA appeared to increase with the GA (r=0.5) but the increase was not statistically significant. A decrease in the NSA was also noted with the GA (r=-0.3) which was also statistically not significant. Conclusion: The present study evaluates the FNA and NSA of the femur in fetuses and correlates their development with the GA during second and third trimesters. The FNA and NSA did not vary significantly during the third trimester.Keywords: anteversion, coxa antetorsa, femoral torsion, femur neck shaft angle
Procedia PDF Downloads 319786 Seismotectonic Deformations along Strike-Slip Fault Systems of the Maghreb Region, Western Mediterranean
Authors: Abdelkader Soumaya, Noureddine Ben Ayed, Mojtaba Rajabi, Mustapha Meghraoui, Damien Delvaux, Ali Kadri, Moritz Ziegler, Said Maouche, Ahmed Braham, Aymen Arfaoui
Abstract:
The northern Maghreb region (Western Mediterranean) is a key area to study the seismotectonic deformations across the Africa-Eurasia convergent plate boundary. On the basis of young geologic fault slip data and stress inversion of focal mechanisms, we defined a first-order transpression-compatible stress field and a second-order spatial variation of tectonic regime across the Maghreb region, with a relatively stable SHmax orientation from east to west. Therefore, the present-day active contraction of the western Africa-Eurasia plate boundary is accommodated by (1) E-W strike-slip faulting with a reverse component along the Eastern Tell and Saharan-Tunisian Atlas, (2) a predominantly NE trending thrust faulting with strike-slip component in the Western Tell part, and (3) a conjugate strike-slip faulting regime with a normal component in the Alboran/Rif domain. This spatial variation of the active stress field and the tectonic regime is relatively in agreement with the inferred stress information from neotectonic features. According to newly suggested structural models, we highlight the role of main geometrically complex shear zones in the present-day stress pattern of the Maghreb region. Then, different geometries of these major preexisting strike-slip faults and related fractures (V-shaped conjugate fractures, horsetail splays faults, and Riedel fractures) impose their component on the second- and third-order stress regimes. Smoothed present-day and Neotectonic stress maps (mean SHmax orientation) reveal that plate boundary forces acting on the Africa-Eurasia collisional plates control the long wavelength of the stress field pattern in the Maghreb. The seismotectonic deformations and the upper crustal stress field in the study area are governed by the interplay of the oblique plate convergence (i.e., Africa-Eurasia), lithosphere-mantle interaction, and preexisting tectonic weakness zones.Keywords: Maghreb, strike-slip fault, seismotectonic, focal mechanism, inversion
Procedia PDF Downloads 122