Search results for: nonprofit organizations-national data maturity index (NDI)
24113 Value Chain Based New Business Opportunity
Authors: Seonjae Lee, Sungjoo Lee
Abstract:
Excavation is necessary to remain competitive in the current business environment. The company survived the rapidly changing industry conditions by adapting new business strategy and reducing technology challenges. Traditionally, the two methods are conducted excavations for new businesses. The first method is, qualitative analysis of expert opinion, which is gathered through opportunities and secondly, new technologies are discovered through quantitative data analysis of method patents. The second method increases time and cost. Patent data is restricted for use and the purpose of discovering business opportunities. This study presents the company's characteristics (sector, size, etc.), of new business opportunities in customized form by reviewing the value chain perspective and to contributing to creating new business opportunities in the proposed model. It utilizes the trademark database of the Korean Intellectual Property Office (KIPO) and proprietary company information database of the Korea Enterprise Data (KED). This data is key to discovering new business opportunities with analysis of competitors and advanced business trademarks (Module 1) and trading analysis of competitors found in the KED (Module 2).Keywords: value chain, trademark, trading analysis, new business opportunity
Procedia PDF Downloads 37224112 Liquefaction Phenomenon in the Kathmandu Valley during the 2015 Earthquake of Nepal
Authors: Kalpana Adhikari, Mandip Subedi, Keshab Sharma, Indra P. Acharya
Abstract:
The Gorkha Nepal earthquake of moment magnitude (Mw) 7.8 struck the central region of Nepal on April 25, 2015 with the epicenter about 77 km northwest of Kathmandu Valley . Peak ground acceleration observed during the earthquake was 0.18g. This motion induced several geotechnical effects such as landslides, foundation failures liquefaction, lateral spreading and settlement, and local amplification. An aftershock of moment magnitude (Mw) 7.3 hit northeast of Kathmandu on May 12 after 17 days of main shock caused additional damages. Kathmandu is the largest city in Nepal, have a population over four million. As the Kathmandu Valley deposits are composed mainly of sand, silt and clay layers with a shallow ground water table, liquefaction is highly anticipated. Extensive liquefaction was also observed in Kathmandu Valley during the 1934 Nepal-Bihar earthquake. Field investigations were carried out in Kathmandu Valley immediately after Mw 7.8, April 25 main shock and Mw 7.3, May 12 aftershock. Geotechnical investigation of both liquefied and non-liquefied sites were conducted after the earthquake. This paper presents observations of liquefaction and liquefaction induced damage, and the liquefaction potential assessment based on Standard Penetration Tests (SPT) for liquefied and non-liquefied sites. SPT based semi-empirical approach has been used for evaluating liquefaction potential of the soil and Liquefaction Potential Index (LPI) has been used to determine liquefaction probability. Recorded ground motions from the event are presented. Geological aspect of Kathmandu Valley and local site effect on the occurrence of liquefaction is described briefly. Observed liquefaction case studies are described briefly. Typically, these are sand boils formed by freshly ejected sand forced out of over-pressurized sub-strata. At most site, sand was ejected to agricultural fields forming deposits that varied from millimetres to a few centimeters thick. Liquefaction-induced damage to structures in these areas was not significant except buildings on some places tilted slightly. Boiled soils at liquefied sites were collected and the particle size distributions of ejected soils were analyzed. SPT blow counts and the soil profiles at ten liquefied and non-liquefied sites were obtained. The factors of safety against liquefaction with depth and liquefaction potential index of the ten sites were estimated and compared with observed liquefaction after 2015 Gorkha earthquake. The liquefaction potential indices obtained from the analysis were found to be consistent with the field observation. The field observations along with results from liquefaction assessment were compared with the existing liquefaction hazard map. It was found that the existing hazard maps are unrepresentative and underestimate the liquefaction susceptibility in Kathmandu Valley. The lessons learned from the liquefaction during this earthquake are also summarized in this paper. Some recommendations are also made to the seismic liquefaction mitigation in the Kathmandu Valley.Keywords: factor of safety, geotechnical investigation, liquefaction, Nepal earthquake
Procedia PDF Downloads 32324111 Leveraging Remote Sensing Information for Drought Disaster Risk Management
Authors: Israel Ropo Orimoloye, Johanes A. Belle, Olusola Adeyemi, Olusola O. Ololade
Abstract:
With more than 100,000 orbits during the past 20 years, Terra has significantly improved our knowledge of the Earth's climate and its implications on societies and ecosystems of human activity and natural disasters, including drought events. With Terra instrument's performance and the free distribution of its products, this study utilised Terra MOD13Q1 satellite data to assess drought disaster events and its spatiotemporal patterns over the Free State Province of South Africa between 2001 and 2019 for summer, autumn, winter, and spring seasons. The study also used high-resolution downscaled climate change projections under three representative concentration pathways (RCP). Three future periods comprising the short (the 2030s), medium (2040s), and long term (2050s) compared to the current period are analysed to understand the potential magnitude of projected climate change-related drought. The study revealed that the year 2001 and 2016 witnessed extreme drought conditions where the drought index is between 0 and 20% across the entire province during summer, while the year 2003, 2004, 2007, and 2015 observed severe drought conditions across the region with variation from one part to the another. The result shows that from -24.5 to -25.5 latitude, the area witnessed a decrease in precipitation (80 to 120mm) across the time slice and an increase in the latitude -26° to -28° S for summer seasons, which is more prominent in the year 2041 to 2050. This study emphasizes the strong spatio-environmental impacts within the province and highlights the associated factors that characterise high drought stress risk, especially on the environment and ecosystems. This study contributes to a disaster risk framework to identify areas for specific research and adaptation activities on drought disaster risk and for environmental planning in the study area, which is characterised by both rural and urban contexts, to address climate change-related drought impacts.Keywords: remote sensing, drought disaster, climate scenario, assessment
Procedia PDF Downloads 18724110 Towards Addressing the Cultural Snapshot Phenomenon in Cultural Mapping Libraries
Authors: Mousouris Spiridon, Kavakli Evangelia
Abstract:
This paper focuses on Digital Libraries (DLs) that contain and geovisualise cultural data, highlighting the need to define them as a separate category termed Cultural Mapping Libraries, based on their inherent connection of culture with geographic location and their design requirements in support of visual representation of cultural data on the map. An exploratory analysis of DLs that conform to the above definition brought forward the observation that existing Cultural Mapping Libraries fail to geovisualise the entirety of cultural data per point of interest thus resulting in a Cultural Snapshot phenomenon. The existence of this phenomenon was reinforced by the results of a systematic bibliographic research. In order to address the Cultural Snapshot, this paper proposes the use of the Semantic Web principles to efficiently interconnect spatial cultural data through time, per geographic location. In this way points of interest are transformed into scenery where culture evolves over time. This evolution is expressed as occurrences taking place chronologically, in an event oriented approach, a conceptualization also endorsed by the CIDOC Conceptual Reference Model (CIDOC CRM). In particular, we posit the use of CIDOC CRM as the baseline for defining the logic of Cultural Mapping Libraries as part of the Culture Domain in accordance with the Digital Library Reference Model, in order to define the rules of cultural data management by the system. Our future goal is to transform this conceptual definition in to inferencing rules that resolve the Cultural Snapshot and lead to a more complete geovisualisation of cultural data.Keywords: digital libraries, semantic web, geovisualization, CIDOC-CRM
Procedia PDF Downloads 10924109 An Evaluation of the Impact of E-Banking on Operational Efficiency of Banks in Nigeria
Authors: Ibrahim Rabiu Darazo
Abstract:
The research has been conducted on the impact of E-banking on the operational efficiency of Banks in Nigeria, A case of some selected banks (Diamond Bank Plc, GTBankPlc, and Fidelity Bank Plc) in Nigeria. The research is a quantitative research which uses both primary and secondary sources of data collection. Questionnaire were used to obtained accurate data, where 150 Questionnaire were distributed among staff and customers of the three Banks , and the data collected where analysed using chi-square, whereas the secondary data where obtained from relevant text books, journals and relevant web sites. It is clear from the findings that, the use of e-banking by the banks has improved the efficiency of these banks, in terms of providing efficient services to customers electronically, using Internet Banking, Telephone Banking ATMs, reducing time taking to serve customers, e-banking allow new customers to open an account online, customers have access to their account at all the time 24/7.E-banking provide access to customers information from the data base and cost of check and postage were eliminated using e-banking. The recommendation at the end of the research include; the Banks should try to update their electronic gadgets, e-fraud(internal & external) should also be controlled, Banks shall employ qualified man power, Biometric ATMs shall be introduce to reduce fraud using ATM Cards, as it is use in other countries like USA.Keywords: banks, electronic banking, operational efficiency of banks, biometric ATMs
Procedia PDF Downloads 33324108 Long Memory and ARFIMA Modelling: The Case of CPI Inflation for Ghana and South Africa
Authors: A. Boateng, La Gil-Alana, M. Lesaoana; Hj. Siweya, A. Belete
Abstract:
This study examines long memory or long-range dependence in the CPI inflation rates of Ghana and South Africa using Whittle methods and autoregressive fractionally integrated moving average (ARFIMA) models. Standard I(0)/I(1) methods such as Augmented Dickey-Fuller (ADF), Philips-Perron (PP) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests were also employed. Our findings indicate that long memory exists in the CPI inflation rates of both countries. After processing fractional differencing and determining the short memory components, the models were specified as ARFIMA (4,0.35,2) and ARFIMA (3,0.49,3) respectively for Ghana and South Africa. Consequently, the CPI inflation rates of both countries are fractionally integrated and mean reverting. The implication of this result will assist in policy formulation and identification of inflationary pressures in an economy.Keywords: Consumer Price Index (CPI) inflation rates, Whittle method, long memory, ARFIMA model
Procedia PDF Downloads 37024107 Optimize Data Evaluation Metrics for Fraud Detection Using Machine Learning
Authors: Jennifer Leach, Umashanger Thayasivam
Abstract:
The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, though, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate people. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease this advancement. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent data, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which testing split and technique would lead to the most optimal results.Keywords: data science, fraud detection, machine learning, supervised learning
Procedia PDF Downloads 19624106 Assessing the Environmental Efficiency of China’s Power System: A Spatial Network Data Envelopment Analysis Approach
Authors: Jianli Jiang, Bai-Chen Xie
Abstract:
The climate issue has aroused global concern. Achieving sustainable development is a good path for countries to mitigate environmental and climatic pressures, although there are many difficulties. The first step towards sustainable development is to evaluate the environmental efficiency of the energy industry with proper methods. The power sector is a major source of CO2, SO2, and NOx emissions. Evaluating the environmental efficiency (EE) of power systems is the premise to alleviate the terrible situation of energy and the environment. Data Envelopment Analysis (DEA) has been widely used in efficiency studies. However, measuring the efficiency of a system (be it a nation, region, sector, or business) is a challenging task. The classic DEA takes the decision-making units (DMUs) as independent, which neglects the interaction between DMUs. While ignoring these inter-regional links may result in a systematic bias in the efficiency analysis; for instance, the renewable power generated in a certain region may benefit the adjacent regions while the SO2 and CO2 emissions act oppositely. This study proposes a spatial network DEA (SNDEA) with a slack measure that can capture the spatial spillover effects of inputs/outputs among DMUs to measure efficiency. This approach is used to study the EE of China's power system, which consists of generation, transmission, and distribution departments, using a panel dataset from 2014 to 2020. In the empirical example, the energy and patent inputs, the undesirable CO2 output, and the renewable energy (RE) power variables are tested for a significant spatial spillover effect. Compared with the classic network DEA, the SNDEA result shows an obvious difference tested by the global Moran' I index. From a dynamic perspective, the EE of the power system experiences a visible surge from 2015, then a sharp downtrend from 2019, which keeps the same trend with the power transmission department. This phenomenon benefits from the market-oriented reform in the Chinese power grid enacted in 2015. The rapid decline in the environmental efficiency of the transmission department in 2020 was mainly due to the Covid-19 epidemic, which hinders economic development seriously. While the EE of the power generation department witnesses a declining trend overall, this is reasonable, taking the RE power into consideration. The installed capacity of RE power in 2020 is 4.40 times that in 2014, while the power generation is 3.97 times; in other words, the power generation per installed capacity shrank. In addition, the consumption cost of renewable power increases rapidly with the increase of RE power generation. These two aspects make the EE of the power generation department show a declining trend. Incorporation of the interactions among inputs/outputs into the DEA model, this paper proposes an efficiency evaluation method on the basis of the DEA framework, which sheds some light on efficiency evaluation in regional studies. Furthermore, the SNDEA model and the spatial DEA concept can be extended to other fields, such as industry, country, and so on.Keywords: spatial network DEA, environmental efficiency, sustainable development, power system
Procedia PDF Downloads 10924105 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data
Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao
Abstract:
Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive
Procedia PDF Downloads 17424104 Prediction of Embankment Fires at Railway Infrastructure Using Machine Learning, Geospatial Data and VIIRS Remote Sensing Imagery
Authors: Jan-Peter Mund, Christian Kind
Abstract:
In view of the ongoing climate change and global warming, fires along railways in Germany are occurring more frequently, with sometimes massive consequences for railway operations and affected railroad infrastructure. In the absence of systematic studies within the infrastructure network of German Rail, little is known about the causes of such embankment fires. Since a further increase in these hazards is to be expected in the near future, there is a need for a sound knowledge of triggers and drivers for embankment fires as well as methodical knowledge of prediction tools. Two predictable future trends speak for the increasing relevance of the topic: through the intensification of the use of rail for passenger and freight transport (e.g..: doubling of annual passenger numbers by 2030, compared to 2019), there will be more rail traffic and also more maintenance and construction work on the railways. This research project approach uses satellite data to identify historical embankment fires along rail network infrastructure. The team links data from these fires with infrastructure and weather data and trains a machine-learning model with the aim of predicting fire hazards on sections of the track. Companies reflect on the results and use them on a pilot basis in precautionary measures.Keywords: embankment fires, railway maintenance, machine learning, remote sensing, VIIRS data
Procedia PDF Downloads 8924103 A Hybrid Data Mining Algorithm Based System for Intelligent Defence Mission Readiness and Maintenance Scheduling
Authors: Shivam Dwivedi, Sumit Prakash Gupta, Durga Toshniwal
Abstract:
It is a challenging task in today’s date to keep defence forces in the highest state of combat readiness with budgetary constraints. A huge amount of time and money is squandered in the unnecessary and expensive traditional maintenance activities. To overcome this limitation Defence Intelligent Mission Readiness and Maintenance Scheduling System has been proposed, which ameliorates the maintenance system by diagnosing the condition and predicting the maintenance requirements. Based on new data mining algorithms, this system intelligently optimises mission readiness for imminent operations and maintenance scheduling in repair echelons. With modified data mining algorithms such as Weighted Feature Ranking Genetic Algorithm and SVM-Random Forest Linear ensemble, it improves the reliability, availability and safety, alongside reducing maintenance cost and Equipment Out of Action (EOA) time. The results clearly conclude that the introduced algorithms have an edge over the conventional data mining algorithms. The system utilizing the intelligent condition-based maintenance approach improves the operational and maintenance decision strategy of the defence force.Keywords: condition based maintenance, data mining, defence maintenance, ensemble, genetic algorithms, maintenance scheduling, mission capability
Procedia PDF Downloads 29724102 Using Emerging Hot Spot Analysis to Analyze Overall Effectiveness of Policing Policy and Strategy in Chicago
Authors: Tyler Gill, Sophia Daniels
Abstract:
The paper examines how accessing the spatial-temporal constrains of data will help inform policymakers and law enforcement officials. The authors utilize Chicago crime data from 2006-2016 to demonstrate how the Emerging Hot Spot Tool is an ideal hot spot clustering approach to analyze crime data. Traditional approaches include density maps or creating a spatial weights matrix to include the spatial-temporal constrains. This new approach utilizes a space-time implementation of the Getis-Ord Gi* statistic to visualize the data more quickly to make better decisions. The research will help complement socio-cultural research to find key patterns to help frame future policies and evaluate the implementation of prior strategies. Through this analysis, homicide trends and patterns are found more effectively and recommendations for use by non-traditional users of GIS are offered for real life implementation.Keywords: crime mapping, emerging hot spot analysis, Getis-Ord Gi*, spatial-temporal analysis
Procedia PDF Downloads 24424101 Active Learning in Engineering Courses Using Excel Spreadsheet
Authors: Promothes Saha
Abstract:
Recently, transportation engineering industry members at the study university showed concern that students lacked the skills needed to solve real-world engineering problems using spreadsheet data analysis. In response to the concerns shown by industry members, this study investigated how to engage students in a better way by incorporating spreadsheet analysis during class - also, help them learn the course topics. Helping students link theoretical knowledge to real-world problems can be a challenge. In this effort, in-class activities and worksheets were redesigned to integrate with Excel to solve example problems using built-in tools including cell referencing, equations, data analysis tool pack, solver tool, conditional formatting, charts, etc. The effectiveness of this technique was investigated using students’ evaluations of the course, enrollment data, and students’ comments. Based on the data of those criteria, it is evident that the spreadsheet activities may increase student learning.Keywords: civil, engineering, active learning, transportation
Procedia PDF Downloads 13824100 Understanding Cruise Passengers’ On-board Experience throughout the Customer Decision Journey
Authors: Sabina Akter, Osiris Valdez Banda, Pentti Kujala, Jani Romanoff
Abstract:
This paper examines the relationship between on-board environmental factors and customer overall satisfaction in the context of the cruise on-board experience. The on-board environmental factors considered are ambient, layout/design, social, product/service and on-board enjoyment factors. The study presents a data-driven framework and model for the on-board cruise experience. The data are collected from 893 respondents in an application of a self-administered online questionnaire of their cruise experience. This study reveals the cruise passengers’ on-board experience through the customer decision journey based on the publicly available data. Pearson correlation and regression analysis have been applied, and the results show a positive and a significant relationship between the environmental factors and on-board experience. These data help understand the cruise passengers’ on-board experience, which will be used for the ultimate decision-making process in cruise ship design.Keywords: cruise behavior, customer activities, on-board environmental factors, on-board experience, user or customer satisfaction
Procedia PDF Downloads 16824099 Holistic Risk Assessment Based on Continuous Data from the User’s Behavior and Environment
Authors: Cinzia Carrodano, Dimitri Konstantas
Abstract:
Risk is part of our lives. In today’s society risk is connected to our safety and safety has become a major priority in our life. Each person lives his/her life based on the evaluation of the risk he/she is ready to accept and sustain, and the level of safety he/she wishes to reach, based on highly personal criteria. The assessment of risk a person takes in a complex environment and the impact of actions of other people’actions and events on our perception of risk are alements to be considered. The concept of Holistic Risk Assessment (HRA) aims in developing a methodology and a model that will allow us to take into account elements outside the direct influence of the individual, and provide a personalized risk assessment. The concept is based on the fact that in the near future, we will be able to gather and process extremely large amounts of data about an individual and his/her environment in real time. The interaction and correlation of these data is the key element of the holistic risk assessment. In this paper, we present the HRA concept and describe the most important elements and considerations.Keywords: continuous data, dynamic risk, holistic risk assessment, risk concept
Procedia PDF Downloads 12724098 A Comparative Analysis of Classification Models with Wrapper-Based Feature Selection for Predicting Student Academic Performance
Authors: Abdullah Al Farwan, Ya Zhang
Abstract:
In today’s educational arena, it is critical to understand educational data and be able to evaluate important aspects, particularly data on student achievement. Educational Data Mining (EDM) is a research area that focusing on uncovering patterns and information in data from educational institutions. Teachers, if they are able to predict their students' class performance, can use this information to improve their teaching abilities. It has evolved into valuable knowledge that can be used for a wide range of objectives; for example, a strategic plan can be used to generate high-quality education. Based on previous data, this paper recommends employing data mining techniques to forecast students' final grades. In this study, five data mining methods, Decision Tree, JRip, Naive Bayes, Multi-layer Perceptron, and Random Forest with wrapper feature selection, were used on two datasets relating to Portuguese language and mathematics classes lessons. The results showed the effectiveness of using data mining learning methodologies in predicting student academic success. The classification accuracy achieved with selected algorithms lies in the range of 80-94%. Among all the selected classification algorithms, the lowest accuracy is achieved by the Multi-layer Perceptron algorithm, which is close to 70.45%, and the highest accuracy is achieved by the Random Forest algorithm, which is close to 94.10%. This proposed work can assist educational administrators to identify poor performing students at an early stage and perhaps implement motivational interventions to improve their academic success and prevent educational dropout.Keywords: classification algorithms, decision tree, feature selection, multi-layer perceptron, Naïve Bayes, random forest, students’ academic performance
Procedia PDF Downloads 16624097 A Novel Framework for User-Friendly Ontology-Mediated Access to Relational Databases
Authors: Efthymios Chondrogiannis, Vassiliki Andronikou, Efstathios Karanastasis, Theodora Varvarigou
Abstract:
A large amount of data is typically stored in relational databases (DB). The latter can efficiently handle user queries which intend to elicit the appropriate information from data sources. However, direct access and use of this data requires the end users to have an adequate technical background, while they should also cope with the internal data structure and values presented. Consequently the information retrieval is a quite difficult process even for IT or DB experts, taking into account the limited contributions of relational databases from the conceptual point of view. Ontologies enable users to formally describe a domain of knowledge in terms of concepts and relations among them and hence they can be used for unambiguously specifying the information captured by the relational database. However, accessing information residing in a database using ontologies is feasible, provided that the users are keen on using semantic web technologies. For enabling users form different disciplines to retrieve the appropriate data, the design of a Graphical User Interface is necessary. In this work, we will present an interactive, ontology-based, semantically enable web tool that can be used for information retrieval purposes. The tool is totally based on the ontological representation of underlying database schema while it provides a user friendly environment through which the users can graphically form and execute their queries.Keywords: ontologies, relational databases, SPARQL, web interface
Procedia PDF Downloads 27224096 A Systematic Review on Assessing the Prevalence, Types, and Predictors of Sleep Disturbances in Childhood Traumatic Brain Injury
Authors: E. Botchway, C. Godfrey, V. Anderson, C. Catroppa
Abstract:
Introduction: Sleep disturbances are common after childhood traumatic brain injury (TBI). This systematic review aimed to assess the prevalence, types, and predictors of sleep disturbances in childhood TBI. Methods: Medline, Pubmed, PsychInfo, Web of Science, and EMBASE databases were searched. Out of the 547 articles assessed, 15 met selection criteria for this review. Results: Sleep disturbances were common in children and adolescents with TBI, irrespective of injury severity. Excessive daytime sleepiness and insomnia were the most common sleep disturbances reported. Sleep disturbance was predicted by sex, injury severity, pre-existing sleep disturbances, younger age, pain, and high body mass index. Conclusions: Sleep disturbances are highly prevalent in childhood TBI, regardless of the injury severity. Routine assessment of sleep in survivors of childhood TBI is recommended.Keywords: traumatic brain injury, sleep diatiurbances, childhood, systematic review
Procedia PDF Downloads 39124095 Genetic Diversity of Wild Population of Heterobranchus Spp. Based on Mitochondria DNA Cytochrome C Oxidase Subunit I Gene Analysis
Authors: M. Y. Abubakar, Ipinjolu J. K., Yuzine B. Esa, Magawata I., Hassan W. A., Turaki A. A.
Abstract:
Catfish (Heterobranchus spp.) is a major freshwater fish that are widely distributed in Nigeria waters and are gaining rapid aquaculture expansion. However, indiscriminate artificial crossbreeding of the species with others poses a threat to their biodiversity. There is a paucity of information about the genetic variability, hence this insight on the genetic variability is badly needed, not only for the species conservation but for aquaculture expansion. In this study, we tested the level of Genetic diversity, population differentiation and phylogenetic relationship analysis on 35 individuals of two populations of Heterobranchus bidorsalis and 29 individuals of three populations of Heterobranchus longifilis using the mitochondrial cytochrome c oxidase subunit I (mtDNA COI) gene sequence. Nucleotide sequences of 650 bp fragment of the COI gene of the two species were compared. In the whole 4 and 5 haplotypes were distinguished in the populations of H. bidorsalis & H. longifilis with accession numbers (MG334168 - MG334171 & MG334172 to MG334176) respectively. Haplotypes diversity indices revealed a range of 0.59 ± 0.08 to 0.57 ± 0.09 in H. bidorsalis and 0.000 to 0.001051 ± 0.000945 in H. longifilis population, respectively. Analysis of molecular variance (AMOVA) revealed no significant variation among H. bidorsalis population of the Niger & Benue Rivers, detected significant genetic variation was between the Rivers of Niger, Kaduna and Benue population of H. longifilis. Two main clades were recovered, showing a clear separation between H. bidorsalis and H. longifilis in the phylogenetic tree. The mtDNA COI genes studied revealed high gene flow between populations with no distinct genetic differentiation between the populations as measured by the fixation index (FST) statistic. However, a proportion of population-specific haplotypes was observed in the two species studied, suggesting a substantial degree of genetic distinctiveness for each of the population investigated. These findings present the description of the species character and accessions of the fish’s genetic resources, through gene sequence submitted in Genetic database. The data will help to protect their valuable wild resource and contribute to their recovery and selective breeding in Nigeria.Keywords: AMOVA, genetic diversity, Heterobranchus spp., mtDNA COI, phylogenetic tree
Procedia PDF Downloads 13924094 Up-Flow Sponge Submerged Biofilm Reactor for Municipal Sewage Treatment
Authors: Saber A. El-Shafai, Waleed M. Zahid
Abstract:
An up-flow submerged biofilm reactor packed with sponge was investigated for sewage treatment. The reactor was operated two cycles as single aerobic (1-1 at 3.5 L/L.d HLR and 1-2 at 3.8 L/L.day HLR) and four cycles as single anaerobic/aerobic reactor; 2-1 and 2-2 at low HLR (3.7 and 3.5 L/L.day) and 2-3 and 2-4 at high HLR (5.1 and 5.4 L/L.day). During the aerobic cycles, 50% effluent recycling significantly reduces the system performance except for phosphorous. In case of the anaerobic/aerobic reactor, the effluent recycling, significantly improves system performance at low HLR while at high HLR only phosphorous removal was improved. Excess sludge production was limited to 0.133 g TSS/g COD with better sludge volume index (SVI) in case of anaerobic/aerobic cycles; (54.7 versus 58.5 ml/g).Keywords: aerobic, anaerobic/aerobic, up-flow, submerged biofilm, sponge
Procedia PDF Downloads 29924093 A Comparison between Russian and Western Approach for Deep Foundation Design
Authors: Saeed Delara, Kendra MacKay
Abstract:
Varying methodologies are considered for pile design for both Russian and Western approaches. Although both approaches rely on toe and side frictional resistances, different calculation methods are proposed to estimate pile capacity. The Western approach relies on compactness (internal friction angle) of soil for cohesionless soils and undrained shear strength for cohesive soils. The Russian approach relies on grain size for cohesionless soils and liquidity index for cohesive soils. Though most recommended methods in the Western approaches are relatively simple methods to predict pile settlement, the Russian approach provides a detailed method to estimate single pile and pile group settlement. Details to calculate pile axial capacity and settlement using the Russian and Western approaches are discussed and compared against field test results.Keywords: pile capacity, pile settlement, Russian approach, western approach
Procedia PDF Downloads 16724092 The Synergistic Effects of Blockchain and AI on Enhancing Data Integrity and Decision-Making Accuracy in Smart Contracts
Authors: Sayor Ajfar Aaron, Sajjat Hossain Abir, Ashif Newaz, Mushfiqur Rahman
Abstract:
Investigating the convergence of blockchain technology and artificial intelligence, this paper examines their synergistic effects on data integrity and decision-making within smart contracts. By implementing AI-driven analytics on blockchain-based platforms, the research identifies improvements in automated contract enforcement and decision accuracy. The paper presents a framework that leverages AI to enhance transparency and trust while blockchain ensures immutable record-keeping, culminating in significantly optimized operational efficiencies in various industries.Keywords: artificial intelligence, blockchain, data integrity, smart contracts
Procedia PDF Downloads 5524091 Effects of Array Electrode Placement on Identifying Localised Muscle Fatigue
Authors: Mohamed R. Al-Mulla, Bader Al-Bader, Firouz K. Ghaaedi, Francisco Sepulveda
Abstract:
Surface electromyography (sEMG) is utilised in numerous studies on muscle activity. In the beginning, single electrodes were utilised; however, the newest approach is to use an array of electrodes or a grid of electrodes to improve the accuracy of the recorded reading. This research focuses on electrode placement on the biceps brachii, using an array of electrodes placed longitudinal and diagonally on the muscle belly. Trials were conducted on four healthy males, with sEMG signal acquisition from fatiguing isometric contractions. The signal was analysed using the power spectrum density. The separation between the two classes of fatigue (non-fatigue and fatigue) was calculated using the Davies-Bouldin Index (DBI). Results show that higher separability between the fatigue content of the sEMG signal when placed longitudinally, in the same direction as the muscle fibers.Keywords: array electrodes, biceps brachii, electrode placement, EMG, isometric contractions, muscle fatigue
Procedia PDF Downloads 37224090 Time-Series Load Data Analysis for User Power Profiling
Authors: Mahdi Daghmhehci Firoozjaei, Minchang Kim, Dima Alhadidi
Abstract:
In this paper, we present a power profiling model for smart grid consumers based on real time load data acquired smart meters. It profiles consumers’ power consumption behaviour using the dynamic time warping (DTW) clustering algorithm. Due to the invariability of signal warping of this algorithm, time-disordered load data can be profiled and consumption features be extracted. Two load types are defined and the related load patterns are extracted for classifying consumption behaviour by DTW. The classification methodology is discussed in detail. To evaluate the performance of the method, we analyze the time-series load data measured by a smart meter in a real case. The results verify the effectiveness of the proposed profiling method with 90.91% true positive rate for load type clustering in the best case.Keywords: power profiling, user privacy, dynamic time warping, smart grid
Procedia PDF Downloads 15124089 Evaluation of Dual Polarization Rainfall Estimation Algorithm Applicability in Korea: A Case Study on Biseulsan Radar
Authors: Chulsang Yoo, Gildo Kim
Abstract:
Dual polarization radar provides comprehensive information about rainfall by measuring multiple parameters. In Korea, for the rainfall estimation, JPOLE and CSU-HIDRO algorithms are generally used. This study evaluated the local applicability of JPOLE and CSU-HIDRO algorithms in Korea by using the observed rainfall data collected on August, 2014 by the Biseulsan dual polarization radar data and KMA AWS. A total of 11,372 pairs of radar-ground rain rate data were classified according to thresholds of synthetic algorithms into suitable and unsuitable data. Then, evaluation criteria were derived by comparing radar rain rate and ground rain rate, respectively, for entire, suitable, unsuitable data. The results are as follows: (1) The radar rain rate equation including KDP, was found better in the rainfall estimation than the other equations for both JPOLE and CSU-HIDRO algorithms. The thresholds were found to be adequately applied for both algorithms including specific differential phase. (2) The radar rain rate equation including horizontal reflectivity and differential reflectivity were found poor compared to the others. The result was not improved even when only the suitable data were applied. Acknowledgments: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (NRF-2013R1A1A2011012).Keywords: CSU-HIDRO algorithm, dual polarization radar, JPOLE algorithm, radar rainfall estimation algorithm
Procedia PDF Downloads 21524088 Framework for Socio-Technical Issues in Requirements Engineering for Developing Resilient Machine Vision Systems Using Levels of Automation through the Lifecycle
Authors: Ryan Messina, Mehedi Hasan
Abstract:
This research is to examine the impacts of using data to generate performance requirements for automation in visual inspections using machine vision. These situations are intended for design and how projects can smooth the transfer of tacit knowledge to using an algorithm. We have proposed a framework when specifying machine vision systems. This framework utilizes varying levels of automation as contingency planning to reduce data processing complexity. Using data assists in extracting tacit knowledge from those who can perform the manual tasks to assist design the system; this means that real data from the system is always referenced and minimizes errors between participating parties. We propose using three indicators to know if the project has a high risk of failing to meet requirements related to accuracy and reliability. All systems tested achieved a better integration into operations after applying the framework.Keywords: automation, contingency planning, continuous engineering, control theory, machine vision, system requirements, system thinking
Procedia PDF Downloads 20424087 Wreathed Hornbill (Rhyticeros undulatus) on Mount Ungaran: Are their Habitat Threatened?
Authors: Margareta Rahayuningsih, Nugroho Edi K., Siti Alimah
Abstract:
Wreathed Hornbill (Rhyticeros undulatus) is the one of hornbill species (Family: Bucerotidae) that found on Mount Ungaran. In the preservation or planning in situ conservation of Wreathed Hornbill require the habitat condition data. The objective of the research was to determine the land cover change on Mount Ungaran using satellite image data and GIS. Based on the land cover data on 1999-2009 the research showed that the primer forest on Mount Ungaran was decreased almost 50%, while the seconder forest, tea and coffee plantation, and the settlement were increased.Keywords: GIS, Mount Ungaran, threatened habitat, Wreathed Hornbill (Rhyticeros undulatus)
Procedia PDF Downloads 36024086 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering
Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel
Abstract:
Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.Keywords: classification, data mining, spam filtering, naive bayes, decision tree
Procedia PDF Downloads 41124085 Production of Biodiesel from Melon Seed Oil Using Sodium Hydroxide as a Catalyst
Authors: Ene Rosemary Ndidiamaka, Nwangwu Florence Chinyere
Abstract:
The physiochemical properties of the melon seed oil was studied to determine its potentials as viable feed stock for biodisel production. The melon seed was extracted by solvent extraction using n-hexane as the extracting solvent. In this research, methanol was the alcohol used in the production of biodiesel, although alcohols like ethanol, propanol may also be used. Sodium hydroxide was employed for the catalysis. The melon seed oil was characterized for specific gravity, pH, ash content, iodine value, acid value, saponification value, peroxide value, free fatty acid value, flash point, viscosity, and refractive index using standard methods. The melon seed oil had very high oil content. Specific gravity and flash point of the oil is satisfactory. However, moisture content of the oil exceeded the stipulated ASRTM standard for biodiesel production. The overall results indicates that the melon seed oil is suitable for single-stage transesterification process to biodiesel production.Keywords: biodiesel, catalyst, melon seed, transesterification
Procedia PDF Downloads 36824084 Mapping of Electrical Energy Consumption Yogyakarta Province in 2014-2025
Authors: Alfi Al Fahreizy
Abstract:
Yogyakarta is one of the provinces in Indonesia that often get a power outage because of high load electrical consumption. The authors mapped the electrical energy consumption [GWh] for the province of Yogyakarta in 2014-2025 using LEAP (Long-range Energy Alternatives Planning system) software. This paper use BAU (Business As Usual) scenario. BAU scenario in which the projection is based on the assumption that growth in electricity consumption will run as normally as before. The goal is to be able to see the electrical energy consumption in the household sector, industry , business, social, government office building, and street lighting. The data is the data projected statistical population and consumption data electricity [GWh] 2010, 2011, 2012 in Yogyakarta province.Keywords: LEAP, energy consumption, Yogyakarta, BAU
Procedia PDF Downloads 598