Search results for: intelligent green energy management system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30901

Search results for: intelligent green energy management system

27421 The Motivation System Development: Case-Study of the Trade Metal Company in Russian Federation

Authors: Elena V. Lysenko

Abstract:

Motivating as the leading function of a modern Human Resources Management involves issues of increasing the effectiveness of the organization in a broader context. During the formation of motivational systems, the top-management of organization should pay equal attention to both external motivation (incentive system) and internal (self-motivation). The balance of internal and external motivation harmonizes the relations between employers and employees, increases the level of job satisfaction by the organization staff, which in turn leads the organization to success and ensures the organization`s profitability and competitiveness in the market environment. The article is devoted to the study of personnel motivation system in the small metal trade company, which is located in Yekaterinburg, Russian Federation. The study took place during November-December, 2016 ordered by the Company Director to analyze the motivational potential of work (managerial aspect of motivation) and motivation of personnel (personnel aspect of motivation) with the purpose to construct a system of employees’ motivation. The research tools included 6 specially selected tests of motivation, which are: “Motivation profile of your job”, “Constructive motivational attitudes”, Tests about Motivation of achievements (1st variant: Test by А.Mehrabian by the theory of D.С.McClelland and 2nd variant: Test about leading needs according with the theory of D.С.MacClelland), Tests by T.Elers (1st variant: “Determination of the motivation towards success or to avoid failure” and 2nd variant: “Trends to achieve results or to avoid failure”). The results of the study showed only one, but fundamental problem of the whole organization: high level of both motivational potential in work and self-motivation, especially in terms of achievement motivation, but serious lack of productivity. According the results which study showed this problem is derived from insufficient staff competence. The research suggests basic guidelines in order to build the new personnel motivation system for this Company, which is planned to be developed in the nearest future.

Keywords: incentive system, motivation of achievements, motivation system, self-motivation

Procedia PDF Downloads 307
27420 Application of Fuzzy Logic in Voltage Regulation of Radial Feeder with Distributed Generators

Authors: Anubhav Shrivastava, Lakshya Bhat, Shivarudraswamy

Abstract:

Distributed Generation is the need of the hour. With current advancements in the DG technology, there are some major issues that need to be tackled in order to make this method of generation of energy more efficient and feasible. Among other problems, the control in voltage is the major issue that needs to be addressed. This paper focuses on control of voltage using reactive power control of DGs with the help of fuzzy logic. The membership functions have been defined accordingly and the control of the system is achieved. Finally, with the help of simulation results in Matlab, the control of voltage within the tolerance limit set (+/- 5%) is achieved. The voltage waveform graphs for the IEEE 14 bus system are obtained by using simple algorithm with MATLAB and then with fuzzy logic for 14 bus system. The goal of this project was to control the voltage within limits by controlling the reactive power of the DG using fuzzy logic.

Keywords: distributed generation, fuzzy logic, matlab, newton raphson, IEEE 14 bus, voltage regulation, radial network

Procedia PDF Downloads 627
27419 Assessing the Viability of Solar Water Pumps Economically, Socially and Environmentally in Soan Valley, Punjab

Authors: Zenab Naseem, Sadia Imran

Abstract:

One of the key solutions to the climate change crisis is to develop renewable energy resources, such as solar and wind power and biogas. This paper explores the socioeconomic and environmental viability of solar energy, based on a case study of the Soan Valley Development Program. Under this project, local farmers were provided solar water pumps at subsidized rates. These have been functional for the last seven years and have gained popularity among the local communities. The study measures the economic viability of using solar energy in agriculture, based on data from 36 households, of which 12 households each use diesel, electric and solar water pumps. Our findings are based on the net present value of each technology type. We also carry out a qualitative assessment of the social impact of solar water pumps relative to diesel and electric pumps. Finally, we conduct an environmental impact assessment, using the lifecycle assessment approach. All three analyses indicate that solar energy is a viable alternative to diesel and electricity.

Keywords: alternative energy sources, pollution control adoption and costs, solar energy pumps, sustainable development

Procedia PDF Downloads 247
27418 Analysis and Study of Phytoplankton and the Environmental Characteristics of Tarkwa Bay, Lagos, South-Western, Nigeria

Authors: Bukola Dawodu, Charles Onyema

Abstract:

The phytoplankton and environmental characteristics of Tarkwa Bay, Lagos in South-western Nigeria were investigated from January to June 2012. Environmental characteristics within the Bay were largely determined by floodwater inflow in the wet months (April – June) and increased tidal marine conditions in the dry months (January – March). Similarly, rainfall distribution and possibly tidal seawater inflow were the key factors that govern the variation in phytoplankton distribution, species diversity, chlorophyll a concentration and environmental characteristics of the bay. Values for physico-chemical parameters were indicative of high levels of fluctuations inwards from the East mole towards Tarkwa Bay (e.g. T.S.S > 11mg/L, T.D.S > 33541.0mg/L, D.O. < 5.4). Chlorophyll A values did not show any discernable pattern and correlated negatively with total dissolved solids and total suspended solids (r = -0.27 and -0.04) as both were inconsistent throughout the study period. Four phytoplankton divisions were observed throughout the sampling period with the Bacillariophyta (diatoms) being the dominant group followed by Dinophyta (dinoflagellates), Cyanophyta (the blue-green algae) and Chlorophyta (the green algae). A total of twenty-one species from nine genera were recorded during the period of study. Diatoms formed the most abundant group making fifteen species from five genera. The centric forms dominated over the pennates in the diatom group with Skeletonema sp. Chaetoceros spp. and Coscinodiscus spp. being the dominant centric diatoms while Navicula spp. was the more dominant pennate form. The Dinoflagellates were represented by six species from one genus, the blue-green algae with five species from two genera while the green algae had one species from one genus. Comparatively, total biomass was more in the dry months (Jan. - Mar.) and decreased in the 'wet months' (Apr. – Jun.). Species diversity (S), Shannon Wiener index (Hs), Margalef Index (d) and Equitability Index (j) values were higher during the dry months while reduced value marked the wet months possibly as a result of dilution of rain effects. Outcomes of bio-indices variations were reflections of the degree of occurrence and abundance of species linked to seasons operating in the study site.

Keywords: coastal waters, phytoplankton, species abundance, ecosystems

Procedia PDF Downloads 181
27417 Optimizing Groundwater Pumping for a Complex Groundwater/Surface Water System

Authors: Emery A. Coppola Jr., Suna Cinar, Ferenc Szidarovszky

Abstract:

Over-pumping of groundwater resources is a serious problem world-wide. In addition to depleting this valuable resource, hydraulically connected sensitive ecological resources like wetlands and surface water bodies are often impacted and even destroyed by over-pumping. Effectively managing groundwater in a way that satisfy human demand while preserving natural resources is a daunting challenge that will only worsen with growing human populations and climate change. As presented in this paper, a numerical flow model developed for a hypothetical but realistic groundwater/surface water system was combined with formal optimization. Response coefficients were used in an optimization management model to maximize groundwater pumping in a complex, multi-layered aquifer system while protecting against groundwater over-draft, streamflow depletion, and wetland impacts. Pumping optimization was performed for different constraint sets that reflect different resource protection preferences, yielding significantly different optimal pumping solutions. A sensitivity analysis on the optimal solutions was performed on select response coefficients to identify differences between wet and dry periods. Stochastic optimization was also performed, where uncertainty associated with changing irrigation demand due to changing weather conditions are accounted for. One of the strengths of this optimization approach is that it can efficiently and accurately identify superior management strategies that minimize risk and adverse environmental impacts associated with groundwater pumping under different hydrologic conditions.

Keywords: numerical groundwater flow modeling, water management optimization, groundwater overdraft, streamflow depletion

Procedia PDF Downloads 226
27416 Comparing the Embodied Carbon Impacts of a Passive House with the BC Energy Step Code Using Life Cycle Assessment

Authors: Lorena Polovina, Maddy Kennedy-Parrott, Mohammad Fakoor

Abstract:

The construction industry accounts for approximately 40% of total GHG emissions worldwide. In order to limit global warming to 1.5 degrees Celsius, ambitious reductions in the carbon intensity of our buildings are crucial. Passive House presents an opportunity to reduce operational carbon by as much as 90% compared to a traditional building through improving thermal insulation, limiting thermal bridging, increasing airtightness and heat recovery. Up until recently, Passive House design was mainly concerned with meeting the energy demands without considering embodied carbon. As buildings become more energy-efficient, embodied carbon becomes more significant. The main objective of this research is to calculate the embodied carbon impact of a Passive House and compare it with the BC Energy Step Code (ESC). British Columbia is committed to increasing the energy efficiency of buildings through the ESC, which is targeting net-zero energy-ready buildings by 2032. However, there is a knowledge gap in the embodied carbon impacts of more energy-efficient buildings, in particular Part 3 construction. In this case study, life cycle assessments (LCA) are performed on Part 3, a multi-unit residential building in Victoria, BC. The actual building is not constructed to the Passive House standard; however, the building envelope and mechanical systems are designed to comply with the Passive house criteria, as well as Steps 1 and 4 of the BC Energy Step Code (ESC) for comparison. OneClick LCA is used to perform the LCA of the case studies. Several strategies are also proposed to minimize the total carbon emissions of the building. The assumption is that there will not be significant differences in embodied carbon between a Passive House and a Step 4 building due to the building envelope.

Keywords: embodied carbon, energy modeling, energy step code, life cycle assessment

Procedia PDF Downloads 141
27415 The Impact of Shifting Trading Pattern from Long-Haul to Short-Sea to the Car Carriers’ Freight Revenues

Authors: Tianyu Wang, Nikita Karandikar

Abstract:

The uncertainty around cost, safety, and feasibility of the decarbonized shipping fuels has made it increasingly complex for the shipping companies to set pricing strategies and forecast their freight revenues going forward. The increase in the green fuel surcharges will ultimately influence the automobile’s consumer prices. The auto shipping demand (ton-miles) has been gradually shifting from long-haul to short-sea trade over the past years following the relocation of the original equipment manufacturer (OEM) manufacturing to regions such as South America and Southeast Asia. The objective of this paper is twofold: 1) to investigate the car-carriers freight revenue development over the years when the trade pattern is gradually shifting towards short-sea exports 2) to empirically identify the quantitative impact of such trade pattern shifting to mainly freight rate, but also vessel size, fleet size as well as Green House Gas (GHG) emission in Roll on-Roll Off (Ro-Ro) shipping. In this paper, a model of analyzing and forecasting ton-miles and freight revenues for the trade routes of AS-NA (Asia to North America), EU-NA (Europe to North America), and SA-NA (South America to North America) is established by deploying Automatic Identification System (AIS) data and the financial results of a selected car carrier company. More specifically, Wallenius Wilhelmsen Logistics (WALWIL), the Norwegian Ro-Ro carrier listed on Oslo Stock Exchange, is selected as the case study company in this paper. AIS-based ton-mile datasets of WALWIL vessels that are sailing into North America region from three different origins (Asia, Europe, and South America), together with WALWIL’s quarterly freight revenues as reported in trade segments, will be investigated and compared for the past five years (2018-2022). Furthermore, ordinary‐least‐square (OLS) regression is utilized to construct the ton-mile demand and freight revenue forecasting. The determinants of trade pattern shifting, such as import tariffs following the China-US trade war and fuel prices following the 0.1% Emission Control Areas (ECA) zone requirement after IMO2020 will be set as key variable inputs to the machine learning model. The model will be tested on another newly listed Norwegian Car Carrier, Hoegh Autoliner, to forecast its 2022 financial results and to validate the accuracy based on its actual results. GHG emissions on the three routes will be compared and discussed based on a constant emission per mile assumption and voyage distances. Our findings will provide important insights about 1) the trade-off evaluation between revenue reduction and energy saving with the new ton-mile pattern and 2) how the trade flow shifting would influence the future need for the vessel and fleet size.

Keywords: AIS, automobile exports, maritime big data, trade flows

Procedia PDF Downloads 118
27414 Exploring the Intrinsic Ecology and Suitable Density of Historic Districts Through a Comparative Analysis of Ancient and Modern Ecological Smart Practices

Authors: HU Changjuan, Gong Cong, Long Hao

Abstract:

Although urban ecological policies and the public's aspiration for livable environments have expedited the pace of ecological revitalization, historic districts that have evolved through natural ecological processes often become obsolete and less habitable amid rapid urbanization. This raises a critical question about historic districts inherently incapable of being ecological and livable. The thriving concept of ‘intrinsic ecology,’ characterized by its ability to transform city-district systems into healthy ecosystems with diverse environments, stable functions, and rapid restoration capabilities, holds potential for guiding the integration of ancient and modern ecological wisdom while supporting the dynamic involvement of cultures. This study explores the intrinsic ecology of historic districts from three aspects: 1) Population Density: By comparing the population density before urban population expansion to the present day, determine the reasonable population density for historic districts. 2) Building Density: Using the ‘Space-mate’ tool for comparative analysis, form a spatial matrix to explore the intrinsic ecology of building density in Chinese historic districts. 3) Green Capacity Ratio: By using ecological districts as control samples, conduct dual comparative analyses (related comparison and upgraded comparison) to determine the intrinsic ecological advantages of the two-dimensional and three-dimensional green volume in historic districts. The study inform a density optimization strategy that supports cultural, social, natural, and economic ecology, contributing to the creation of eco-historic districts.

Keywords: eco-historic districts, intrinsic ecology, suitable density, green capacity ratio.

Procedia PDF Downloads 14
27413 Responding of Vertical Gardens and Green Facades in Urban Design to the Global Environmental Impacts and the Call for Greening in Urban Spaces

Authors: Esraa Mohamed Ezzat Ramadan Elkhaiary, Ayah Mohamed Ezzat Ramadan Elkhaiary, Ahmed Yehia Ismaiel

Abstract:

Vertical lawn is crucial for the development of the constructed surroundings’ sustainability. Their implementation is also ecologically and aesthetically ideal as a good enough architectural characteristic that enhancements facades. Furthermore, their exploitation ends in a power-conscious design that prevents densely populated city areas in Cairo from transforming right into a deteriorated natural environment. After collaborative studies and analysis, it concluded that installing the vertical garden will not simply enhance urban spaces and informal settlements’ homes aesthetically but also offer an excellent role version to the metropolis in how future buildings can be constructed with vertical gardens established. Most significantly, it will enhance the general public consciousness of the inexperienced functions of the vertical garden to the constructing customers and visitors.

Keywords: vertical gardens, green facades, urban rehabilitation, urban spaces

Procedia PDF Downloads 66
27412 Analyzing the Effects of Real Income and Biomass Energy Consumption on Carbon Dioxide (CO2) Emissions: Empirical Evidence from the Panel of Biomass-Consuming Countries

Authors: Eyup Dogan

Abstract:

This empirical aims to analyze the impacts of real income and biomass energy consumption on the level of emissions in the EKC model for the panel of biomass-consuming countries over the period 1980-2011. Because we detect the presence of cross-sectional dependence and heterogeneity across countries for the analyzed data, we use panel estimation methods robust to cross-sectional dependence and heterogeneity. The CADF and the CIPS panel unit root tests indicate that carbon emissions, real income and biomass energy consumption are stationary at the first-differences. The LM bootstrap panel cointegration test shows that the analyzed variables are cointegrated. Results from the panel group-mean DOLS and the panel group-mean FMOLS estimators show that increase in biomass energy consumption decreases CO2 emissions and the EKC hypothesis is validated. Therefore, countries are advised to boost their production and increase the use of biomass energy for lower level of emissions.

Keywords: biomass energy, CO2 emissions, EKC model, heterogeneity, cross-sectional dependence

Procedia PDF Downloads 293
27411 Fuelwood Rsources Utilisation and Its Impact on Sustainable Environment: A Rural Perception

Authors: Abubakar Abdullahi

Abstract:

Large amount of human energy are spent gathering and collecting fuel wood in many parts of the world, most especially in rural areas. In Nigeria fuel wood serves million houses in both rural and urban centers for various energy needs. It’s a common scene in many places while passing by roads to see bunch of woods being sold by the road sides. Even though the resource serves millions of peoples energy needs it has serious consequences on our environment, thus sustainable environment. Majority of the rural areas who rely heavily on the firewood as a means of energy are not aware of the dangers associated with the uses of the products. The aim of this work is to look into the utilization of fuel wood among rural dwellers and their perception about the dangers associated with it and how to sustain our environment. The methodology used involves a structured questionnaire designed with the question about the utilization and perception. The questionnaire is administered to the people of Kashere, a rural area in Gombe state. The result clearly shows there is a high level of ignorance among rural dwellers on the dangers of using fuel wood and how it constitute the depletion of the immediate environment. However, what is surprising in the research is the people’s readiness for alternative energy sources. The research recommend that proper orientation and sensitization is required to create education and awareness to the rural dwellers as well as provide alternative energy that is available, environment friendly and accessible to address the problems.

Keywords: energy, rural dwellers, environment, fuel wood, resources

Procedia PDF Downloads 488
27410 Characterization of Carbazole-Based Host Material for Highly Efficient Thermally Activated Delayed Fluorescence Emitter

Authors: Malek Mahmoudi, Jonas Keruckas, Dmytro Volyniuk, Jurate Simokaitiene, Juozas V. Grazulevicius

Abstract:

Host materials have been discovered as one of the most appealing methods for harvesting triplet states in organic materials for application in organic light-emitting diodes (OLEDs). The ideal host-guest system for emission in thermally delayed fluorescence OLEDs with 20% guest concentration for efficient energy transfer has been demonstrated in the present investigation. In this work, 3,3'-bis[9-(4-fluorophenyl) carbazole] (bFPC) has been used as the host, which induces balanced charge carrier transport for high-efficiency OLEDs.For providing a complete characterization of the synthesized compound, photophysical, photoelectrical, charge-transporting, and electrochemical properties of the compound have been examined. Excited-state lifetimes and singlet-triplet energy gaps were measured for characterization of photophysical properties, while thermogravimetric analysis, as well as differential scanning calorimetry measurements, were performed for probing of electrochemical and thermal properties of the compound. The electrochemical properties of this compound were investigated by cyclic voltammetry (CV) method, and ionization potential (IPCV) value of 5.68 eV was observed. UV–Vis absorption and photoluminescence spectrum of a solution of the compound in toluene (10-5 M) showed maxima at 302 and 405 nm, respectively. Photoelectron emission spectrometry was used for the characterization of charge-injection properties of the studied compound in solid. The ionization potential of this material was found to be 5.78 eV, and time-of-flight measurement was used for testing charge-transporting properties and hole mobility estimated using this technique in a vacuum-deposited layer reached 4×10-4 cm2 V-1s-1. Since the compound with high charge mobilities was tested as a host in an organic light-emitting diode. The device was fabricated by successive deposition onto a pre-cleaned indium tin oxide (ITO) coated glass substrate under a vacuum of 10-6 Torr and consisting of an indium-tin-oxide anode, hole injection and transporting layer(MoO3, NPB), emitting layer with bFPC as a host and 4CzIPN (2,4,5,6-tetra(9-carbazolyl)isophthalonitrile) which is a new highly efficient green thermally activated delayed fluorescence (TADF) material as an emitter, an electron transporting layer(TPBi) and lithium fluoride layer topped with aluminum layer as a cathode exhibited the highest maximum current efficiency and power efficiency of 33.9 cd/A and 23.5 lm/W, respectively and the electroluminescence spectrum showed only a peak at 512nm. Furthermore, the new bicarbazole-based compound was tested as a host in thermally activated delayed fluorescence organic light-emitting diodes are reaching luminance of 25300 cd m-2 and external quantum efficiency of 10.1%. Interestingly, the turn-on voltage was low enough (3.8 V), and such a device can be used for highly efficient light sources.

Keywords: thermally-activated delayed fluorescence, host material, ionization energy, charge mobility, electroluminescence

Procedia PDF Downloads 136
27409 A Method for Quantitative Assessment of the Dependencies between Input Signals and Output Indicators in Production Systems

Authors: Maciej Zaręba, Sławomir Lasota

Abstract:

Knowing the degree of dependencies between the sets of input signals and selected sets of indicators that measure a production system's effectiveness is of great importance in the industry. This paper introduces the SELM method that enables the selection of sets of input signals, which affects the most the selected subset of indicators that measures the effectiveness of a production system. For defined set of output indicators, the method quantifies the impact of input signals that are gathered in the continuous monitoring production system.

Keywords: manufacturing operation management, signal relationship, continuous monitoring, production systems

Procedia PDF Downloads 110
27408 A Study of Fatigue Life Estimation of a Modular Unmanned Aerial Vehicle by Developing a Structural Health Monitoring System

Authors: Zain Ul Hassan, Muhammad Zain Ul Abadin, Muhammad Zubair Khan

Abstract:

Unmanned aerial vehicles (UAVs) have now become of predominant importance for various operations, and an immense amount of work is going on in this specific category. The structural stability and life of these UAVs is key factor that should be considered while deploying them to different intelligent operations as their failure leads to loss of sensitive real-time data and cost. This paper presents an applied research on the development of a structural health monitoring system for a UAV designed and fabricated by deploying modular approach. Firstly, a modular UAV has been designed which allows to dismantle and to reassemble the components of the UAV without effecting the whole assembly of UAV. This novel approach makes the vehicle very sustainable and decreases its maintenance cost to a significant value by making possible to replace only the part leading to failure. Then the SHM for the designed architecture of the UAV had been specified as a combination of wings integrated with strain gauges, on-board data logger, bridge circuitry and the ground station. For the research purpose sensors have only been attached to the wings being the most load bearing part and as per analysis was done on ANSYS. On the basis of analysis of the load time spectrum obtained by the data logger during flight, fatigue life of the respective component has been predicted using fracture mechanics techniques of Rain Flow Method and Miner’s Rule. Thus allowing us to monitor the health of a specified component time to time aiding to avoid any failure.

Keywords: fracture mechanics, rain flow method, structural health monitoring system, unmanned aerial vehicle

Procedia PDF Downloads 290
27407 Sliding Mode Control of a Photovoltaic Grid-Connected System with Active and Reactive Power Control

Authors: M. Doumi, K. Tahir, A. Miloudi, A. G. Aissaoui, C. Belfedal, S. Tahir

Abstract:

This paper presents a three-phase grid-connected photovoltaic generation system with unity power factor for any situation of solar radiation based on voltage-oriented control (VOC). An input voltage clamping technique is proposed to control the power between the grid and photovoltaic system, where it is intended to achieve the maximum power point operation. This method uses a Perturb and Observe (P&O) controller. The main objective of this work is to compare the energy production unit performances by the use of two types of controllers (namely, classical PI and Sliding Mode (SM) Controllers) for the grid inverter control. The proposed control has a hierarchical structure with a grid side control level to regulate the power (PQ) and the current injected to the grid and to obtain a common DC voltage constant. To show the effectiveness of both control methods performances analysis of the system are analyzed and compared by simulation and results included in this paper.

Keywords: grid connected photovoltaic, MPPT, inverter control, classical PI, sliding mode, DC voltage constant, voltage-oriented control, VOC

Procedia PDF Downloads 605
27406 Effective Internal Control System in the Nasarawa State Tertiary Educational Institutions for Efficiency- A Case of Nasarawa State Polytechnic Lafia

Authors: Dauda Ibrahim Adagye

Abstract:

Effective internal control system in the bursary unit of tertiary educational institutions is geared toward achieving quality teaching, learning, and research environment and as well assist the management of the institutions, particularly when decisions are to be made. While internal control system exists in all institutions, the outlined objectives above are far from being achieved. The paper; therefore, assesses the effectiveness of internal control system in tertiary educational institutions in Nasarawa State, Nigeria with the specific focus on the Nasarawa state Polytechnic, Lafia. The study is survey; hence, a simple closed-ended questionnaire was developed and administered to a sample of twenty-seven (27) member staff from the Bursary and the internal audit unit of the Nasarawa State Polytechnic, Lafia to obtain data for analysis purposes and to test the study hypothesis. Responses from the questionnaire were analyzed using a simple percentage and chi-square. Findings shows that the right people are not assigned to the right job in the department, budget, and management accounting were never used in the institution’s operations and checking of subordinate by their superior officers is not regular. This renders the current internal control structure of the Polytechnic as ineffective and weak. The paper therefore, recommends that: transparency should be seen as significant, as the institution work toward meeting its objectives, therefore, it means that the right staff is assigned to the right job and regular checking of the subordinates by their ensued superiors.

Keywords: internal control, tertiary educational intuitions, efficiency

Procedia PDF Downloads 205
27405 Important Management Competencies: University of Technology Perspective

Authors: Courtley Pharaoh, D. J. Visser

Abstract:

University management is often caught between competing interests from stakeholders like students, trustees, donors, government and the community it serves. This study aimed to identify what management competencies are required by executive management members of universities of technology to effectively manage a university of technology in South Africa from the perspective of the executive management members. This exploratory study will make use of a qualitative methodology to establish what management competencies are deemed as important to manage a university of technology in South Africa from the executive management perspective. Due to the consequences of the COVID-19 Pandemic, the study made use of online face-to-face interviews to ascertain from executive management members of universities of technology what the required management competencies needed by executive management members of universities of technology to effectively manage a University of Technology in South Africa. Qualitative Content Analysis was used to analyse the data collected. The findings of the study identified a total of 26 management competencies which were categorised into three groupings or themes. This study identified a list of required management competencies needed by executive management members of universities of technology to effectively manage a university of technology in South Africa, as per the lived experience of executive management members. The researcher recommends further studies at traditional and comprehensive universities and compares the results of those future studies with the results of this study. A comprehensive list of management competencies could then be identified, which could assist with the compilation of job descriptions of executive management members of universities in South Africa.

Keywords: university of technology, management competencies, executive management, executive management members, important

Procedia PDF Downloads 94
27404 Voltage Stabilization of Hybrid PV and Battery Systems by Considering Temperature and Irradiance Changes in Standalone Operation

Authors: S. Jalilzadeh, S. M. Mohseni Bonab

Abstract:

Solar and battery energy storage systems are very useful for consumers who live in deprived areas and do not have access to electricity distribution networks. Nowadays one of the problems that photo voltaic systems (PV) have changing of output power in temperature and irradiance variations, which directly affects the load that is connected to photo voltaic systems. In this paper, with considering the fact that the solar array varies with change in temperature and solar power radiation, a voltage stabilizer system of a load connected to photo voltaic array is designed to stabilize the load voltage and to transfer surplus power of the battery. Also, in proposed hybrid system, the needed load power amount is supplemented considering the voltage stabilization in standalone operation for supplying unbalanced AC load. Electrical energy storage system for voltage control and improvement of the performance of PV by a DC/DC converter is connected to the DC bus. The load is also feed by an AC/DC converter. In this paper, when the voltage increases in its reference limit, the battery gets charged by the photo voltaic array and when it decreases in its defined limit, the power gets injected to the DC bus by this battery. The constant of DC bus Voltage is the cause for the reduced harmonics generated by the inverter. In addition, a series of filters are provided in the inverter output in to reduced harmonics. The inverter control circuit is designed that the voltage and frequency of the load remain almost constant at different load conditions. This paper has focused on controlling strategies of converters to improve their performance.

Keywords: photovoltaic array (PV), DC/DC Boost converter, battery converter, inverters control

Procedia PDF Downloads 481
27403 Islamic Financial Engineering: An Overview

Authors: Mahfoud Djebbar

Abstract:

The past two decades or so have witnessed phenomenal growth of the Islamic financial services industry. The whole industry has been thriving at about 15 percent per annum. This development entails the Islamic financial engineering, IFE, to some kind of crossroads, lagging behind its conventional counterpart. Therefore, IFE, and particularly traded products development, and in order to achieve its goals, two approaches are available, i.e., replicating engineering and innovative engineering. We also try to emphasis the innovative strategy since it guards the Islamic identity of different financial products and processes, and thereby, improves the creativity in the Islamic financial industry. The attempt also centers on sukukization (Islamic securitization), innovation, liquidity management, and risk management and hedging in the Islamic financial system. Finally, the challenges facing IFE are also addressed.

Keywords: islamic financial engineering, hedging and risk management, innovation, securitization, money market instruments, islamic capital markets

Procedia PDF Downloads 550
27402 Optimization and Evaluation of Different Pathways to Produce Biofuel from Biomass

Authors: Xiang Zheng, Zhaoping Zhong

Abstract:

In this study, Aspen Plus was used to simulate the whole process of biomass conversion to liquid fuel in different ways, and the main results of material and energy flow were obtained. The process optimization and evaluation were carried out on the four routes of cellulosic biomass pyrolysis gasification low-carbon olefin synthesis olefin oligomerization, biomass water pyrolysis and polymerization to jet fuel, biomass fermentation to ethanol, and biomass pyrolysis to liquid fuel. The environmental impacts of three biomass species (poplar wood, corn stover, and rice husk) were compared by the gasification synthesis pathway. The global warming potential, acidification potential, and eutrophication potential of the three biomasses were the same as those of rice husk > poplar wood > corn stover. In terms of human health hazard potential and solid waste potential, the results were poplar > rice husk > corn stover. In the popular pathway, 100 kg of poplar biomass was input to obtain 11.9 kg of aviation coal fraction and 6.3 kg of gasoline fraction. The energy conversion rate of the system was 31.6% when the output product energy included only the aviation coal product. In the basic process of hydrothermal depolymerization process, 14.41 kg aviation kerosene was produced per 100 kg biomass. The energy conversion rate of the basic process was 33.09%, which can be increased to 38.47% after the optimal utilization of lignin gasification and steam reforming for hydrogen production. The total exergy efficiency of the system increased from 30.48% to 34.43% after optimization, and the exergy loss mainly came from the concentration of precursor dilute solution. Global warming potential in environmental impact is mostly affected by the production process. Poplar wood was used as raw material in the process of ethanol production from cellulosic biomass. The simulation results showed that 827.4 kg of pretreatment mixture, 450.6 kg of fermentation broth, and 24.8 kg of ethanol were produced per 100 kg of biomass. The power output of boiler combustion reached 94.1 MJ, the unit power consumption in the process was 174.9 MJ, and the energy conversion rate was 33.5%. The environmental impact was mainly concentrated in the production process and agricultural processes. On the basis of the original biomass pyrolysis to liquid fuel, the enzymatic hydrolysis lignin residue produced by cellulose fermentation to produce ethanol was used as the pyrolysis raw material, and the fermentation and pyrolysis processes were coupled. In the coupled process, 24.8 kg ethanol and 4.78 kg upgraded liquid fuel were produced per 100 kg biomass with an energy conversion rate of 35.13%.

Keywords: biomass conversion, biofuel, process optimization, life cycle assessment

Procedia PDF Downloads 67
27401 A Comparison of the Environmental Impacts of Edible and Non-Edible Oil Crops in Biodiesel Production

Authors: Halit Tutar, Omer Eren, Oguz Parlakay

Abstract:

The demand for food and energy of mankind has been increasing every passing day. Renewable energy sources have been pushed to forefront since fossil fuels will be run out in the near future and their negative effects to the environment. As in every sector, the transport sector benefits from biofuel (biogas, bioethanol and biodiesel) one of the renewable energy sources as well. The edible oil crops are used in production of biodiesel. Utilizing edible oil crops as renewable energy source may raise a debate in the view of that there is a shortage in raw material of edible oil crops in Turkey. Researches related to utilization of non-edible oil crops as biodiesel raw materials have been recently increased, and especially studies related to their vegetative production and adaptation have been accelerated in Europe. In this review edible oil crops are compared to non-edible oil crops for biodiesel production in the sense of biodiesel production, some features of non-edible oil crops and their harmful emissions to environment are introduced. The data used in this study, obtained from articles, thesis, reports relevant to edible and non edible oil crops in biodiesel.

Keywords: biodiesel, edible oil crops, environmental impacts, renewable energy

Procedia PDF Downloads 427
27400 The Application and Relevance of Costing Techniques in Service Oriented Business Organisations: A Review of the Activity-Based Costing (ABC) Technique

Authors: Udeh Nneka Evelyn

Abstract:

The shortcomings of traditional costing system, in terms of validity, accuracy, consistency and relevance increased the need for modern management accounting system. ABC (Activity-Based Costing) can be used as a modern tool for planning, control and decision making for management. Past studies on activity-based costing (ABC) system have focused on manufacturing firms thereby making the studies on service firms scanty to some extent. This paper reviewed the application and relevance of activity-based costing techniques in service oriented business organisations by employing a qualitative research method which relied heavily on literature review of past and current relevant articles focusing on activity-based costing (ABC). Findings suggest that ABC is not only appropriate for use in a manufacturing environment; it is also most appropriate for service organizations such as financial institutions, the healthcare industry, and government organizations. In fact, some banking and financial institutions have been applying the concept for years under other names. One of them is unit costing, which is used to calculate the cost of banking services by determining the cost and consumption of each unit of output of functions required to deliver the service. ABC in very basic terms may provide very good payback for businesses. Some of the benefits that relate directly to the financial services industry are: Identification of the most profitable customers; more accurate product and service pricing; increase product profitability; well-organized process costs.

Keywords: profitability, activity-based costing (ABC), management accounting, manufacture

Procedia PDF Downloads 575
27399 Cash Management in a Cashless Economy of a Developing Nation, Problems and Prospects: Nigeria a Case Study

Authors: Ossai Paulinus Edwin

Abstract:

Cash Management is a broad area having to do with the collection, concentration and disbursement of cash including measuring the level of liquidity and managing the cash balance and Short-Term Investments. Cash Management involves the efficient collection and disbursement of cash and cash equivalents. It also includes management of marketable securities because, in modern Terminology, money comprises marketable securities and actual cash in hand or in a bank. This cash management is concerned with management of cash inflow and cash outflow of a business especially as it concerns a developing nation like Nigeria. The paper throws light on the impact of cashless policy in Nigeria as it was introduced by the Central Bank of Nigeria (CBN) in December 2011 and was kick started in Lagos in January 2012. Survey research was adopted with the questionnaires as data collection instrument. Responses show that cashless policy if adopted generally shall increase employment opportunities, reduce cash related robbery thereby reducing risk of carrying cash; it shall also reduce cash related corruption and attract more foreign investors to the country. It is expected that the introduction of cashless policy in Nigeria is a step in the right direction as it shall bring about modernization of Nigeria payment system, reduction in the cost of banking services, reduction in high security and safety risk and also curb banking related corruptions.

Keywords: cashless economy, cash management, cashless policy, e-banking, Nigeria

Procedia PDF Downloads 382
27398 Assessment of Drug Delivery Systems from Molecular Dynamic Perspective

Authors: M. Rahimnejad, B. Vahidi, B. Ebrahimi Hoseinzadeh, F. Yazdian, P. Motamed Fath, R. Jamjah

Abstract:

In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane.

Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier

Procedia PDF Downloads 334
27397 Artificial Neural Networks Controller for Active Power Filter Connected to a Photovoltaic Array

Authors: Rachid Dehini, Brahim Berbaoui

Abstract:

The main objectives of shunt active power filter (SAPF) is to preserve the power system from unwanted harmonic currents produced by nonlinear loads, as well as to compensate the reactive power. The aim of this paper is to present a (PAPF) supplied by the Photovoltaic cells ,in such a way that the (PAPF) feeds the linear and nonlinear loads by harmonics currents and the excess of the energy is injected into the power system. In order to improve the performances of conventional (PAPF) This paper also proposes artificial neural networks (ANN) for harmonics identification and DC link voltage control. The simulation study results of the new (SAPF) identification technique are found quite satisfactory by assuring good filtering characteristics and high system stability.

Keywords: SAPF, harmonics current, photovoltaic cells, MPPT, artificial neural networks (ANN)

Procedia PDF Downloads 325
27396 On the Exergy Analysis of the Aluminum Smelter

Authors: Ayoola T. Brimmo, Mohamed I. Hassan

Abstract:

The push to mitigate the aluminum smelting industry’s enormous energy consumption and high emission releases is now even more persistent with the recent climate change happenings. Common approaches to achieve this have been focused on improving energy efficiency in the pot line and cast house sections of the smelter. However, the conventional energy efficiency analyses are based on the first law of thermodynamics, which do not shed proper light on the smelter’s degradation of energy. This just gives a general idea of the furnace’s performance with no reference to locations where improvement is a possibility based on the second law of thermodynamics. In this study, we apply exergy analyses on the pot line and cast house sections of the smelter to identify the locality and causes of energy degradation. The exergy analyses, which are based on a real life smelter conditions, highlight the possible locations for technology improvement in a typical smelter. With this established, methods of minimizing the smelter’s exergy losses are assessed.

Keywords: exergy analysis, electrolytic cell, furnace, heat transfer

Procedia PDF Downloads 283
27395 The Impact of System and Data Quality on Organizational Success in the Kingdom of Bahrain

Authors: Amal M. Alrayes

Abstract:

Data and system quality play a central role in organizational success, and the quality of any existing information system has a major influence on the effectiveness of overall system performance.Given the importance of system and data quality to an organization, it is relevant to highlight their importance on organizational performance in the Kingdom of Bahrain. This research aims to discover whether system quality and data quality are related, and to study the impact of system and data quality on organizational success. A theoretical model based on previous research is used to show the relationship between data and system quality, and organizational impact. We hypothesize, first, that system quality is positively associated with organizational impact, secondly that system quality is positively associated with data quality, and finally that data quality is positively associated with organizational impact. A questionnaire was conducted among public and private organizations in the Kingdom of Bahrain. The results show that there is a strong association between data and system quality, that affects organizational success.

Keywords: data quality, performance, system quality, Kingdom of Bahrain

Procedia PDF Downloads 487
27394 The Protection of Assets in the Crisis Management Processes

Authors: Jiri Barta

Abstract:

This paper deals with the prevention and management of emergencies. It focuses on the protection of assets of the critical infrastructure entities that are important to preventing, preparing for and management of emergencies and crisis situations. The paper defines assets and specifies their use and place in the process of crisis management and planning. Critical assets that are protected from the negative effects of emergency or crisis situation we can use in crisis management and response. This basic rule applies mainly to the substantial assets used in the protection of critical infrastructure processes.

Keywords: asset, continuity, critical infrastructure, crisis management process

Procedia PDF Downloads 511
27393 A New Model for Production Forecasting in ERP

Authors: S. F. Wong, W. I. Ho, B. Lin, Q. Huang

Abstract:

ERP has been used in many enterprises for management, the accuracy of the production forecasting module is vital to the decision making of the enterprise, and the profit is affected directly. Therefore, enhancing the accuracy of the production forecasting module can also increase the efficiency and profitability. To deal with a lot of data, a suitable, reliable and accurate statistics model is necessary. LSSVM and Grey System are two main models to be studied in this paper, and a case study is used to demonstrate how the combination model is effective to the result of forecasting.

Keywords: ERP, grey system, LSSVM, production forecasting

Procedia PDF Downloads 454
27392 Governance Challenges for the Management of Water Resources in Agriculture: The Italian Way

Authors: Silvia Baralla, Raffaella Zucaro, Romina Lorenzetti

Abstract:

Water management needs to cope with economic, societal, and environmental changes. This could be guaranteed through 'shifting from government to governance'. In the last decades, it was applied in Europe through and within important legislative pillars (Water Framework Directive and Common Agricultural Policy) and their measures focused on resilience and adaptation to climate change, with particular attention to the creation of synergies among policies and all the actors involved at different levels. Within the climate change context, the agricultural sector can play, through sustainable water management, a leading role for climate-resilient growth and environmental integrity. A recent analysis on the water management governance of different countries identified some common gaps dealing with administrative, policy, information, capacity building, funding, objective, and accountability. The ability of a country to fill these gaps is an essential requirement to make some of the changes requested by Europe, in particular the improvement of the agro-ecosystem resilience to the effect of climatic change, supporting green and digital transitions, and sustainable water use. This research aims to contribute in sharing examples of water governances and related advantages useful to fill the highlighted gaps. Italy has developed a strong and exhaustive model of water governance in order to react with strategic and synergic actions since it is one of the European countries most threatened by climate change and its extreme events (drought, floods). In particular, the Italian water governance model was able to overcome several gaps, specifically as concerns the water use in agriculture, adopting strategies as a systemic/integrated approach, the stakeholder engagement, capacity building, the improvement of planning and monitoring ability, and an adaptive/resilient strategy for funding activities. They were carried out, putting in place regulatory, structural, and management actions. Regulatory actions include both the institution of technical committees grouping together water decision-makers and the elaboration of operative manuals and guidelines by means of a participative and cross-cutting approach. Structural actions deal with the funding of interventions within European and national funds according to the principles of coherence and complementarity. Finally, management actions regard the introduction of operational tools to support decision-makers in order to improve planning and monitoring ability. In particular, two cross-functional and interoperable web databases were introduced: SIGRIAN (National Information System for Water Resources Management in Agriculture) and DANIA (National Database of Investments for Irrigation and the Environment). Their interconnection allows to support sustainable investments, taking into account the compliance about irrigation volumes quantified in SIGRIAN, ensuring a high level of attention on water saving, and monitoring the efficiency of funding. Main positive results from the Italian water governance model deal with a synergic and coordinated work at the national, regional, and local level among institutions, the transparency on water use in agriculture, a deeper understanding from the stakeholder side of the importance of their roles and of their own potential benefits and the capacity to guarantee continuity to this model, through a sensitization process and the combined use of management operational tools.

Keywords: agricultural sustainability, governance model, water management, water policies

Procedia PDF Downloads 115