Search results for: hybrid forecasting models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8577

Search results for: hybrid forecasting models

5097 Design of Traffic Counting Android Application with Database Management System and Its Comparative Analysis with Traditional Counting Methods

Authors: Muhammad Nouman, Fahad Tiwana, Muhammad Irfan, Mohsin Tiwana

Abstract:

Traffic congestion has been increasing significantly in major metropolitan areas as a result of increased motorization, urbanization, population growth and changes in the urban density. Traffic congestion compromises efficiency of transport infrastructure and causes multiple traffic concerns; including but not limited to increase of travel time, safety hazards, air pollution, and fuel consumption. Traffic management has become a serious challenge for federal and provincial governments, as well as exasperated commuters. Effective, flexible, efficient and user-friendly traffic information/database management systems characterize traffic conditions by making use of traffic counts for storage, processing, and visualization. While, the emerging data collection technologies continue to proliferate, its accuracy can be guaranteed through the comparison of observed data with the manual handheld counters. This paper presents the design of tablet based manual traffic counting application and framework for development of traffic database management system for Pakistan. The database management system comprises of three components including traffic counting android application; establishing online database and its visualization using Google maps. Oracle relational database was chosen to develop the data structure whereas structured query language (SQL) was adopted to program the system architecture. The GIS application links the data from the database and projects it onto a dynamic map for traffic conditions visualization. The traffic counting device and example of a database application in the real-world problem provided a creative outlet to visualize the uses and advantages of a database management system in real time. Also, traffic data counts by means of handheld tablet/ mobile application can be used for transportation planning and forecasting.

Keywords: manual count, emerging data sources, traffic information quality, traffic surveillance, traffic counting device, android; data visualization, traffic management

Procedia PDF Downloads 193
5096 Structural Characterization of TIR Domains Interaction

Authors: Sara Przetocka, Krzysztof Żak, Grzegorz Dubin, Tadeusz Holak

Abstract:

Toll-like receptors (TLRs) play central role in the innate immune response and inflammation by recognizing pathogen-associated molecular patterns (PAMPs). A fundamental basis of TLR signalling is dependent upon the recruitment and association of adaptor molecules that contain the structurally conserved Toll/interleukin-1 receptor (TIR) domain. MyD88 (myeloid differentiation primary response gene 88) is the universal adaptor for TLRs and cooperates with Mal (MyD88 adapter-like protein, also known as TIRAP) in TLR4 response which is predominantly used in inflammation, host defence and carcinogenesis. Up to date two possible models of MyD88, Mal and TLR4 interactions have been proposed. The aim of our studies is to confirm or abolish presented models and accomplish the full structural characterisation of TIR domains interaction. Using molecular cloning methods we obtained several construct of MyD88 and Mal TIR domain with GST or 6xHis tag. Gel filtration method as well as pull-down analysis confirmed that recombinant TIR domains from MyD88 and Mal are binding in complexes. To examine whether obtained complexes are homo- or heterodimers we carried out cross-linking reaction of TIR domains with BS3 compound combined with mass spectrometry. To investigate which amino acid residues are involved in this interaction the NMR titration experiments were performed. 15N MyD88-TIR solution was complemented with non-labelled Mal-TIR. The results undoubtedly indicate that MyD88-TIR interact with Mal-TIR. Moreover 2D spectra demonstrated that simultaneously Mal-TIR self-dimerization occurs which is necessary to create proper scaffold for Mal-TIR and MyD88-TIR interaction. Final step of this study will be crystallization of MyD88 and Mal TIR domains complex. This crystal structure and characterisation of its interface will have an impact in understanding the TLR signalling pathway and possibly will be used in development of new anti-cancer treatment.

Keywords: cancer, MyD88, TIR domains, Toll-like receptors

Procedia PDF Downloads 296
5095 FT-NIR Method to Determine Moisture in Gluten Free Rice-Based Pasta during Drying

Authors: Navneet Singh Deora, Aastha Deswal, H. N. Mishra

Abstract:

Pasta is one of the most widely consumed food products around the world. Rapid determination of the moisture content in pasta will assist food processors to provide online quality control of pasta during large scale production. Rapid Fourier transform near-infrared method (FT-NIR) was developed for determining moisture content in pasta. A calibration set of 150 samples, a validation set of 30 samples and a prediction set of 25 samples of pasta were used. The diffuse reflection spectra of different types of pastas were measured by FT-NIR analyzer in the 4,000-12,000 cm-1 spectral range. Calibration and validation sets were designed for the conception and evaluation of the method adequacy in the range of moisture content 10 to 15 percent (w.b) of the pasta. The prediction models based on partial least squares (PLS) regression, were developed in the near-infrared. Conventional criteria such as the R2, the root mean square errors of cross validation (RMSECV), root mean square errors of estimation (RMSEE) as well as the number of PLS factors were considered for the selection of three pre-processing (vector normalization, minimum-maximum normalization and multiplicative scatter correction) methods. Spectra of pasta sample were treated with different mathematic pre-treatments before being used to build models between the spectral information and moisture content. The moisture content in pasta predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (R2 = 0.983), which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of moisture content in pasta. The best calibration model was developed with min-max normalization (MMN) spectral pre-processing (R2 = 0.9775). The MMN pre-processing method was found most suitable and the maximum coefficient of determination (R2) value of 0.9875 was obtained for the calibration model developed.

Keywords: FT-NIR, pasta, moisture determination, food engineering

Procedia PDF Downloads 258
5094 Challenges and Pedagogical Strategies in Teaching Chemical Bonding: Perspectives from Moroccan Educators

Authors: Sara Atibi, Azzeddine Atibi, Salim Ahmed, Khadija El Kababi

Abstract:

The concept of chemical bonding is fundamental in chemistry education, ubiquitous in school curricula, and essential to numerous topics in the field. Mastery of this concept enables students to predict and explain the physical and chemical properties of substances. However, chemical bonding is often regarded as one of the most complex concepts for secondary and higher education students to comprehend, due to the underlying complex theory and the use of abstract models. Teachers also encounter significant challenges in conveying this concept effectively. This study aims to identify the difficulties and alternative conceptions faced by Moroccan secondary school students in learning about chemical bonding, as well as the pedagogical strategies employed by teachers to overcome these obstacles. A survey was conducted involving 150 Moroccan secondary school physical science teachers, using a structured questionnaire comprising closed, open-ended, and multiple-choice questions. The results reveal frequent student misconceptions, such as the octet rule, molecular geometry, and molecular polarity. Contributing factors to these misconceptions include the abstract nature of the concepts, the use of models, and teachers' difficulties in explaining certain aspects of chemical bonding. The study proposes improvements for teaching chemical bonding, such as integrating information and communication technologies (ICT), diversifying pedagogical tools, and considering students' pre-existing conceptions. These recommendations aim to assist teachers, curriculum developers, and textbook authors in making chemistry more accessible and in addressing students' misconceptions.

Keywords: chemical bonding, alternative conceptions, chemistry education, pedagogical strategies

Procedia PDF Downloads 25
5093 Understanding Space, Citizenship and Assimilation in the Context of Migration in North-Eastern Region of India

Authors: Mukunda Upadhyay, Rakesh Mishra, Rajni Singh

Abstract:

This paper is an attempt to understand the abstract concept of space, citizenship and migration in the north-eastern region. In the twentieth century, researchers and thinkers related citizenship and migration on national models. The national models of jus sulis and jus sangunis provide scope of space and rights to only those who are either born in the territory or either share the common descent. Space ensures rights and citizenship ensures space and for many migrants, citizenship is the ultimate goal in the host country. Migrants with the intention of settling down in the destination region, begin to adapt and assimilate in their new homes. In many cases, migrants may also retain the culture and values of the place of origin. In such cases the difference in the degree of retention and assimilation may determine the chances of conflict between the host society and migrants. Such conflicts are fueled by political aspirations of few individuals on both the sides. The North-Eastern part of India is a mixed community with many linguistic and religious groups sharing a common Geo-political space. Every community has its own unique history, culture and identity. Since the last half of the nineteenth century, this region has been experiencing both internal migration from other states and immigration from the neighboring countries which has resulted in the interactions of various cultures and ethnicities. With the span of time, migration has taken bitter form with problems concentrated around acquiring rights through space and citizenship. Political tensions resulted by host hostility and migrants resistance has ruined the social order in few areas. In order to resolve these issues in this area proper intervention has to be carried out by the involvement of the National and International community.

Keywords: space, citizenship, assimilation, migration, rights

Procedia PDF Downloads 418
5092 Microwave Assisted Synthesis of Ag/ZnO Sub-Microparticles Deposited on Various Cellulose Surfaces

Authors: Lukas Munster, Pavel Bazant, Ivo Kuritka

Abstract:

Zinc oxide sub-micro particles and metallic silver nano particles (Ag/ZnO) were deposited on micro crystalline cellulose surface by a fast, simple and environmentally friendly one-pot microwave assisted solvo thermal synthesis in an open vessel system equipped with an external reflux cooler. In order to increase the interaction between the surface of cellulose and the precipitated Ag/ZnO particles, oxidized form of cellulose (cellulose dialdehyde, DAC) prepared by periodate oxidation of micro crystalline cellulose was added to the reaction mixture of Ag/ZnO particle precursors and untreated micro crystalline cellulose. The structure and morphology of prepared hybrid powder materials were analysed by X-ray diffraction (XRD), energy dispersive analysis (EDX), scanning electron microscopy (SEM) and nitrogen absorption method (BET). Microscopic analysis of the prepared materials treated by ultra-sonication showed that Ag/ZnO particles deposited on the cellulose/DAC sample exhibit increased adhesion to the surface of the cellulose substrate which can be explained by the DAC adhesive effect in comparison with the material prepared without DAC addition.

Keywords: microcrystalline cellulose, microwave synthesis, silver nanoparticles, zinc oxide sub-microparticles, cellulose dialdehyde

Procedia PDF Downloads 478
5091 In Exploring Local Community Empowerment and Participation in Blue Tourism Activities

Authors: Philasande Runeli, Lynn Jonas

Abstract:

Empowerment suggests participation is working collaboratively towards shared objectives, obtaining resources and critically analysing one’s social and political differences are all necessary steps in the empowering process. The aim of leadership empowerment is to give a team the resources and encouragement they need to work more productively together. This study explores potential ways to increase local empowerment and participation in blue tourism activities in an urban coastal context in South Africa. Blue tourism, which refers to the application of sustainability practices to tourism activities in coastal and marine settings, has the potential to significantly improve socioeconomic conditions in coastal communities. However, people's engagement in these activities remain restricted. The study uses a constructivist research paradigm and employs a qualitative method, conducting semi-structured interviews with community members from three different communities gaining in-depth perspectives from them. The study's goal is to identify impediments and potential for community participation in blue tourism, as well as offering practical solutions for promoting long-term and inclusive participation. Initial key findings highlight critical barriers to participation, emphasising the importance of skills development, policy alignment with local needs, and public-private partnerships as key components of community empowerment. This study offers policymakers and stakeholders recommendations for promoting inclusive blue tourism initiatives. The recommended initiatives emphasise the significance of skills development, infrastructure investment, and sustainable tourism models in ensuring economic empowerment and environmental conservation in urban coastal communities in developing states.

Keywords: blue tourism, community empowerment and participation, sustainable tourism models, inclusive participation

Procedia PDF Downloads 20
5090 Layer-Level Feature Aggregation Network for Effective Semantic Segmentation of Fine-Resolution Remote Sensing Images

Authors: Wambugu Naftaly, Ruisheng Wang, Zhijun Wang

Abstract:

Models based on convolutional neural networks (CNNs), in conjunction with Transformer, have excelled in semantic segmentation, a fundamental task for intelligent Earth observation using remote sensing (RS) imagery. Nonetheless, tokenization in the Transformer model undermines object structures and neglects inner-patch local information, whereas CNNs are unable to simulate global semantics due to limitations inherent in their convolutional local properties. The integration of the two methodologies facilitates effective global-local feature aggregation and interactions, potentially enhancing segmentation results. Inspired by the merits of CNNs and Transformers, we introduce a layer-level feature aggregation network (LLFA-Net) to address semantic segmentation of fine-resolution remote sensing (FRRS) images for land cover classification. The simple yet efficient system employs a transposed unit that hierarchically utilizes dense high-level semantics and sufficient spatial information from various encoder layers through a layer-level feature aggregation module (LLFAM) and models global contexts using structured Transformer blocks. Furthermore, the decoder aggregates resultant features to generate rich semantic representation. Extensive experiments on two public land cover datasets demonstrate that our proposed framework exhibits competitive performance relative to the most recent frameworks in semantic segmentation.

Keywords: land cover mapping, semantic segmentation, remote sensing, vision transformer networks, deep learning

Procedia PDF Downloads 2
5089 Analytical Modelling of the Moment-Rotation Behavior of Top and Seat Angle Connection with Stiffeners

Authors: Merve Sagiroglu

Abstract:

The earthquake-resistant steel structure design is required taking into account the behavior of beam-column connections besides the basic properties of the structure such as material and geometry. Beam-column connections play an important role in the behavior of frame systems. Taking into account the behaviour of connection in analysis and design of steel frames is important due to presenting the actual behavior of frames. So, the behavior of the connections should be well known. The most important force which transmitted by connections in the structural system is the moment. The rotational deformation is customarily expressed as a function of the moment in the connection. So, the moment-rotation curves are the best expression of behaviour of the beam-to-column connections. The designed connections form various moment-rotation curves according to the elements of connection and the shape of placement. The only way to achieve this curve is with real-scale experiments. The experiments of some connections have been carried out partially and are formed in the databank. It has been formed the models using this databank to express the behavior of connection. In this study, theoretical studies have been carried out to model a real behavior of the top and seat angles connections with angles. Two stiffeners in the top and seat angle to increase the stiffness of the connection, and two stiffeners in the beam web to prevent local buckling are used in this beam-to-column connection. Mathematical models have been performed using the database of the beam-to-column connection experiments previously by authors. Using the data of the tests, it has been aimed that analytical expressions have been developed to obtain the moment-rotation curve for the connection details whose test data are not available. The connection has been dimensioned in various shapes and the effect of the dimensions of the connection elements on the behavior has been examined.

Keywords: top and seat angle connection, stiffener, moment-rotation curves, analytical study

Procedia PDF Downloads 180
5088 Supply Network Design for Production-Distribution of Fish: A Sustainable Approach Using Mathematical Programming

Authors: Nicolás Clavijo Buriticá, Laura Viviana Triana Sanchez

Abstract:

This research develops a productive context associated with the aquaculture industry in northern Tolima-Colombia, specifically in the town of Lerida. Strategic aspects of chain of fish Production-Distribution, especially those related to supply network design of an association devoted to cultivating, farming, processing and marketing of fish are addressed. This research is addressed from a special approach of Supply Chain Management (SCM) which guides management objectives to the system sustainability; this approach is called Sustainable Supply Chain Management (SSCM). The network design of fish production-distribution system is obtained for the case study by two mathematical programming models that aims to maximize the economic benefits of the chain and minimize total supply chain costs, taking into account restrictions to protect the environment and its implications on system productivity. The results of the mathematical models validated in the productive situation of the partnership under study, called Asopiscinorte shows the variation in the number of open or closed locations in the supply network that determines the final network configuration. This proposed result generates for the case study an increase of 31.5% in the partial productivity of storage and processing, in addition to possible favorable long-term implications, such as attending an agile or not a consumer area, increase or not the level of sales in several areas, to meet in quantity, time and cost of work in progress and finished goods to various actors in the chain.

Keywords: Sustainable Supply Chain, mathematical programming, aquaculture industry, Supply Chain Design, Supply Chain Configuration

Procedia PDF Downloads 539
5087 Faster Pedestrian Recognition Using Deformable Part Models

Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia

Abstract:

Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.

Keywords: autonomous vehicles, deformable part model, dpm, pedestrian detection, real time

Procedia PDF Downloads 281
5086 An Elasto-Viscoplastic Constitutive Model for Unsaturated Soils: Numerical Implementation and Validation

Authors: Maria Lazari, Lorenzo Sanavia

Abstract:

Mechanics of unsaturated soils has been an active field of research in the last decades. Efficient constitutive models that take into account the partial saturation of soil are necessary to solve a number of engineering problems e.g. instability of slopes and cuts due to heavy rainfalls. A large number of constitutive models can now be found in the literature that considers fundamental issues associated with the unsaturated soil behaviour, like the volume change and shear strength behaviour with suction or saturation changes. Partially saturated soils may either expand or collapse upon wetting depending on the stress level, and it is also possible that a soil might experience a reversal in the volumetric behaviour during wetting. Shear strength of soils also changes dramatically with changes in the degree of saturation, and a related engineering problem is slope failures caused by rainfall. There are several states of the art reviews over the last years for studying the topic, usually providing a thorough discussion of the stress state, the advantages, and disadvantages of specific constitutive models as well as the latest developments in the area of unsaturated soil modelling. However, only a few studies focused on the coupling between partial saturation states and time effects on the behaviour of geomaterials. Rate dependency is experimentally observed in the mechanical response of granular materials, and a viscoplastic constitutive model is capable of reproducing creep and relaxation processes. Therefore, in this work an elasto-viscoplastic constitutive model for unsaturated soils is proposed and validated on the basis of experimental data. The model constitutes an extension of an existing elastoplastic strain-hardening constitutive model capable of capturing the behaviour of variably saturated soils, based on energy conjugated stress variables in the framework of superposed continua. The purpose was to develop a model able to deal with possible mechanical instabilities within a consistent energy framework. The model shares the same conceptual structure of the elastoplastic laws proposed to deal with bonded geomaterials subject to weathering or diagenesis and is capable of modelling several kinds of instabilities induced by the loss of hydraulic bonding contributions. The novelty of the proposed formulation is enhanced with the incorporation of density dependent stiffness and hardening coefficients in order to allow the modeling of the pycnotropy behaviour of granular materials with a single set of material constants. The model has been implemented in the commercial FE platform PLAXIS, widely used in Europe for advanced geotechnical design. The algorithmic strategies adopted for the stress-point algorithm had to be revised to take into account the different approach adopted by PLAXIS developers in the solution of the discrete non-linear equilibrium equations. An extensive comparison between models with a series of experimental data reported by different authors is presented to validate the model and illustrate the capability of the newly developed model. After the validation, the effectiveness of the viscoplastic model is displayed by numerical simulations of a partially saturated slope failure of the laboratory scale and the effect of viscosity and degree of saturation on slope’s stability is discussed.

Keywords: PLAXIS software, slope, unsaturated soils, Viscoplasticity

Procedia PDF Downloads 225
5085 Perception of Public Transport Quality of Service among Regular Private Vehicle Users in Five European Cities

Authors: Juan de Ona, Esperanza Estevez, Rocío de Ona

Abstract:

Urban traffic levels can be reduced by drawing travelers away from private vehicles over to using public transport. This modal change can be achieved by either introducing restrictions on private vehicles or by introducing measures which increase people’s satisfaction with public transport. For public transport users, quality of service affects customer satisfaction, which, in turn, influences the behavioral intentions towards the service. This paper intends to identify the main attributes which influence the perception private vehicle users have about the public transport services provided in five European cities: Berlin, Lisbon, London, Madrid and Rome. Ordinal logit models have been applied to an online panel survey with a sample size of 2,500 regular private vehicle users (approximately 500 inhabitants per city). To achieve a comprehensive analysis and to deal with heterogeneity in perceptions, 15 models have been developed for the entire sample and 14 user segments. The results show differences between the cities and among the segments. Madrid was taken as reference city and results indicate that the inhabitants are satisfied with public transport in Madrid and that the most important public transport service attributes for private vehicle users are frequency, speed and intermodality. Frequency is an important attribute for all the segments, while speed and intermodality are important for most of the segments. An analysis by segments has identified attributes which, although not important in most cases, are relevant for specific segments. This study also points out important differences between the five cities. Findings from this study can be used to develop policies and recommendations for persuading.

Keywords: service quality, satisfaction, public transportation, private vehicle users, car users, segmentation, ordered logit

Procedia PDF Downloads 117
5084 A 'Systematic Literature Review' of Specific Types of Inventory Faced by the Management of Firms

Authors: Rui Brito

Abstract:

This contribution regards a literature review of inventory management that is a relevant topic for the firms, due to its important use of capital with implications in firm’s profitability within the complexity of a more competitive and globalized world. Firms look for small inventories in order to reduce holding costs, namely opportunity cost, warehousing and handling costs, deterioration and being out of style, but larger inventories are required by some reasons, such as customer service, ordering cost, transportation cost, supplier’s payment to reduce unit costs or to take advantage of price increase in the near future, and equipment setup cost. Thus, management shall address a trade-off between small inventories and larger inventories. This literature review concerns three types of inventory (spare parts, safety stock, and vendor) whose management usually is beyond the scope of logistics. The applied methodology consisted of an online search of databases regarding scientific documents in English, namely Elsevier, Springer, Emerald, Wiley, and Taylor & Francis, but excluding books except if edited, using search engines, such as Google Scholar and B-on. The search was based on three keywords/strings (themes) which had to be included just as in the article title, suggesting themes were very relevant to the researchers. The whole search period was between 2009 and 2018 with the aim of collecting between twenty and forty studies considered relevant within each of the key words/strings specified. Documents were sorted by relevance and to prevent the exclusion of the more recent articles, based on lower quantity of citations partially due to less time to be cited in new research articles, the search period was divided into two sub-periods (2009-2015 and 2016-2018). The number of surveyed articles by theme showed a variation from 40 to 200 and the number of citations of those articles showed a wider variation from 3 to 216. Selected articles from the three themes were analyzed and the first seven of the first sub-period and the first three of the second sub-period with more citations were read in full to make a synopsis of each article. Overall, the findings show that the majority of article types were models, namely mathematical, although with different sub-types for each theme. Almost all articles suggest further studies, with some mentioning it for their own author(s), which widen the diversity of the previous research. Identified research gaps concern the use of surveys to know which are the models more used by firms, the reasons for not using the models with more performance and accuracy, and which are the satisfaction levels with the outcomes of the inventories management and its effect on the improvement of the firm’s overall performance. The review ends with the limitations and contributions of the study.

Keywords: inventory management, safety stock, spare parts inventory, vendor managed inventory

Procedia PDF Downloads 96
5083 Multimodal Direct Neural Network Positron Emission Tomography Reconstruction

Authors: William Whiteley, Jens Gregor

Abstract:

In recent developments of direct neural network based positron emission tomography (PET) reconstruction, two prominent architectures have emerged for converting measurement data into images: 1) networks that contain fully-connected layers; and 2) networks that primarily use a convolutional encoder-decoder architecture. In this paper, we present a multi-modal direct PET reconstruction method called MDPET, which is a hybrid approach that combines the advantages of both types of networks. MDPET processes raw data in the form of sinograms and histo-images in concert with attenuation maps to produce high quality multi-slice PET images (e.g., 8x440x440). MDPET is trained on a large whole-body patient data set and evaluated both quantitatively and qualitatively against target images reconstructed with the standard PET reconstruction benchmark of iterative ordered subsets expectation maximization. The results show that MDPET outperforms the best previously published direct neural network methods in measures of bias, signal-to-noise ratio, mean absolute error, and structural similarity.

Keywords: deep learning, image reconstruction, machine learning, neural network, positron emission tomography

Procedia PDF Downloads 111
5082 A Comprehensive Finite Element Model for Incremental Launching of Bridges: Optimizing Construction and Design

Authors: Mohammad Bagher Anvari, Arman Shojaei

Abstract:

Incremental launching, a widely adopted bridge erection technique, offers numerous advantages for bridge designers. However, accurately simulating and modeling the dynamic behavior of the bridge during each step of the launching process proves to be tedious and time-consuming. The perpetual variation of internal forces within the deck during construction stages adds complexity, exacerbated further by considerations of other load cases, such as support settlements and temperature effects. As a result, there is an urgent need for a reliable, simple, economical, and fast algorithmic solution to model bridge construction stages effectively. This paper presents a novel Finite Element (FE) model that focuses on studying the static behavior of bridges during the launching process. Additionally, a simple method is introduced to normalize all quantities in the problem. The new FE model overcomes the limitations of previous models, enabling the simulation of all stages of launching, which conventional models fail to achieve due to underlying assumptions. By leveraging the results obtained from the new FE model, this study proposes solutions to improve the accuracy of conventional models, particularly for the initial stages of bridge construction that have been neglected in previous research. The research highlights the critical role played by the first span of the bridge during the initial stages, a factor often overlooked in existing studies. Furthermore, a new and simplified model termed the "semi-infinite beam" model, is developed to address this oversight. By utilizing this model alongside a simple optimization approach, optimal values for launching nose specifications are derived. The practical applications of this study extend to optimizing the nose-deck system of incrementally launched bridges, providing valuable insights for practical usage. In conclusion, this paper introduces a comprehensive Finite Element model for studying the static behavior of bridges during incremental launching. The proposed model addresses limitations found in previous approaches and offers practical solutions to enhance accuracy. The study emphasizes the importance of considering the initial stages and introduces the "semi-infinite beam" model. Through the developed model and optimization approach, optimal specifications for launching nose configurations are determined. This research holds significant practical implications and contributes to the optimization of incrementally launched bridges, benefiting both the construction industry and bridge designers.

Keywords: incremental launching, bridge construction, finite element model, optimization

Procedia PDF Downloads 103
5081 Face Recognition Using Eigen Faces Algorithm

Authors: Shweta Pinjarkar, Shrutika Yawale, Mayuri Patil, Reshma Adagale

Abstract:

Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this, demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application. Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this , demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application.

Keywords: face detection, face recognition, eigen faces, algorithm

Procedia PDF Downloads 361
5080 Play Based Practices in Early Childhood Curriculum: The Contribution of High Scope, Modern School Movement and Pedagogy of Participation

Authors: Dalila Lino

Abstract:

The power of play for learning and development in early childhood education is beyond question. The main goal of this study is to analyse how three contemporary early childhood pedagogical approaches, the High Scope, the Modern School Movement (MEM) and the Pedagogy of Participation integrate play in their curriculum development. From this main goal the following objectives emerged: (i) to characterize how play is integrated in the daily routine of the pedagogical approaches under study; (ii) to analyse the teachers’ role during children’s playing situations; (iii) to identify the types of play that children are more often involved. The methodology used is the qualitative approach and is situated under the interpretative paradigm. Data is collected through semi-structured interviews to 30 preschool teachers and through observations of typical daily routines. The participants are 30 Portuguese preschool classrooms attending children from 3 to 6 years and working with the High Scope curriculum (10 classrooms), the MEM (10 classrooms) and the Pedagogy of Participation (10 classrooms). The qualitative method of content analysis was used to analyse the data. To ensure confidentiality, no information is disclosed without participants' consent, and the interviews were transcribed and sent to the participants for a final revision. The results show that there are differences how play is integrated and promoted in the three pedagogical approaches. The teachers’ role when children are at play varies according the pedagogical approach adopted, and also according to the teachers’ understanding about the meaning of play. The study highlights the key role that early childhood curriculum models have to promote opportunities for children to play, and therefore to be involved in meaningful learning.

Keywords: curriculum models, early childhood education, pedagogy, play

Procedia PDF Downloads 207
5079 A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation

Authors: Zhi Zhu, Boquan Zhang, Tian Jing, Jingjing Li, Tao Wang

Abstract:

Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation.

Keywords: discrete event simulation, data assimilation, particle filter, model and data-driven

Procedia PDF Downloads 15
5078 An Exploratory Study of the Student’s Learning Experience by Applying Different Tools for e-Learning and e-Teaching

Authors: Angel Daniel Muñoz Guzmán

Abstract:

E-learning is becoming more and more common every day. For online, hybrid or traditional face-to-face programs, there are some e-teaching platforms like Google classroom, Blackboard, Moodle and Canvas, and there are platforms for full e-learning like Coursera, edX or Udemy. These tools are changing the way students acquire knowledge at schools; however, in today’s changing world that is not enough. As students’ needs and skills change and become more complex, new tools will need to be added to keep them engaged and potentialize their learning. This is especially important in the current global situation that is changing everything: the Covid-19 pandemic. Due to Covid-19, education had to make an unexpected switch from face-to-face courses to digital courses. In this study, the students’ learning experience is analyzed by applying different e-tools and following the Tec21 Model and a flexible and digital model, both developed by the Tecnologico de Monterrey University. The evaluation of the students’ learning experience has been made by the quantitative PrEmo method of emotions. Findings suggest that the quantity of e-tools used during a course does not affect the students’ learning experience as much as how a teacher links every available tool and makes them work as one in order to keep the student engaged and motivated.

Keywords: student, experience, e-learning, e-teaching, e-tools, technology, education

Procedia PDF Downloads 110
5077 Processing and Characterization of Glass-Epoxy Composites Filled with Linz-Donawitz (LD) Slag

Authors: Pravat Ranjan Pati, Alok Satapathy

Abstract:

Linz-Donawitz (LD) slag a major solid waste generated in huge quantities during steel making. It comes from slag formers such as burned lime/dolomite and from oxidizing of silica, iron etc. while refining the iron into steel in the LD furnace. Although a number of ways for its utilization have been suggested, its potential as a filler material in polymeric matrices has not yet been explored. The present work reports the possible use of this waste in glass fiber reinforced epoxy composites as a filler material. Hybrid composites consisting of bi-directional e-glass-fiber reinforced epoxy filled with different LD slag content (0, 7.5, 15, 22.5 wt%) are prepared by simple hand lay-up technique. The composites are characterized in regard to their density, porosity, micro-hardness and strength properties. X-ray diffractography is carried out in order to ascertain the various phases present in LDS. This work shows that LD slag, in spite of being a waste, possesses fairly good filler characteristics as it modifies the strength properties and improves the composite micro-hardness of the polymeric resin.

Keywords: characterization, glass-epoxy composites, LD slag, waste utilization

Procedia PDF Downloads 392
5076 A Methodology to Integrate Data in the Company Based on the Semantic Standard in the Context of Industry 4.0

Authors: Chang Qin, Daham Mustafa, Abderrahmane Khiat, Pierre Bienert, Paulo Zanini

Abstract:

Nowadays, companies are facing lots of challenges in the process of digital transformation, which can be a complex and costly undertaking. Digital transformation involves the collection and analysis of large amounts of data, which can create challenges around data management and governance. Furthermore, it is also challenged to integrate data from multiple systems and technologies. Although with these pains, companies are still pursuing digitalization because by embracing advanced technologies, companies can improve efficiency, quality, decision-making, and customer experience while also creating different business models and revenue streams. In this paper, the issue that data is stored in data silos with different schema and structures is focused. The conventional approaches to addressing this issue involve utilizing data warehousing, data integration tools, data standardization, and business intelligence tools. However, these approaches primarily focus on the grammar and structure of the data and neglect the importance of semantic modeling and semantic standardization, which are essential for achieving data interoperability. In this session, the challenge of data silos in Industry 4.0 is addressed by developing a semantic modeling approach compliant with Asset Administration Shell (AAS) models as an efficient standard for communication in Industry 4.0. The paper highlights how our approach can facilitate the data mapping process and semantic lifting according to existing industry standards such as ECLASS and other industrial dictionaries. It also incorporates the Asset Administration Shell technology to model and map the company’s data and utilize a knowledge graph for data storage and exploration.

Keywords: data interoperability in industry 4.0, digital integration, industrial dictionary, semantic modeling

Procedia PDF Downloads 94
5075 Dutch Schools: Their Ventilation Systems

Authors: Milad Golshan, Wim Zeiler

Abstract:

During the last decade research was done to clarify the importance of good Indoor Air Quality in schools. As a result, measurements were undertaken in different types of schools to see whether naturally ventilated schools could provide adequate indoor conditions. Also, a comparison was made between schools with hybrid ventilation and those with complete mechanical ventilation systems. Recently a large survey was undertaken at 60 schools to establish the average current situation of schools in the Netherlands. The results of the questionnaires were compared with those of earlier measured schools. This allowed us to compare different types of schools as well as schools of different periods. Overall it leads to insights about the actual current perceived quality by the teachers as well as the pupils and enables to draw some conclusions about the typical performances of specific types of school ventilation systems. Also, the perceived thermal comfort and controllability were researched. It proved that in around 50% of the schools there were major complains about the indoor air quality causing concentration problems and headaches by the pupils at the end of class. Although the main focus of the latest research was focused more on the quality of recently finished nearly Zero Energy schools, this research showed that especially the main focus school be on the renovation and upgrading of the existing 10.000 schools in the Netherlands.

Keywords: school ventilation, indoor air quality, perceiver thermal comfort, comparison different types

Procedia PDF Downloads 222
5074 Price Compensation Mechanism with Unmet Demand for Public-Private Partnership Projects

Authors: Zhuo Feng, Ying Gao

Abstract:

Public-private partnership (PPP), as an innovative way to provide infrastructures by the private sector, is being widely used throughout the world. Compared with the traditional mode, PPP emerges largely for merits of relieving public budget constraint and improving infrastructure supply efficiency by involving private funds. However, PPP projects are characterized by large scale, high investment, long payback period, and long concession period. These characteristics make PPP projects full of risks. One of the most important risks faced by the private sector is demand risk because many factors affect the real demand. If the real demand is far lower than the forecasting demand, the private sector will be got into big trouble because operating revenue is the main means for the private sector to recoup the investment and obtain profit. Therefore, it is important to study how the government compensates the private sector when the demand risk occurs in order to achieve Pareto-improvement. This research focuses on price compensation mechanism, an ex-post compensation mechanism, and analyzes, by mathematical modeling, the impact of price compensation mechanism on payoff of the private sector and consumer surplus for PPP toll road projects. This research first investigates whether or not price compensation mechanisms can obtain Pareto-improvement and, if so, then explores boundary conditions for this mechanism. The research results show that price compensation mechanism can realize Pareto-improvement under certain conditions. Especially, to make the price compensation mechanism accomplish Pareto-improvement, renegotiation costs of the government and the private sector should be lower than a certain threshold which is determined by marginal operating cost and distortionary cost of the tax. In addition, the compensation percentage should match with the price cut of the private investor when demand drops. This research aims to provide theoretical support for the government when determining compensation scope under the price compensation mechanism. Moreover, some policy implications can also be drawn from the analysis for better risk-sharing and sustainability of PPP projects.

Keywords: infrastructure, price compensation mechanism, public-private partnership, renegotiation

Procedia PDF Downloads 179
5073 Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.

Keywords: artificial intelligence, machine learning, gait analysis, local binary pattern (LBP), statistical features, micro-electro-mechanical systems (MEMS), maximum relevance and minimum re-dundancy (MRMR)

Procedia PDF Downloads 22
5072 [Keynote Speaker]: Some Similarity Considerations for Design of Experiments for Hybrid Buoyant Aerial Vehicle

Authors: A. U. Haque, W. Asrar, A. A Omar, E. Sulaeman, J. S. M. Ali

Abstract:

Buoyancy force applied on deformable symmetric bodies can be estimated by using Archimedes Principle. Such bodies like ellipsoidal bodies have high volume to surface ratio and are isometrically scaled for mass, length, area and volume to follow square cube law. For scaling up such bodies, it is worthwhile to find out the scaling relationship between the other physical quantities that represent thermodynamic, structural and inertial response etc. So, dimensionless similarities to find an allometric scale can be developed by using Bukingham π theorem which utilizes physical dimensions of important parameters. Base on this fact, physical dependencies of buoyancy system are reviewed to find the set of physical variables for deformable bodies of revolution filled with expandable gas like helium. Due to change in atmospheric conditions, this gas changes its volume and this change can effect the stability of elongated bodies on the ground as well as in te air. Special emphasis was given on the existing similarity parameters which can be used in the design of experiments of such bodies whose shape is affected by the external force like a drag, surface tension and kinetic loads acting on the surface. All these similarity criteria are based on non-dimensionalization, which also needs to be consider for scaling up such bodies.

Keywords: Bukhigham pi theorem, similitude, scaling, buoyancy

Procedia PDF Downloads 376
5071 A Dynamic Model for Assessing the Advanced Glycation End Product Formation in Diabetes

Authors: Victor Arokia Doss, Kuberapandian Dharaniyambigai, K. Julia Rose Mary

Abstract:

Advanced Glycation End (AGE) products are the end products due to the reaction between excess reducing sugar present in diabetes and free amino group in protein lipids and nucleic acids. Thus, non-enzymic glycation of molecules such as hemoglobin, collagen, and other structurally and functionally important proteins add to the pathogenic complications such as diabetic retinopathy, neuropathy, nephropathy, vascular changes, atherosclerosis, Alzheimer's disease, rheumatoid arthritis, and chronic heart failure. The most common non-cross linking AGE, carboxymethyl lysine (CML) is formed by the oxidative breakdown of fructosyllysine, which is a product of glucose and lysine. CML is formed in a wide variety of tissues and is an index to assess the extent of glycoxidative damage. Thus we have constructed a mathematical and computational model that predicts the effect of temperature differences in vivo, on the formation of CML, which is now being considered as an important intracellular milieu. This hybrid model that had been tested for its parameter fitting and its sensitivity with available experimental data paves the way for designing novel laboratory experiments that would throw more light on the pathological formation of AGE adducts and in the pathophysiology of diabetic complications.

Keywords: advanced glycation end-products, CML, mathematical model, computational model

Procedia PDF Downloads 129
5070 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning

Authors: Shayan Mohajer Hamidi

Abstract:

Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.

Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning

Procedia PDF Downloads 75
5069 Modeling of Drug Distribution in the Human Vitreous

Authors: Judith Stein, Elfriede Friedmann

Abstract:

The injection of a drug into the vitreous body for the treatment of retinal diseases like wet aged-related macular degeneration (AMD) is the most common medical intervention worldwide. We develop mathematical models for drug transport in the vitreous body of a human eye to analyse the impact of different rheological models of the vitreous on drug distribution. In addition to the convection diffusion equation characterizing the drug spreading, we use porous media modeling for the healthy vitreous with a dense collagen network and include the steady permeating flow of the aqueous humor described by Darcy's law driven by a pressure drop. Additionally, the vitreous body in a healthy human eye behaves like a viscoelastic gel through the collagen fibers suspended in the network of hyaluronic acid and acts as a drug depot for the treatment of retinal diseases. In a completely liquefied vitreous, we couple the drug diffusion with the classical Navier-Stokes flow equations. We prove the global existence and uniqueness of the weak solution of the developed initial-boundary value problem describing the drug distribution in the healthy vitreous considering the permeating aqueous humor flow in the realistic three-dimensional setting. In particular, for the drug diffusion equation, results from the literature are extended from homogeneous Dirichlet boundary conditions to our mixed boundary conditions that describe the eye with the Galerkin's method using Cauchy-Schwarz inequality and trace theorem. Because there is only a small effective drug concentration range and higher concentrations may be toxic, the ability to model the drug transport could improve the therapy by considering patient individual differences and give a better understanding of the physiological and pathological processes in the vitreous.

Keywords: coupled PDE systems, drug diffusion, mixed boundary conditions, vitreous body

Procedia PDF Downloads 137
5068 Virtual Reality and Avatars in Education

Authors: Michael Brazley

Abstract:

Virtual Reality (VR) and 3D videos are the most current generation of learning technology today. Virtual Reality and 3D videos are being used in professional offices and Schools now for marketing and education. Technology in the field of design has progress from two dimensional drawings to 3D models, using computers and sophisticated software. Virtual Reality is being used as collaborative means to allow designers and others to meet and communicate inside models or VR platforms using avatars. This research proposes to teach students from different backgrounds how to take a digital model into a 3D video, then into VR, and finally VR with multiple avatars communicating with each other in real time. The next step would be to develop the model where people from three or more different locations can meet as avatars in real time, in the same model and talk to each other. This research is longitudinal, studying the use of 3D videos in graduate design and Virtual Reality in XR (Extended Reality) courses. The research methodology is a combination of quantitative and qualitative methods. The qualitative methods begin with the literature review and case studies. The quantitative methods come by way of student’s 3D videos, survey, and Extended Reality (XR) course work. The end product is to develop a VR platform with multiple avatars being able to communicate in real time. This research is important because it will allow multiple users to remotely enter your model or VR platform from any location in the world and effectively communicate in real time. This research will lead to improved learning and training using Virtual Reality and Avatars; and is generalizable because most Colleges, Universities, and many citizens own VR equipment and computer labs. This research did produce a VR platform with multiple avatars having the ability to move and speak to each other in real time. Major implications of the research include but not limited to improved: learning, teaching, communication, marketing, designing, planning, etc. Both hardware and software played a major role in project success.

Keywords: virtual reality, avatars, education, XR

Procedia PDF Downloads 98