Search results for: vehicle following models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8014

Search results for: vehicle following models

4594 Evaluation of a Surrogate Based Method for Global Optimization

Authors: David Lindström

Abstract:

We evaluate the performance of a numerical method for global optimization of expensive functions. The method is using a response surface to guide the search for the global optimum. This metamodel could be based on radial basis functions, kriging, or a combination of different models. We discuss how to set the cycling parameters of the optimization method to get a balance between local and global search. We also discuss the eventual problem with Runge oscillations in the response surface.

Keywords: expensive function, infill sampling criterion, kriging, global optimization, response surface, Runge phenomenon

Procedia PDF Downloads 578
4593 The Conjugated Polymers in improving the Organic Solar Cells Efficiency

Authors: Samia Moulebhar, Chahrazed Bendenia, Souhila Bendenia, Hanaa Merad-dib, Sarra Merabet, Sid Ahmed Khantar, Baghdad Hadri

Abstract:

The photovoltaic solar field is today experiencing exponential advancement with the exploitation of new technological sectors of nanoparticles, namely the field of solar cells based on organic polymer materials. These cells are flexible, easy to process and low cost. This work includes a presentation of the conjugated polymer materials used in the design of photovoltaic technology devices while determining their properties and then the models used for the modeling of thin film photovoltaic cells heterojunction.

Keywords: photovoltaic, cells, nanoparticles, organic

Procedia PDF Downloads 85
4592 Downscaling Daily Temperature with Neuroevolutionary Algorithm

Authors: Min Shi

Abstract:

State of the art research with Artificial Neural Networks for the downscaling of General Circulation Models (GCMs) mainly uses back-propagation algorithm as a training approach. This paper introduces another training approach of ANNs, Evolutionary Algorithm. The combined algorithm names neuroevolutionary (NE) algorithm. We investigate and evaluate the use of the NE algorithms in statistical downscaling by generating temperature estimates at interior points given information from a lattice of surrounding locations. The results of our experiments indicate that NE algorithms can be efficient alternative downscaling methods for daily temperatures.

Keywords: temperature, downscaling, artificial neural networks, evolutionary algorithms

Procedia PDF Downloads 349
4591 Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: transformers, generative ai, gene expression design, classification

Procedia PDF Downloads 59
4590 Simulation of Flow Patterns in Vertical Slot Fishway with Cylindrical Obstacles

Authors: Mohsen Solimani Babarsad, Payam Taheri

Abstract:

Numerical results of vertical slot fishways with and without cylinders study are presented. The simulated results and the measured data in the fishways are compared to validate the application of the model. This investigation is made using FLUENT V.6.3, a Computational Fluid Dynamics solver. Advantages of using these types of numerical tools are the possibility of avoiding the St.-Venant equations’ limitations, and turbulence can be modeled by means of different models such as the k-ε model. In general, the present study has demonstrated that the CFD model could be useful for analysis and design of vertical slot fishways with cylinders.

Keywords: slot Fish-way, CFD, k-ε model, St.-Venant equations’

Procedia PDF Downloads 363
4589 Implications of Circular Economy on Users Data Privacy: A Case Study on Android Smartphones Second-Hand Market

Authors: Mariia Khramova, Sergio Martinez, Duc Nguyen

Abstract:

Modern electronic devices, particularly smartphones, are characterised by extremely high environmental footprint and short product lifecycle. Every year manufacturers release new models with even more superior performance, which pushes the customers towards new purchases. As a result, millions of devices are being accumulated in the urban mine. To tackle these challenges the concept of circular economy has been introduced to promote repair, reuse and recycle of electronics. In this case, electronic devices, that previously ended up in landfills or households, are getting the second life, therefore, reducing the demand for new raw materials. Smartphone reuse is gradually gaining wider adoption partly due to the price increase of flagship models, consequently, boosting circular economy implementation. However, along with reuse of communication device, circular economy approach needs to ensure the data of the previous user have not been 'reused' together with a device. This is especially important since modern smartphones are comparable with computers in terms of performance and amount of data stored. These data vary from pictures, videos, call logs to social security numbers, passport and credit card details, from personal information to corporate confidential data. To assess how well the data privacy requirements are followed on smartphones second-hand market, a sample of 100 Android smartphones has been purchased from IT Asset Disposition (ITAD) facilities responsible for data erasure and resell. Although devices should not have stored any user data by the time they leave ITAD, it has been possible to retrieve the data from 19% of the sample. Applied techniques varied from manual device inspection to sophisticated equipment and tools. These findings indicate significant barrier in implementation of circular economy and a limitation of smartphone reuse. Therefore, in order to motivate the users to donate or sell their old devices and make electronic use more sustainable, data privacy on second-hand smartphone market should be significantly improved. Presented research has been carried out in the framework of sustainablySMART project, which is part of Horizon 2020 EU Framework Programme for Research and Innovation.

Keywords: android, circular economy, data privacy, second-hand phones

Procedia PDF Downloads 128
4588 SIPINA Induction Graph Method for Seismic Risk Prediction

Authors: B. Selma

Abstract:

The aim of this study is to test the feasibility of SIPINA method to predict the harmfulness parameters controlling the seismic response. The approach developed takes into consideration both the focal depth and the peak ground acceleration. The parameter to determine is displacement. The data used for the learning of this method and analysis nonlinear seismic are described and applied to a class of models damaged to some typical structures of the existing urban infrastructure of Jassy, Romania. The results obtained indicate an influence of the focal depth and the peak ground acceleration on the displacement.

Keywords: SIPINA algorithm, seism, focal depth, peak ground acceleration, displacement

Procedia PDF Downloads 313
4587 Deep Learning-Based Object Detection on Low Quality Images: A Case Study of Real-Time Traffic Monitoring

Authors: Jean-Francois Rajotte, Martin Sotir, Frank Gouineau

Abstract:

The installation and management of traffic monitoring devices can be costly from both a financial and resource point of view. It is therefore important to take advantage of in-place infrastructures to extract the most information. Here we show how low-quality urban road traffic images from cameras already available in many cities (such as Montreal, Vancouver, and Toronto) can be used to estimate traffic flow. To this end, we use a pre-trained neural network, developed for object detection, to count vehicles within images. We then compare the results with human annotations gathered through crowdsourcing campaigns. We use this comparison to assess performance and calibrate the neural network annotations. As a use case, we consider six months of continuous monitoring over hundreds of cameras installed in the city of Montreal. We compare the results with city-provided manual traffic counting performed in similar conditions at the same location. The good performance of our system allows us to consider applications which can monitor the traffic conditions in near real-time, making the counting usable for traffic-related services. Furthermore, the resulting annotations pave the way for building a historical vehicle counting dataset to be used for analysing the impact of road traffic on many city-related issues, such as urban planning, security, and pollution.

Keywords: traffic monitoring, deep learning, image annotation, vehicles, roads, artificial intelligence, real-time systems

Procedia PDF Downloads 200
4586 Finite Sample Inferences for Weak Instrument Models

Authors: Gubhinder Kundhi, Paul Rilstone

Abstract:

It is well established that Instrumental Variable (IV) estimators in the presence of weak instruments can be poorly behaved, in particular, be quite biased in finite samples. Finite sample approximations to the distributions of these estimators are obtained using Edgeworth and Saddlepoint expansions. Departures from normality of the distributions of these estimators are analyzed using higher order analytical corrections in these expansions. In a Monte-Carlo experiment, the performance of these expansions is compared to the first order approximation and other methods commonly used in finite samples such as the bootstrap.

Keywords: bootstrap, Instrumental Variable, Edgeworth expansions, Saddlepoint expansions

Procedia PDF Downloads 310
4585 Parameter Estimation in Dynamical Systems Based on Latent Variables

Authors: Arcady Ponosov

Abstract:

A novel mathematical approach is suggested, which facilitates a compressed representation and efficient validation of parameter-rich ordinary differential equation models describing the dynamics of complex, especially biology-related, systems and which is based on identification of the system's latent variables. In particular, an efficient parameter estimation method for the compressed non-linear dynamical systems is developed. The method is applied to the so-called 'power-law systems' being non-linear differential equations typically used in Biochemical System Theory.

Keywords: generalized law of mass action, metamodels, principal components, synergetic systems

Procedia PDF Downloads 355
4584 Modelling and Control of Milk Fermentation Process in Biochemical Reactor

Authors: Jožef Ritonja

Abstract:

The biochemical industry is one of the most important modern industries. Biochemical reactors are crucial devices of the biochemical industry. The essential bioprocess carried out in bioreactors is the fermentation process. A thorough insight into the fermentation process and the knowledge how to control it are essential for effective use of bioreactors to produce high quality and quantitatively enough products. The development of the control system starts with the determination of a mathematical model that describes the steady state and dynamic properties of the controlled plant satisfactorily, and is suitable for the development of the control system. The paper analyses the fermentation process in bioreactors thoroughly, using existing mathematical models. Most existing mathematical models do not allow the design of a control system for controlling the fermentation process in batch bioreactors. Due to this, a mathematical model was developed and presented that allows the development of a control system for batch bioreactors. Based on the developed mathematical model, a control system was designed to ensure optimal response of the biochemical quantities in the fermentation process. Due to the time-varying and non-linear nature of the controlled plant, the conventional control system with a proportional-integral-differential controller with constant parameters does not provide the desired transient response. The improved adaptive control system was proposed to improve the dynamics of the fermentation. The use of the adaptive control is suggested because the parameters’ variations of the fermentation process are very slow. The developed control system was tested to produce dairy products in the laboratory bioreactor. A carbon dioxide concentration was chosen as the controlled variable. The carbon dioxide concentration correlates well with the other, for the quality of the fermentation process in significant quantities. The level of the carbon dioxide concentration gives important information about the fermentation process. The obtained results showed that the designed control system provides minimum error between reference and actual values of carbon dioxide concentration during a transient response and in a steady state. The recommended control system makes reference signal tracking much more efficient than the currently used conventional control systems which are based on linear control theory. The proposed control system represents a very effective solution for the improvement of the milk fermentation process.

Keywords: biochemical reactor, fermentation process, modelling, adaptive control

Procedia PDF Downloads 129
4583 Design and Implementation of PD-NN Controller Optimized Neural Networks for a Quad-Rotor

Authors: Chiraz Ben Jabeur, Hassene Seddik

Abstract:

In this paper, a full approach of modeling and control of a four-rotor unmanned air vehicle (UAV), known as quad-rotor aircraft, is presented. In fact, a PD and a PD optimized Neural Networks Approaches (PD-NN) are developed to be applied to control a quad-rotor. The goal of this work is to concept a smart self-tuning PD controller based on neural networks able to supervise the quad-rotor for an optimized behavior while tracking the desired trajectory. Many challenges could arise if the quad-rotor is navigating in hostile environments presenting irregular disturbances in the form of wind added to the model on each axis. Thus, the quad-rotor is subject to three-dimensional unknown static/varying wind disturbances. The quad-rotor has to quickly perform tasks while ensuring stability and accuracy and must behave rapidly with regard to decision-making facing disturbances. This technique offers some advantages over conventional control methods such as PD controller. Simulation results are obtained with the use of Matlab/Simulink environment and are founded on a comparative study between PD and PD-NN controllers based on wind disturbances. These later are applied with several degrees of strength to test the quad-rotor behavior. These simulation results are satisfactory and have demonstrated the effectiveness of the proposed PD-NN approach. In fact, this controller has relatively smaller errors than the PD controller and has a better capability to reject disturbances. In addition, it has proven to be highly robust and efficient, facing turbulences in the form of wind disturbances.

Keywords: hostile environment, PD and PD-NN controllers, quad-rotor control, robustness against disturbance

Procedia PDF Downloads 137
4582 Machine Learning in Gravity Models: An Application to International Recycling Trade Flow

Authors: Shan Zhang, Peter Suechting

Abstract:

Predicting trade patterns is critical to decision-making in public and private domains, especially in the current context of trade disputes among major economies. In the past, U.S. recycling has relied heavily on strong demand for recyclable materials overseas. However, starting in 2017, a series of new recycling policies (bans and higher inspection standards) was enacted by multiple countries that were the primary importers of recyclables from the U.S. prior to that point. As the global trade flow of recycling shifts, some new importers, mostly developing countries in South and Southeast Asia, have been overwhelmed by the sheer quantities of scrap materials they have received. As the leading exporter of recyclable materials, the U.S. now has a pressing need to build its recycling industry domestically. With respect to the global trade in scrap materials used for recycling, the interest in this paper is (1) predicting how the export of recyclable materials from the U.S. might vary over time, and (2) predicting how international trade flows for recyclables might change in the future. Focusing on three major recyclable materials with a history of trade, this study uses data-driven and machine learning (ML) algorithms---supervised (shrinkage and tree methods) and unsupervised (neural network method)---to decipher the international trade pattern of recycling. Forecasting the potential trade values of recyclables in the future could help importing countries, to which those materials will shift next, to prepare related trade policies. Such policies can assist policymakers in minimizing negative environmental externalities and in finding the optimal amount of recyclables needed by each country. Such forecasts can also help exporting countries, like the U.S understand the importance of healthy domestic recycling industry. The preliminary result suggests that gravity models---in addition to particular selection macroeconomic predictor variables--are appropriate predictors of the total export value of recyclables. With the inclusion of variables measuring aspects of the political conditions (trade tariffs and bans), predictions show that recyclable materials are shifting from more policy-restricted countries to less policy-restricted countries in international recycling trade. Those countries also tend to have high manufacturing activities as a percentage of their GDP.

Keywords: environmental economics, machine learning, recycling, international trade

Procedia PDF Downloads 168
4581 Effectiveness of Variable Speed Limit Signs in Reducing Crash Rates on Roadway Construction Work Zones in Alaska

Authors: Osama Abaza, Tanay Datta Chowdhury

Abstract:

As a driver's speed increases, so do the probability of an incident and likelihood of injury. The presence of equipment, personnel, and a changing landscape in construction zones create greater potential for incident. This is especially concerning in Alaska, where summer construction activity, coinciding with the peak annual traffic volumes, cannot be avoided. In order to reduce vehicular speeding in work zones, and therefore the probability of crash and incident occurrence, variable speed limit (VSL) systems can be implemented in the form of radar speed display trailers since the radar speed display trailers were shown to be effective at reducing vehicular speed in construction zones. Allocation of VSL not only help reduce the 85th percentile speed but also it will predominantly reduce mean speed as well. Total of 2147 incidents along with 385 crashes occurred only in one month around the construction zone in the Alaska which seriously requires proper attention. This research provided a thorough crash analysis to better understand the cause and provide proper countermeasures. Crashes were predominantly recoded as vehicle- object collision and sideswipe type and thus significant amount of crashes fall in the group of no injury to minor injury type in the severity class. But still, 35 major crashes with 7 fatal ones in a one month period require immediate action like the implementation of the VSL system as it proved to be a speed reducer in the construction zone on Alaskan roadways.

Keywords: speed, construction zone, crash, severity

Procedia PDF Downloads 251
4580 Mobile Smart Application Proposal for Predicting Calories in Food

Authors: Marcos Valdez Alexander Junior, Igor Aguilar-Alonso

Abstract:

Malnutrition is the root of different diseases that universally affect everyone, diseases such as obesity and malnutrition. The objective of this research is to predict the calories of the food to be eaten, developing a smart mobile application to show the user if a meal is balanced. Due to the large percentage of obesity and malnutrition in Peru, the present work is carried out. The development of the intelligent application is proposed with a three-layer architecture, and for the prediction of the nutritional value of the food, the use of pre-trained models based on convolutional neural networks is proposed.

Keywords: volume estimation, calorie estimation, artificial vision, food nutrition

Procedia PDF Downloads 99
4579 Material Supply Mechanisms for Contemporary Assembly Systems

Authors: Rajiv Kumar Srivastava

Abstract:

Manufacturing of complex products such as automobiles and computers requires a very large number of parts and sub-assemblies. The design of mechanisms for delivery of these materials to the point of assembly is an important manufacturing system and supply chain challenge. Different approaches to this problem have been evolved for assembly lines designed to make large volumes of standardized products. However, contemporary assembly systems are required to concurrently produce a variety of products using approaches such as mixed model production, and at times even mass customization. In this paper we examine the material supply approaches for variety production in moderate to large volumes. The conventional approach for material delivery to high volume assembly lines is to supply and stock materials line-side. However for certain materials, especially when the same or similar items are used along the line, it is more convenient to supply materials in kits. Kitting becomes more preferable when lines concurrently produce multiple products in mixed model mode, since space requirements could increase as product/ part variety increases. At times such kits may travel along with the product, while in some situations it may be better to have delivery and station-specific kits rather than product-based kits. Further, in some mass customization situations it may even be better to have a single delivery and assembly station, to which an entire kit is delivered for fitment, rather than a normal assembly line. Finally, in low-moderate volume assembly such as in engineered machinery, it may be logistically more economical to gather materials in an order-specific kit prior to launching final assembly. We have studied material supply mechanisms to support assembly systems as observed in case studies of firms with different combinations of volume and variety/ customization. It is found that the appropriate approach tends to be a hybrid between direct line supply and different kitting modes, with the best mix being a function of the manufacturing and supply chain environment, as well as space and handling considerations. In our continuing work we are studying these scenarios further, through the use of descriptive models and progressing towards prescriptive models to help achieve the optimal approach, capturing the trade-offs between inventory, material handling, space, and efficient line supply.

Keywords: assembly systems, kitting, material supply, variety production

Procedia PDF Downloads 226
4578 Federated Learning in Healthcare

Authors: Ananya Gangavarapu

Abstract:

Convolutional Neural Networks (CNN) based models are providing diagnostic capabilities on par with the medical specialists in many specialty areas. However, collecting the medical data for training purposes is very challenging because of the increased regulations around data collections and privacy concerns around personal health data. The gathering of the data becomes even more difficult if the capture devices are edge-based mobile devices (like smartphones) with feeble wireless connectivity in rural/remote areas. In this paper, I would like to highlight Federated Learning approach to mitigate data privacy and security issues.

Keywords: deep learning in healthcare, data privacy, federated learning, training in distributed environment

Procedia PDF Downloads 141
4577 DEMs: A Multivariate Comparison Approach

Authors: Juan Francisco Reinoso Gordo, Francisco Javier Ariza-López, José Rodríguez Avi, Domingo Barrera Rosillo

Abstract:

The evaluation of the quality of a data product is based on the comparison of the product with a reference of greater accuracy. In the case of MDE data products, quality assessment usually focuses on positional accuracy and few studies consider other terrain characteristics, such as slope and orientation. The proposal that is made consists of evaluating the similarity of two DEMs (a product and a reference), through the joint analysis of the distribution functions of the variables of interest, for example, elevations, slopes and orientations. This is a multivariable approach that focuses on distribution functions, not on single parameters such as mean values or dispersions (e.g. root mean squared error or variance). This is considered to be a more holistic approach. The use of the Kolmogorov-Smirnov test is proposed due to its non-parametric nature, since the distributions of the variables of interest cannot always be adequately modeled by parametric models (e.g. the Normal distribution model). In addition, its application to the multivariate case is carried out jointly by means of a single test on the convolution of the distribution functions of the variables considered, which avoids the use of corrections such as Bonferroni when several statistics hypothesis tests are carried out together. In this work, two DEM products have been considered, DEM02 with a resolution of 2x2 meters and DEM05 with a resolution of 5x5 meters, both generated by the National Geographic Institute of Spain. DEM02 is considered as the reference and DEM05 as the product to be evaluated. In addition, the slope and aspect derived models have been calculated by GIS operations on the two DEM datasets. Through sample simulation processes, the adequate behavior of the Kolmogorov-Smirnov statistical test has been verified when the null hypothesis is true, which allows calibrating the value of the statistic for the desired significance value (e.g. 5%). Once the process has been calibrated, the same process can be applied to compare the similarity of different DEM data sets (e.g. the DEM05 versus the DEM02). In summary, an innovative alternative for the comparison of DEM data sets based on a multinomial non-parametric perspective has been proposed by means of a single Kolmogorov-Smirnov test. This new approach could be extended to other DEM features of interest (e.g. curvature, etc.) and to more than three variables

Keywords: data quality, DEM, kolmogorov-smirnov test, multivariate DEM comparison

Procedia PDF Downloads 115
4576 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.

Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning

Procedia PDF Downloads 244
4575 Engineering a Tumor Extracellular Matrix Towards an in vivo Mimicking 3D Tumor Microenvironment

Authors: Anna Cameron, Chunxia Zhao, Haofei Wang, Yun Liu, Guang Ze Yang

Abstract:

Since the first publication in 1775, cancer research has built a comprehensive understanding of how cellular components of the tumor niche promote disease development. However, only within the last decade has research begun to establish the impact of non-cellular components of the niche, particularly the extracellular matrix (ECM). The ECM, a three-dimensional scaffold that sustains the tumor microenvironment, plays a crucial role in disease progression. Cancer cells actively deregulate and remodel the ECM to establish a tumor-promoting environment. Recent work has highlighted the need to further our understanding of the complexity of this cancer-ECM relationship. In vitro models use hydrogels to mimic the ECM, as hydrogel matrices offer biological compatibility and stability needed for long term cell culture. However, natural hydrogels are being used in these models verbatim, without tuning their biophysical characteristics to achieve pathophysiological relevance, thus limiting their broad use within cancer research. The biophysical attributes of these gels dictate cancer cell proliferation, invasion, metastasis, and therapeutic response. Evaluating the three most widely used natural hydrogels, Matrigel, collagen, and agarose gel, the permeability, stiffness, and pore-size of each gel were measured and compared to the in vivo environment. The pore size of all three gels fell between 0.5-6 µm, which coincides with the 0.1-5 µm in vivo pore size found in the literature. However, the stiffness for hydrogels able to support cell culture ranged between 0.05 and 0.3 kPa, which falls outside the range of 0.3-20,000 kPa reported in the literature for an in vivo ECM. Permeability was ~100x greater than in vivo measurements, due in large part to the lack of cellular components which impede permeation. Though, these measurements prove important when assessing therapeutic particle delivery, as the ECM permeability decreased with increasing particle size, with 100 nm particles exhibiting a fifth of the permeability of 10 nm particles. This work explores ways of adjusting the biophysical characteristics of hydrogels by changing protein concentration and the trade-off, which occurs due to the interdependence of these factors. The global aim of this work is to produce a more pathophysiologically relevant model for each tumor type.

Keywords: cancer, extracellular matrix, hydrogel, microfluidic

Procedia PDF Downloads 91
4574 Hydrodeoxygenation of Furfural over RU Sub-Nano Particles Supported on Al₂O₃-SIO₂ Mixed Oxides

Authors: Chaima Zoulikha Tabet Zatla, Nihel Dib, Sumeya Bedrane, Juan Carlos Hernandez Garrido, Redouane Bachir, Miguel Angel Cauqui, Jose Juan Calvino Gamez

Abstract:

These last year's our planet has witnessed global warming, which is a serious threat to our lives; it has many causes, such as the CO₂ excess in the atmosphere that results from our activity, for the purpose of living in a neater and better environment, working and improving an eco-responsible energy system is a must. Valorization of biomass to produce biofuels is among the most compelling routes to decrease air pollution without considerable modification in current vehicle technology. Effective transformation of lignocellulosic biomass-derived compounds into liquid fuels and value-added chemicals is an economically viable solution. Presently, very competitive technics for the conversion of lignocellulosic biomass into platform chemicals, such as furfural and Hydroxymethylfurfural (HMF), are used. Furfural (C₅H₄O₂) is a major hemi cellulosic biomass-derived platform molecule. In our work, we focus on the valorization of lignocellulosic biomass derivative furfural that is transformed into biofuel through a hydrodeoxygenation reaction in general and involving a catalytic process. In order to get to this point, we are synthesizing and characterizing a series of catalysts with different amounts of Ru (0.5%, 1% and 2%) supported on alumina-silica mixed oxides with various molar ratios (Si/Al = 2.5; 5; 7; 10; 15). These catalysts will be characterized by numerous technics such as N₂ adsorption/desorption, Pyridine adsorption (acidity measure), FTIR, X-rays diffraction, AAS, TEM and SEM.

Keywords: furfural, ruthenium, silica-alumina, biomass, biofuel

Procedia PDF Downloads 84
4573 Religious Tourism the Core Strategy of Shaping Life Style: Evidences from Iran

Authors: Mostafa Jafari

Abstract:

Religious tourism is the core strategy of shaping Iranian's life-style. Why and How? This paper answers to this question. Theoretical base: From strategic marketing point of view, Life style is pattern of believes values, interests and acts. Strategy can be defined as a set of continuous important decisions. Here, strategy is making decisions about the target place and vehicle of touristic travel due to reform and redefine the self-identity and shaping life style. Methodology: Target society of this research is the selected residents of three provinces at northwest of Iran. The data collection instrument is interview and questionnaire and the collected data analysis by SEM (structural Equation Modeling) and LISREL software. Results: The primary results show that variety of touristic travels play an important role on shaping new life style of Iranian people. The target places of touristic travel (Europe, USA. Japan and etc.) are at the second priority. The number of foreign friends is at the third position. The fourth criteria are the number of travels. Among all kind of touristic travels the religious tourism from competitive point of view plays the main role. Findings: The geometry of Iranian life style are shaping and reshaping through some domestic and international tourism strategies particular religious strategy. During the dynamic trend of identity redefine, so many Iranians put the quantity and quality of their touristic travel on the first priority.

Keywords: religious tourism, core strategy, shaping life style

Procedia PDF Downloads 412
4572 Effects of Cash Transfers Mitigation Impacts in the Face of Socioeconomic External Shocks: Evidence from Egypt

Authors: Basma Yassa

Abstract:

Evidence on cash transfers’ effectiveness in mitigating macro and idiosyncratic shocks’ impacts has been mixed and is mostly concentrated in Latin America, Sub-Saharan Africa, and South Asia with very limited evidence from the MENA region. Yet conditional cash transfers schemes have been continually used, especially in Egypt, as the main social protection tool in response to the recent socioeconomic crises and macro shocks. We use 2 panel datasets and 1 cross-sectional dataset to estimate the effectiveness of cash transfers as a shock-mitigative mechanism in the Egyptian context. In this paper, the results from the different models (Panel Fixed Effects model and the Regression Discontinuity Design (RDD) model) confirm that micro and macro shocks lead to significant decline in several household-level welfare outcomes and that Takaful cash transfers have a significant positive impact in mitigating the negative shock impacts, especially on households’ debt incidence, debt levels, and asset ownership, but not necessarily on food, and non-food expenditure levels. The results indicate large positive significant effects on decreasing household incidence of debt by up to 12.4 percent and lowered the debt size by approximately 18 percent among Takaful beneficiaries compared to non-beneficiaries’. Similar evidence is found on asset ownership levels, as the RDD model shows significant positive effects on total asset ownership and productive asset ownership, but the model failed to detect positive impacts on per capita food and non-food expenditures. Further extensions are still in progress to compare the models’ results with the DID model results when using a nationally representative ELMPS panel data (2018/2024) rounds. Finally, our initial analysis suggests that conditional cash transfers are effective in buffering the negative shock impacts on certain welfare indicators even after successive macro-economic shocks in 2022 and 2023 in the Egyptian Context.

Keywords: cash transfers, fixed effects, household welfare, household debt, micro shocks, regression discontinuity design

Procedia PDF Downloads 47
4571 Development and Validation of an Instrument Measuring the Coping Strategies in Situations of Stress

Authors: Lucie Côté, Martin Lauzier, Guy Beauchamp, France Guertin

Abstract:

Stress causes deleterious effects to the physical, psychological and organizational levels, which highlight the need to use effective coping strategies to deal with it. Several coping models exist, but they don’t integrate the different strategies in a coherent way nor do they take into account the new research on the emotional coping and acceptance of the stressful situation. To fill these gaps, an integrative model incorporating the main coping strategies was developed. This model arises from the review of the scientific literature on coping and from a qualitative study carried out among workers with low or high levels of stress, as well as from an analysis of clinical cases. The model allows one to understand under what circumstances the strategies are effective or ineffective and to learn how one might use them more wisely. It includes Specific Strategies in controllable situations (the Modification of the Situation and the Resignation-Disempowerment), Specific Strategies in non-controllable situations (Acceptance and Stubborn Relentlessness) as well as so-called General Strategies (Wellbeing and Avoidance). This study is intended to undertake and present the process of development and validation of an instrument to measure coping strategies based on this model. An initial pool of items has been generated from the conceptual definitions and three expert judges have validated the content. Of these, 18 items have been selected for a short form questionnaire. A sample of 300 students and employees from a Quebec university was used for the validation of the questionnaire. Concerning the reliability of the instrument, the indices observed following the inter-rater agreement (Krippendorff’s alpha) and the calculation of the coefficients for internal consistency (Cronbach's alpha) are satisfactory. To evaluate the construct validity, a confirmatory factor analysis using MPlus supports the existence of a model with six factors. The results of this analysis suggest also that this configuration is superior to other alternative models. The correlations show that the factors are only loosely related to each other. Overall, the analyses carried out suggest that the instrument has good psychometric qualities and demonstrates the relevance of further work to establish predictive validity and reconfirm its structure. This instrument will help researchers and clinicians better understand and assess coping strategies to cope with stress and thus prevent mental health issues.

Keywords: acceptance, coping strategies, stress, validation process

Procedia PDF Downloads 339
4570 Business Logic and Environmental Policy, a Research Agenda for the Business-to-Citizen Business Model

Authors: Mats Nilsson

Abstract:

The European electricity markets have been changing from a regulated market, to in some places a deregulated market, and are now experiencing a strong influence of renewable support systems. Firm’s that rely on subsidies have a different business logic than firms acting in a market context. The article proposes that an offspring to the regular business models, the business-to-citizen, should be used. The case of the European electricity market frames the concept of a business-citizen business model, and a research agenda for this concept is outlined.

Keywords: business logic, business model, subsidies, business-to-citizen

Procedia PDF Downloads 463
4569 Stochastic Repair and Replacement with a Single Repair Channel

Authors: Mohammed A. Hajeeh

Abstract:

This paper examines the behavior of a system, which upon failure is either replaced with certain probability p or imperfectly repaired with probability q. The system is analyzed using Kolmogorov's forward equations method; the analytical expression for the steady state availability is derived as an indicator of the system’s performance. It is found that the analysis becomes more complex as the number of imperfect repairs increases. It is also observed that the availability increases as the number of states and replacement probability increases. Using such an approach in more complex configurations and in dynamic systems is cumbersome; therefore, it is advisable to resort to simulation or heuristics. In this paper, an example is provided for demonstration.

Keywords: repairable models, imperfect, availability, exponential distribution

Procedia PDF Downloads 287
4568 A Saturation Attack Simulation on a Navy Warship Based on Discrete-Event Simulation Models

Authors: Yawei Liang

Abstract:

Threat from cruise missiles is among the most dangerous considerations to a warship in the modern era: anti-ship cruise missiles are fast, accurate, and extremely destructive. In this paper, the goal was to use an object-orientated environment to program a simulation to model a scenario in which a lone frigate is attacked by a wave of missiles fired at given intervals. The parameters of the simulation are modified to examine the relationships between different variables in the situation, and an analysis is performed on various aspects of the defending ship’s equipment. Finally, the results are presented, along with a brief discussion.

Keywords: discrete event simulation, Monte Carlo simulation, naval resource management, weapon-target allocation/assignment

Procedia PDF Downloads 93
4567 Optimal Wheat Straw to Bioethanol Supply Chain Models

Authors: Abdul Halim Abdul Razik, Ali Elkamel, Leonardo Simon

Abstract:

Wheat straw is one of the alternative feedstocks that may be utilized for bioethanol production especially when sustainability criteria are the major concerns. To increase market competitiveness, optimal supply chain plays an important role since wheat straw is a seasonal agricultural residue. In designing the supply chain optimization model, economic profitability of the thermochemical and biochemical conversion routes options were considered. It was found that torrefied pelletization with gasification route to be the most profitable option to produce bioethanol from the lignocellulosic source of wheat straw.

Keywords: bio-ethanol, optimization, supply chain, wheat straw

Procedia PDF Downloads 737
4566 Path Planning for Unmanned Aerial Vehicles in Constrained Environments for Locust Elimination

Authors: Aadiv Shah, Hari Nair, Vedant Mittal, Alice Cheeran

Abstract:

Present-day agricultural practices such as blanket spraying not only lead to excessive usage of pesticides but also harm the overall crop yield. This paper introduces an algorithm to optimize the traversal of an unmanned aerial vehicle (UAV) in constrained environments. The proposed system focuses on the agricultural application of targeted spraying for locust elimination. Given a satellite image of a farm, target zones that are prone to locust swarm formation are detected through the calculation of the normalized difference vegetation index (NDVI). This is followed by determining the optimal path for traversal of a UAV through these target zones using the proposed algorithm in order to perform pesticide spraying in the most efficient manner possible. Unlike the classic travelling salesman problem involving point-to-point optimization, the proposed algorithm determines an optimal path for multiple regions, independent of its geometry. Finally, the paper explores the idea of implementing reinforcement learning to model complex environmental behaviour and make the path planning mechanism for UAVs agnostic to external environment changes. This system not only presents a solution to the enormous losses incurred due to locust attacks but also an efficient way to automate agricultural practices across the globe in order to improve farmer ergonomics.

Keywords: locust, NDVI, optimization, path planning, reinforcement learning, UAV

Procedia PDF Downloads 251
4565 The Impact of Artificial Intelligence on Digital Factory

Authors: Mona Awad Wanis Gad

Abstract:

The method of factory making plans has changed loads, in particular, whilst it's miles approximately making plans the factory building itself. Factory making plans have the venture of designing merchandise, plants, tactics, organization, regions, and the construction of a factory. Ordinary restructuring is turning into greater essential for you to preserve the competitiveness of a manufacturing unit. Regulations in new regions, shorter lifestyle cycles of product and manufacturing era, in addition to a VUCA global (Volatility, Uncertainty, Complexity and Ambiguity) cause extra common restructuring measures inside a factory. A digital factory model is the planning foundation for rebuilding measures and turns into a critical device. Furthermore, digital building fashions are increasingly being utilized in factories to help facility management and manufacturing processes. First, exclusive styles of digital manufacturing unit fashions are investigated, and their residences and usabilities to be used instances are analyzed. Within the scope of research are point cloud fashions, building statistics fashions, photogrammetry fashions, and those enriched with sensor information are tested. It investigated which digital fashions permit a simple integration of sensor facts and in which the variations are. In the end, viable application areas of virtual manufacturing unit models are determined by a survey, and the respective digital manufacturing facility fashions are assigned to the application areas. Ultimately, an application case from upkeep is selected and implemented with the assistance of the best virtual factory version. It is shown how a completely digitalized preservation process can be supported by a digital manufacturing facility version by offering facts. Among different functions, the virtual manufacturing facility version is used for indoor navigation, facts provision, and display of sensor statistics. In summary, the paper suggests a structuring of virtual factory fashions that concentrates on the geometric representation of a manufacturing facility building and its technical facilities. A practical application case is proven and implemented. For that reason, the systematic selection of virtual manufacturing facility models with the corresponding utility cases is evaluated.

Keywords: augmented reality, digital factory model, factory planning, restructuring digital factory model, photogrammetry, factory planning, restructuring building information modeling, digital factory model, factory planning, maintenance

Procedia PDF Downloads 38