Search results for: optimal hysteretic energy dissipation systems
14970 Performance Analysis of Air Conditioning System Working on the Vapour Compression Refrigeration Cycle under Magnetohydrodynamic Influence
Authors: Nikhil S. Mane, Mukund L. Harugade, Narayan V. Hargude, Vishal P. Patil
Abstract:
The fluids exposed to magnetic field can enhance the convective heat transfer by inducing secondary convection currents due to Lorentz force. The use of magnetohydrodynamic (MHD) forces in power generation and mass transfer is increasing steadily but its application to enhance the convective currents in fluids needed to be explored. The enhancement in convective heat transfer using MHD forces can be employed in heat exchangers, cooling of molten metal, vapour compression refrigeration (VCR) systems etc. The effective increase in the convective heat transfer without any additional energy consumption will lead to the energy efficient heat exchanging devices. In this work, the effect of MHD forces on the performance of air conditioning system working on the VCR system is studied. The refrigerant in VCR system is exposed to the magnetic field which influenced the flow of refrigerant. The different intensities of magnets are used on the different liquid refrigerants and investigation on performance of split air conditioning system is done under different loading conditions. The results of this research work show that the application of magnet on refrigerant flow has positive influence on the coefficient of performance (COP) of split air conditioning system. It is also observed that with increasing intensity of magnetic force the COP of split air conditioning system also increases.Keywords: magnetohydrodynamics, heat transfer enhancement, VCRS, air conditioning, refrigeration
Procedia PDF Downloads 21214969 Structural Optimization of Shell and Arched Structures
Authors: Mitchell Gohnert, Ryan Bradley
Abstract:
This paper reviews some fundamental concepts of structural optimization, which are based on the type of materials used in construction and the shape of the structure. The first step in structural optimization is to break down all internal forces in a structure into fundamental stresses, which are tensions and compressions. Knowing the stress patterns directs our selection of structural shapes and the most appropriate type of construction material. In our selection of materials, it is essential to understand all construction materials have flaws, or micro-cracks, which reduce the capacity of the material, especially when subjected to tensions. Because of material defects, many construction materials perform significantly better when subjected to compressive forces. Structures are also more efficient if bending moments are eliminated. Bending stresses produce high peak stresses at each face of the member, and therefore, substantially more material is required to resist bending. The shape of the structure also has a profound effect on stress levels. Stress may be reduced dramatically by simply changing the shape. Catenary, triangular and linear shapes are the fundamental structural forms to achieve optimal stress flow. If the natural flow of stress matches the shape of the structures, the most optimal shape is determined.Keywords: arches, economy of stresses, material strength, optimization, shells
Procedia PDF Downloads 11614968 Exploring Factors Affecting Electricity Production in Malaysia
Authors: Endang Jati Mat Sahid, Hussain Ali Bekhet
Abstract:
Ability to supply reliable and secure electricity has been one of the crucial components of economic development for any country. Forecasting of electricity production is therefore very important for accurate investment planning of generation power plants. In this study, we aim to examine and analyze the factors that affect electricity generation. Multiple regression models were used to find the relationship between various variables and electricity production. The models will simultaneously determine the effects of the variables on electricity generation. Many variables influencing electricity generation, i.e. natural gas (NG), coal (CO), fuel oil (FO), renewable energy (RE), gross domestic product (GDP) and fuel prices (FP), were examined for Malaysia. The results demonstrate that NG, CO, and FO were the main factors influencing electricity generation growth. This study then identified a number of policy implications resulting from the empirical results.Keywords: energy policy, energy security, electricity production, Malaysia, the regression model
Procedia PDF Downloads 16414967 Cloud Data Security Using Map/Reduce Implementation of Secret Sharing Schemes
Authors: Sara Ibn El Ahrache, Tajje-eddine Rachidi, Hassan Badir, Abderrahmane Sbihi
Abstract:
Recently, there has been increasing confidence for a favorable usage of big data drawn out from the huge amount of information deposited in a cloud computing system. Data kept on such systems can be retrieved through the network at the user’s convenience. However, the data that users send include private information, and therefore, information leakage from these data is now a major social problem. The usage of secret sharing schemes for cloud computing have lately been approved to be relevant in which users deal out their data to several servers. Notably, in a (k,n) threshold scheme, data security is assured if and only if all through the whole life of the secret the opponent cannot compromise more than k of the n servers. In fact, a number of secret sharing algorithms have been suggested to deal with these security issues. In this paper, we present a Mapreduce implementation of Shamir’s secret sharing scheme to increase its performance and to achieve optimal security for cloud data. Different tests were run and through it has been demonstrated the contributions of the proposed approach. These contributions are quite considerable in terms of both security and performance.Keywords: cloud computing, data security, Mapreduce, Shamir's secret sharing
Procedia PDF Downloads 30614966 Automatic and High Precise Modeling for System Optimization
Authors: Stephanie Chen, Mitja Echim, Christof Büskens
Abstract:
To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization
Procedia PDF Downloads 40914965 Distance and Coverage: An Assessment of Location-Allocation Models for Fire Stations in Kuwait City, Kuwait
Authors: Saad M. Algharib
Abstract:
The major concern of planners when placing fire stations is finding their optimal locations such that the fire companies can reach fire locations within reasonable response time or distance. Planners are also concerned with the numbers of fire stations that are needed to cover all service areas and the fires, as demands, with standard response time or distance. One of the tools for such analysis is location-allocation models. Location-allocation models enable planners to determine the optimal locations of facilities in an area in order to serve regional demands in the most efficient way. The purpose of this study is to examine the geographic distribution of the existing fire stations in Kuwait City. This study utilized location-allocation models within the Geographic Information System (GIS) environment and a number of statistical functions to assess the current locations of fire stations in Kuwait City. Further, this study investigated how well all service areas are covered and how many and where additional fire stations are needed. Four different location-allocation models were compared to find which models cover more demands than the others, given the same number of fire stations. This study tests many ways to combine variables instead of using one variable at a time when applying these models in order to create a new measurement that influences the optimal locations for locating fire stations. This study also tests how location-allocation models are sensitive to different levels of spatial dependency. The results indicate that there are some districts in Kuwait City that are not covered by the existing fire stations. These uncovered districts are clustered together. This study also identifies where to locate the new fire stations. This study provides users of these models a new variable that can assist them to select the best locations for fire stations. The results include information about how the location-allocation models behave in response to different levels of spatial dependency of demands. The results show that these models perform better with clustered demands. From the additional analysis carried out in this study, it can be concluded that these models applied differently at different spatial patterns.Keywords: geographic information science, GIS, location-allocation models, geography
Procedia PDF Downloads 17714964 C2N2 Adsorption on the Surface of a BN Nanosheet: A DFT Study
Authors: Maziar Noei
Abstract:
Calculation showed that when the nanosheet is doped by Si, the adsorption energy is about -85.62 to -87.43kcal/mol and also the amount of HOMO/LUMO energy gap (Eg) will reduce significantly. Boron nitride nanosheet is a suitable adsorbent for cyanogen and can be used in separation processes cyanogen. It seems that nanosheet (BNNS) is a suitable semiconductor after doping. The doped BNNS in the presence of cyanogens (C2N2) an electrical signal is generating directly and, therefore, can potentially be used for cyanogen sensors.Keywords: nanosheet, DFT, cyanogen, sensors
Procedia PDF Downloads 28214963 Jointly Optimal Statistical Process Control and Maintenance Policy for Deteriorating Processes
Authors: Lucas Paganin, Viliam Makis
Abstract:
With the advent of globalization, the market competition has become a major issue for most companies. One of the main strategies to overcome this situation is the quality improvement of the product at a lower cost to meet customers’ expectations. In order to achieve the desired quality of products, it is important to control the process to meet the specifications, and to implement the optimal maintenance policy for the machines and the production lines. Thus, the overall objective is to reduce process variation and the production and maintenance costs. In this paper, an integrated model involving Statistical Process Control (SPC) and maintenance is developed to achieve this goal. Therefore, the main focus of this paper is to develop the jointly optimal maintenance and statistical process control policy minimizing the total long run expected average cost per unit time. In our model, the production process can go out of control due to either the deterioration of equipment or other assignable causes. The equipment is also subject to failures in any of the operating states due to deterioration and aging. Hence, the process mean is controlled by an Xbar control chart using equidistant sampling epochs. We assume that the machine inspection epochs are the times when the control chart signals an out-of-control condition, considering both true and false alarms. At these times, the production process will be stopped, and an investigation will be conducted not only to determine whether it is a true or false alarm, but also to identify the causes of the true alarm, whether it was caused by the change in the machine setting, by other assignable causes, or by both. If the system is out of control, the proper actions will be taken to bring it back to the in-control state. At these epochs, a maintenance action can be taken, which can be no action, or preventive replacement of the unit. When the equipment is in the failure state, a corrective maintenance action is performed, which can be minimal repair or replacement of the machine and the process is brought to the in-control state. SMDP framework is used to formulate and solve the joint control problem. Numerical example is developed to demonstrate the effectiveness of the control policy.Keywords: maintenance, semi-Markov decision process, statistical process control, Xbar control chart
Procedia PDF Downloads 9114962 The Impact of Recurring Events in Fake News Detection
Authors: Ali Raza, Shafiq Ur Rehman Khan, Raja Sher Afgun Usmani, Asif Raza, Basit Umair
Abstract:
Detection of Fake news and missing information is gaining popularity, especially after the advancement in social media and online news platforms. Social media platforms are the main and speediest source of fake news propagation, whereas online news websites contribute to fake news dissipation. In this study, we propose a framework to detect fake news using the temporal features of text and consider user feedback to identify whether the news is fake or not. In recent studies, the temporal features in text documents gain valuable consideration from Natural Language Processing and user feedback and only try to classify the textual data as fake or true. This research article indicates the impact of recurring and non-recurring events on fake and true news. We use two models BERT and Bi-LSTM to investigate, and it is concluded from BERT we get better results and 70% of true news are recurring and rest of 30% are non-recurring.Keywords: natural language processing, fake news detection, machine learning, Bi-LSTM
Procedia PDF Downloads 2314961 A Simple Adaptive Atomic Decomposition Voice Activity Detector Implemented by Matching Pursuit
Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic
Abstract:
A simple adaptive voice activity detector (VAD) is implemented using Gabor and gammatone atomic decomposition of speech for high Gaussian noise environments. Matching pursuit is used for atomic decomposition, and is shown to achieve optimal speech detection capability at high data compression rates for low signal to noise ratios. The most active dictionary elements found by matching pursuit are used for the signal reconstruction so that the algorithm adapts to the individual speakers dominant time-frequency characteristics. Speech has a high peak to average ratio enabling matching pursuit greedy heuristic of highest inner products to isolate high energy speech components in high noise environments. Gabor and gammatone atoms are both investigated with identical logarithmically spaced center frequencies, and similar bandwidths. The algorithm performs equally well for both Gabor and gammatone atoms with no significant statistical differences. The algorithm achieves 70% accuracy at a 0 dB SNR, 90% accuracy at a 5 dB SNR and 98% accuracy at a 20dB SNR using 30dB SNR as a reference for voice activity.Keywords: atomic decomposition, gabor, gammatone, matching pursuit, voice activity detection
Procedia PDF Downloads 29014960 Media Representation of China: A Content Analysis of Coverage of China-Related Energy in the New York Times
Authors: Lian Liu
Abstract:
By analyzing the content of the New York Times' China-related energy reports, this study aims to explore the construction of China's national image by the mainstream media in the United States. The study analyzes three aspects of the coverage: topics, reporting tendencies, and countries involved. The results of the study show that economic issues are the main focus of the New York Times’ China-related energy coverage, followed by political issues and environmental issues. Overall, the coverage tendency was mainly negative, but positive coverage was dominated by science and technology issues. In addition, the study found that U.S.-China relations and Sino-Russian relations were important contexts for the construction of China's national image in the NYT's China-related energy coverage. These stories highlight China's interstate interactions with the United States, Japan, and Russia, which serve as important links in the coverage. The findings of this study reveal some characteristics and trends of the U.S. mainstream media's country image of China, which are important for a deeper understanding of the U.S.-China relationship and the media's influence on the construction of the country's image.Keywords: media coverage, China, content analysis, visualization technology
Procedia PDF Downloads 8714959 Economic Evaluation Offshore Wind Project under Uncertainly and Risk Circumstances
Authors: Sayed Amir Hamzeh Mirkheshti
Abstract:
Offshore wind energy as a strategic renewable energy, has been growing rapidly due to availability, abundance and clean nature of it. On the other hand, budget of this project is incredibly higher in comparison with other renewable energies and it takes more duration. Accordingly, precise estimation of time and cost is needed in order to promote awareness in the developers and society and to convince them to develop this kind of energy despite its difficulties. Occurrence risks during on project would cause its duration and cost constantly changed. Therefore, to develop offshore wind power, it is critical to consider all potential risks which impacted project and to simulate their impact. Hence, knowing about these risks could be useful for the selection of most influencing strategies such as avoidance, transition, and act in order to decrease their probability and impact. This paper presents an evaluation of the feasibility of 500 MV offshore wind project in the Persian Gulf and compares its situation with uncertainty resources and risk. The purpose of this study is to evaluate time and cost of offshore wind project under risk circumstances and uncertain resources by using Monte Carlo simulation. We analyzed each risk and activity along with their distribution function and their effect on the project.Keywords: wind energy project, uncertain resources, risks, Monte Carlo simulation
Procedia PDF Downloads 35214958 Parametric Analysis of Syn-gas Fueled SOFC with Internal Reforming
Authors: Sanjay Tushar Choudhary
Abstract:
This paper focuses on the thermodynamic analysis of Solid Oxide Fuel Cell (SOFC). In the present work the SOFC has been modeled to work with internal reforming of fuel which takes place at high temperature and direct energy conversion from chemical energy to electrical energy takes place. The fuel-cell effluent is a high-temperature steam which can be used for co-generation purposes. Syn-gas has been used here as fuel which is essentially produced by steam reforming of methane in the internal reformer of the SOFC. A thermodynamic model of SOFC has been developed for planar cell configuration to evaluate various losses in the energy conversion process within the fuel cell. Cycle parameters like fuel utilization ratio and the air-recirculation ratio have been varied to evaluate the thermodynamic performance of the fuel cell. Output performance parameters like terminal voltage, cell-efficiency and power output have been evaluated for various values of current densities. It has been observed that a combination of a lower value of air-circulation ratio and higher values of fuel utilization efficiency gives a better overall thermodynamic performance.Keywords: current density, SOFC, suel utilization factor, recirculation ratio
Procedia PDF Downloads 50814957 Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Sources
Authors: Annisa Ulfah Pristya, Andi Setiawan
Abstract:
Electricity is the primary requirement today's world, including Indonesia. This is because electricity is a source of electrical energy that is flexible to use. Fossil energy sources are the major energy source that is used as a source of energy power plants. Unfortunately, this conversion process impacts on the depletion of fossil fuel reserves and causes an increase in the amount of CO2 in the atmosphere, disrupting health, ozone depletion, and the greenhouse effect. Solutions have been applied are solar cells, ocean wave power, the wind, water, and so forth. However, low efficiency and complicated treatment led to most people and industry in Indonesia still using fossil fuels. Referring to this Fuel Cell was developed. Fuel Cells are electrochemical technology that continuously converts chemical energy into electrical energy for the fuel and oxidizer are the efficiency is considerably higher than the previous natural source of electrical energy, which is 40-60%. However, Fuel Cells still have some weaknesses in terms of the use of an expensive platinum catalyst which is limited and not environmentally friendly. Because of it, required the simultaneous source of electrical energy and environmentally friendly. On the other hand, Indonesia is a rich country in marine sediments and organic content that is never exhausted. Stacking the organic component can be an alternative energy source continued development of fuel cell is A Microbial Fuel Cell. Microbial Fuel Cells (MFC) is a tool that uses bacteria to generate electricity from organic and non-organic compounds. MFC same tools as usual fuel cell composed of an anode, cathode and electrolyte. Its main advantage is the catalyst in the microbial fuel cell is a microorganism and working conditions carried out in neutral solution, low temperatures, and environmentally friendly than previous fuel cells (Chemistry Fuel Cell). However, when compared to Chemistry Fuel Cell, MFC only have an efficiency of 40%. Therefore, the authors provide a solution in the form of Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Source. Nano-MFC has the advantage of an effective, high efficiency, cheap and environmental friendly. Related stakeholders that helped are government ministers, especially Energy Minister, the Institute for Research, as well as the industry as a production executive facilitator. strategic steps undertaken to achieve that begin from conduct preliminary research, then lab scale testing, and dissemination and build cooperation with related parties (MOU), conduct last research and its applications in the field, then do the licensing and production of Nano-MFC on an industrial scale and publications to the public.Keywords: CNT, efficiency, electric, microorganisms, sediment
Procedia PDF Downloads 40914956 A New Suburb Renovation Concept
Authors: Anu Soikkelii, Laura Sorri
Abstract:
Finnish national research project, User- and Business-oriented Suburb Renovation Concept (KLIKK), was started in January 2012 and will end in June 2014. The perspective of energy efficiency is emphasised in the project, but also it addresses what improving the energy efficiency of suburban apartment buildings means from the standpoint of architecturally valuable buildings representing different periods. The project will also test the impacts of stricter energy efficiency requirements on renovation projects. The primary goal of the project is to develop a user-oriented, industrial, economic renovation concept for suburban apartment building renovation, extension and construction of additional storeys. The concept will make it possible to change from performance- and cost-based operation to novel service- and user-oriented, site-specifically tailored renovation methods utilizing integrated order and delivery chains.The present project is collaborating with Ministry of the Environment and participating cities in developing a new type of lighter town planning model for suburban renovations and in-fill construction. To support this, the project will simultaneously develop practices for environmental impact assessment tools in renovation and suburban supplementary and in-fill construction.Keywords: energy efficiency, prefabrication, renovation concept, suburbs, sustainability, user-orientated
Procedia PDF Downloads 33414955 Indirect Environmental Benefits from Cloud Computing Information and Communications Technology Integration in Rural Agricultural Communities
Authors: Jeana Cadby, Kae Miyazawa
Abstract:
With rapidly expanding worldwide adoption of mobile technologies, Information and Communication Technology (ITC) is a major energy user and a contributor to global carbon emissions, due to infrastructure and operational energy consumption. The agricultural sector is also significantly responsible for contributing to global carbon emissions. However, ICT cloud computing using mobile technology can directly reduce environmental impacts in the agricultural sector through applications and mobile connectivity, such as precision fertilizer and pesticide applications, or access to weather data, for example. While direct impacts are easily calculated, indirect environmental impacts from ICT cloud computing usage have not been thoroughly investigated. For example, while women may be more poorly equipped for adaptation to environmentally sustainable agricultural practices due to resource constraints, this research concludes that indirect environmental benefits can be achieved by improving rural access to mobile technology for women. Women in advanced roles and secure land tenure are more likely to invest in long-term agricultural conservation strategies, which protect against environmental degradation. This study examines how ICT using mobile technology advances the role of women in rural agricultural systems and indirectly reduces environmental impacts from agricultural production, through literature examination from secondary sources. Increasing access for women to ICT mobile technology provides indirect environmental and social benefits in the rural agricultural sector.Keywords: cloud computing, environmental benefits, mobile technology, women
Procedia PDF Downloads 16914954 Global Voltage Harmonic Index for Measuring Harmonic Situation of Power Grids: A Focus on Power Transformers
Authors: Alireza Zabihi, Saeed Peyghami, Hossein Mokhtari
Abstract:
With the increasing deployment of renewable power plants, such as solar and wind, it is crucial to measure the harmonic situation of the grid. This paper proposes a global voltage harmonic index to measure the harmonic situation of the power grid with a focus on power transformers. The power electronics systems used to connect these plants to the network can introduce harmonics, leading to increased losses, reduced efficiency, false operation of protective relays, and equipment damage due to harmonic intensifications. The proposed index considers the losses caused by harmonics in power transformers which are of great importance and value to the network, providing a comprehensive measure of the harmonic situation of the grid. The effectiveness of the proposed index is evaluated on a real-world distribution network, and the results demonstrate its ability to identify the harmonic situation of the network, particularly in relation to power transformers. The proposed index provides a comprehensive measure of the harmonic situation of the grid, taking into account the losses caused by harmonics in power transformers. The proposed index has the potential to support power companies in optimizing their power systems and to guide researchers in developing effective mitigation strategies for harmonics in the power grid.Keywords: global voltage harmonic index, harmonics, power grid, power quality, power transformers, renewable energy
Procedia PDF Downloads 12714953 Manure Management Systems in Sheep and Goat Farms in Konya, Türkiye
Authors: Selda Uzal Seyfi
Abstract:
Goat and sheep milk is quite significant in human nutrition. It is considered as more important day by day. This study was carried out in order to determine applied manure management system and their possibilities of improvement in goat and sheep farm in between 2012 and 2013 years. In the study, it was investigated manure management systems of 25 pieces of sheep and goat farms. It was analyzed the manure collecting, storage and treatment features of farms and whether or not they are suitable for animal breeding. As a result of the study, it was determined that the applied manure management systems in the farm were insufficient. Planning the manure management systems in goat and sheep breeding is appropriate technical criteria is useful in respect of the animal welfare, animal health, the health of workers in the barn and environmental pollution.Keywords: goat farm, sheep farm, manure storage, manure management
Procedia PDF Downloads 40514952 Systems Intelligence in Management (High Performing Organizations and People Score High in Systems Intelligence)
Authors: Raimo P. Hämäläinen, Juha Törmänen, Esa Saarinen
Abstract:
Systems thinking has been acknowledged as an important approach in the strategy and management literature ever since the seminal works of Ackhoff in the 1970´s and Senge in the 1990´s. The early literature was very much focused on structures and organizational dynamics. Understanding systems is important but making improvements also needs ways to understand human behavior in systems. Peter Senge´s book The Fifth Discipline gave the inspiration to the development of the concept of Systems Intelligence. The concept integrates the concepts of personal mastery and systems thinking. SI refers to intelligent behavior in the context of complex systems involving interaction and feedback. It is a competence related to the skills needed in strategy and the environment of modern industrial engineering and management where people skills and systems are in an increasingly important role. The eight factors of Systems Intelligence have been identified from extensive surveys and the factors relate to perceiving, attitude, thinking and acting. The personal self-evaluation test developed consists of 32 items which can also be applied in a peer evaluation mode. The concept and test extend to organizations too. One can talk about organizational systems intelligence. This paper reports the results of an extensive survey based on peer evaluation. The results show that systems intelligence correlates positively with professional performance. People in a managerial role score higher in SI than others. Age improves the SI score but there is no gender difference. Top organizations score higher in all SI factors than lower ranked ones. The SI-tests can also be used as leadership and management development tools helping self-reflection and learning. Finding ways of enhancing learning organizational development is important. Today gamification is a new promising approach. The items in the SI test have been used to develop an interactive card game following the Topaasia game approach. It is an easy way of engaging people in a process which both helps participants see and approach problems in their organization. It also helps individuals in identifying challenges in their own behavior and in improving in their SI.Keywords: gamification, management competence, organizational learning, systems thinking
Procedia PDF Downloads 9614951 Hierarchical Surface Inspired by Lotus-Leaf for Electrical Generators from Waterdrop
Authors: Jaewook Ha, Jin-beak Kim, Seongmin Kim
Abstract:
In order to solve global warming and climate change issues, increased efforts have been devoted towards clean and sustainable energy sources as well as new energy generating devices. Nanogenerator is a device that converts mechanical/thermal energy as produced by small-scale physical change into electricity. Here we propose that nature-leaf surface could be used for preparation of a triboelectric nanogenerator. The nature-leaf surface consists of polydimethylsiloxane microscale pillars and polytetrafluoroethylene nanoparticles. Interaction between the nature-leaf surface and water was studied and the electrical outputs from the motion of single water drop were measured. A 40-μL water drop can generate a peak voltage of 1 V and a peak current of 0.7 μA. This nanogenerator might be used to drive electric devices in the outdoor environments in a sustainable manner.Keywords: hierarchical surface, lotus-leaf, electrical generator, waterdrop
Procedia PDF Downloads 29314950 Evaluation of the Efficacy of Basic Life Support Teaching in Second and Third Year Medical Students
Authors: Bianca W. O. Silva, Adriana C. M. Andrade, Gustavo C. M. Lucena, Virna M. S. Lima
Abstract:
Introduction: Basic life support (BLS) involves the immediate recognition of cardiopulmonary arrest. Each year, 359.400 and 275.000 individuals with cardiac arrest are attended in emergency departments in USA and Europe. Brazilian data shows that 200.000 cardiac arrests occur every year, and half of them out of the hospital. Medical schools around the world teach BLS in the first years of the course, but studies show that there is a decline of the knowledge as the years go by, affecting the chain of survival. The objective was to analyze the knowledge of medical students about BLS and the retention of this learning throughout the course. Methods: This study included 150 students who were at the second and third year of a medical school in Salvador, Bahia, Brazil. The instrument of data collection was a structured questionnaire composed of 20 questions based on the 2015 American Heart Association guideline. The Pearson Chi-square test was used in order to study the association between previous training, sex and semester with the degree of knowledge of the students. The Kruskal-Wallis test was used to evaluate the different yields obtained between the various semesters. The number of correct answers was described by average and quartiles. Results: Regarding the degree of knowledge, 19.6% of the female students reached the optimal classification, a better outcome than the achieved by the male participants. Of those with previous training, 33.33% were classified as good and optimal, none of the students reached the optimal classification and only 2.2% of them were classified as bad (those who did not have 52.6% of correct answers). The analysis of the degree of knowledge related to each semester revealed that the 5th semester had the highest outcome: 30.5%. However, the acquaintance presented by the semesters was generally unsatisfactory, since 50% of the students, or more, demonstrated knowledge levels classified as bad or regular. When confronting the different semesters and the achieved scores, the value of p was 0.831. Conclusion: It is important to focus on the training of medical professionals that are capable of facing emergency situations, improving the systematization of care, and thereby increasing the victims' possibility of survival.Keywords: basic life support, cardiopulmonary ressucitacion, education, medical students
Procedia PDF Downloads 18614949 Two-Stage Anaerobic Digester for Biogas Production from Sewage Sludge: A Case Study in One of Kuwait’s Wastewater Treatment Plant
Authors: Abdullah Almatouq, Abdulla Abusam, Hussain Hussain, Mishari Khajah, Hussain Abdullah, Rashed Al-Yaseen, Mariam Al-Jumaa, Farah Al-Ajeel, Mohammad Aljassam
Abstract:
Due to the high demand for energy from unsustainable resources in Kuwait, the Kuwaiti government has focused recently on using sustainable resources for energy, such as solar and wind energy. In addition, sludge which is generated as a by-product of physical, chemical, and biological processes during wastewater treatment, can be used as a substrate to generate energy through anaerobic digestion. Kuwait’s wastewater treatment plants produce more than 1.7 million m3 of sludge per year, and this volume is accumulated in the treatment plants without any treatment. Therefore, a pilot-scale (3 m3) two-stage anaerobic digester was constructed in one of the largest treatment plants in Kuwait. The reactor was operated in batch mode, and the hydraulic retention time varied between 14 – 27 days. The main of this study is to evaluate the technical feasibility of a two-stage anaerobic digester for sludge treatability and energy generation in Kuwait. The anaerobic digester achieved a total biogas production of 37 m3, and the highest value of daily biogas production was 0.4 m3/day. The methane content ranged between 50 % and 66 %, and the other gases were as follows: CO2 20 %, H2S 13 %, and 1 % O2. The generated biogas was used on-site for cooking and lighting. In some batches, low C/N was noticed, and that lead to maintaining the concentration of CH4 between 50%-55%. In conclusion, an anaerobic digester is an environmentally friendly technology that can be applied in Kuwait, and the obtained results support the scale-up of the process in all the treatment plants.Keywords: wastewater, metahne, biogas production potential, anaerobic digestion
Procedia PDF Downloads 11514948 Particle Swarm Optimization Based Vibration Suppression of a Piezoelectric Actuator Using Adaptive Fuzzy Sliding Mode Controller
Authors: Jin-Siang Shaw, Patricia Moya Caceres, Sheng-Xiang Xu
Abstract:
This paper aims to integrate the particle swarm optimization (PSO) method with the adaptive fuzzy sliding mode controller (AFSMC) to achieve vibration attenuation in a piezoelectric actuator subject to base excitation. The piezoelectric actuator is a complicated system made of ferroelectric materials and its performance can be affected by nonlinear hysteresis loop and unknown system parameters and external disturbances. In this study, an adaptive fuzzy sliding mode controller is proposed for the vibration control of the system, because the fuzzy sliding mode controller is designed to tackle the unknown parameters and external disturbance of the system, and the adaptive algorithm is aimed for fine-tuning this controller for error converging purpose. Particle swarm optimization method is used in order to find the optimal controller parameters for the piezoelectric actuator. PSO starts with a population of random possible solutions, called particles. The particles move through the search space with dynamically adjusted speed and direction that change according to their historical behavior, allowing the values of the particles to quickly converge towards the best solutions for the proposed problem. In this paper, an initial set of controller parameters is applied to the piezoelectric actuator which is subject to resonant base excitation with large amplitude vibration. The resulting vibration suppression is about 50%. Then PSO is applied to search for an optimal controller in the neighborhood of this initial controller. The performance of the optimal fuzzy sliding mode controller found by PSO indeed improves up to 97.8% vibration attenuation. Finally, adaptive version of fuzzy sliding mode controller is adopted for further improving vibration suppression. Simulation result verifies the performance of the adaptive controller with 99.98% vibration reduction. Namely the vibration of the piezoelectric actuator subject to resonant base excitation can be completely annihilated using this PSO based adaptive fuzzy sliding mode controller.Keywords: adaptive fuzzy sliding mode controller, particle swarm optimization, piezoelectric actuator, vibration suppression
Procedia PDF Downloads 14614947 Intelligent System and Renewable Energy: A Farming Platform in Precision Agriculture
Authors: Ryan B. Escorial, Elmer A. Maravillas, Chris Jordan G. Aliac
Abstract:
This study presents a small-scale water pumping system utilizing a fuzzy logic inference system attached to a renewable energy source. The fuzzy logic controller was designed and simulated in MATLAB fuzzy logic toolbox to examine the properties and characteristics of the input and output variables. The result of the simulation was implemented in a microcontroller, together with sensors, modules, and photovoltaic cells. The study used a grand rapid variety of lettuce, organic substrates, and foliar for observation of the capability of the device to irrigate crops. Two plant boxes intended for manual and automated irrigation were prepared with each box having 48 heads of lettuce. The observation of the system took 22-31 days, which is one harvest period of the crop. Results showed a 22.55% increase in agricultural productivity compared to manual irrigation. Aside from reducing human effort, and time, the smart irrigation system could help lessen some of the shortcomings of manual irrigations. It could facilitate the economical utilization of water, reducing consumption by 25%. The use of renewable energy could also help farmers reduce the cost of production by minimizing the use of diesel and gasoline.Keywords: fuzzy logic, intelligent system, precision agriculture, renewable energy
Procedia PDF Downloads 12914946 Achieving Household Electricity Saving Potential Through Behavioral Change
Authors: Lusi Susanti, Prima Fithri
Abstract:
The rapid growth of Indonesia population is directly proportional to the energy needs of the country, but not all of Indonesian population can relish the electricity. Indonesia's electrification ratio is still around 80.1%, which means that approximately 19.9% of households in Indonesia have not been getting the flow of electrical energy. Household electricity consumptions in Indonesia are generally still dominated by the public urban. In the city of Padang, West Sumatera, Indonesia, about 94.10% are power users of government services (PLN). The most important thing of the issue is human resources efficient energy. User behavior in utilizing electricity becomes significant. However repair solution will impact the user's habits sustainable energy issues. This study attempts to identify the user behavior and lifestyle that affect household electricity consumption and to evaluate the potential for energy saving. The behavior component is frequently underestimated or ignored in analyses of household electrical energy end use, partly because of its complexity. It is influenced by socio-demographic factors, culture, attitudes, aesthetic norms and comfort, as well as social and economic variables. Intensive questioner survey, in-depth interview and statistical analysis are carried out to collect scientific evidences of the behavioral based changes instruments to reduce electricity consumption in household sector. The questioner was developed to include five factors assuming affect the electricity consumption pattern in household sector. They are: attitude, energy price, household income, knowledge and other determinants. The survey was carried out in Padang, West Sumatra Province Indonesia. About 210 questioner papers were proportionally distributed to households in 11 districts in Padang. Stratified sampling was used as a method to select respondents. The results show that the household size, income, payment methods and size of house are factors affecting electricity saving behavior in residential sector. Household expenses on electricity are strongly influenced by gender, type of job, level of education, size of house, income, payment method and level of installed power. These results provide a scientific evidence for stakeholders on the potential of controlling electricity consumption and designing energy policy by government in residential sector.Keywords: electricity, energy saving, household, behavior, policy
Procedia PDF Downloads 43814945 Multi-Level Clustering Based Congestion Control Protocol for Cyber Physical Systems
Authors: Manpreet Kaur, Amita Rani, Sanjay Kumar
Abstract:
The Internet of Things (IoT), a cyber-physical paradigm, allows a large number of devices to connect and send the sensory data in the network simultaneously. This tremendous amount of data generated leads to very high network load consequently resulting in network congestion. It further amounts to frequent loss of useful information and depletion of significant amount of nodes’ energy. Therefore, there is a need to control congestion in IoT so as to prolong network lifetime and improve the quality of service (QoS). Hence, we propose a two-level clustering based routing algorithm considering congestion score and packet priority metrics that focus on minimizing the network congestion. In the proposed Priority based Congestion Control (PBCC) protocol the sensor nodes in IoT network form clusters that reduces the amount of traffic and the nodes are prioritized to emphasize important data. Simultaneously, a congestion score determines the occurrence of congestion at a particular node. The proposed protocol outperforms the existing Packet Discard Network Clustering (PDNC) protocol in terms of buffer size, packet transmission range, network region and number of nodes, under various simulation scenarios.Keywords: internet of things, cyber-physical systems, congestion control, priority, transmission rate
Procedia PDF Downloads 30814944 Battery Control with Moving Average Algorithm to Smoothen the Intermittent Output Power of Photovoltaic Solar Power Plants in Off-Grid Configuration
Authors: Muhammad Gillfran Samual, Rinaldy Dalimi, Fauzan Hanif Jufri, Budi Sudiarto, Ismi Rosyiana Fitri
Abstract:
Solar energy is increasingly recognized as an important future energy source due to its abundant availability and renewable nature. However, the intermittent nature of solar energy can cause fluctuations in the electricity produced, making it difficult to guarantee a stable and reliable electricity supply. One solution that can be implemented is to use batteries in a photovoltaic solar power plant system with a Moving Average control algorithm, which can help smooth and reduce fluctuations in solar power output power. The parameter that can be adjusted in the Moving Average algorithm is the window size or the arithmetic average width of the photovoltaic output power over time. This research evaluates the effect of a change of window size parameter in the Moving Average algorithm on the resulting smoothed photovoltaic output power and the technical effects on batteries, i.e., power and energy usage. Based on the evaluation, it is found that the increase of window size parameter will slow down the response of photovoltaic output power to changes in irradiation and increase the smoothing quality of the intermittent photovoltaic output power. In addition, increasing the window size will reduce the maximum power received on the load side, and the amount of energy used by the battery during the power smoothing process will increase, which, in turn, increases the required battery capacity.Keywords: battery, intermittent, moving average, photovoltaic, power smoothing
Procedia PDF Downloads 6314943 Analyzing the Quality of Cloud-Based E-Learning Systems on the Perception of the Learners and the Teachers
Authors: R. W. C. Devindi, S. M. Buddika Harshanath
Abstract:
E-learning is a widely used technology for learning in the modern world. With the pandemic situation the popularity of using e-learning has been increased in a larger capacity. The e-learning educational systems require software resources as well as hardware usually but it is hard for most of the education institutions to afford those resources. Also with the massive user load e-learning has to broaden the server side resources as well. Therefore, in the present cloud computing was implemented in order to make the e – learning systems more efficient. The researcher has analyzed the quality of the e-learning systems on the perception of the learners and the teachers with the aid of hypothesis and has given the analyzed results and the discussion in this report. Therefore, the future research will be able to get some steps to increase the quality of the online learning systems furthermore. In the case of e-learning, quality assurance and cost effectiveness are essential. A complex quality assurance system is used in the stated project. There are no well-defined standard evaluation measures in this field. As a result, accurately assessing the e-learning system's overall quality is challenging. The researcher has done the analysis with the aid of standard methods and software.Keywords: LMS–learning management system, SPSS–statistical package for social sciences (software), eigen value, hypothesis
Procedia PDF Downloads 10714942 The Proton Flow Battery for Storing Renewable Energy: A Theoretical Model of Electrochemical Hydrogen Storage in an Activated Carbon Electrode
Authors: Sh. Heidari, A. J. Andrews, A. Oberoi
Abstract:
Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have a roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. In this paper, a theoretical model is presented of the process of H+ ion (proton) conduction through an acid electrolyte into a highly porous activated carbon electrode where it is neutralised and absorbed on the inner surfaces of pores. A Butler-Volmer type equation relates the rate of adsorption to the potential difference between the activated carbon surface and the electrolyte. This model for the hydrogen storage electrode is then incorporated into a more general computer model based on MATLAB software of the entire electrochemical cell including the oxygen electrode. Hence a theoretical voltage-current curve is generated for given input parameters for a particular activated carbon electrode. It is shown that theoretical VI curves produced by the model can be fitted accurately to experimental data from an actual electrochemical cell with the same characteristics. By obtaining the best-fit values of input parameters, such as the exchange current density and charge transfer coefficient for the hydrogen adsorption reaction, an improved understanding of the adsorption reaction is obtained. This new model will assist in designing improved proton flow batteries for storing solar and wind energy.Keywords: electrochemical hydrogen storage, proton flow battery, butler-volmer equation, activated carbon
Procedia PDF Downloads 50014941 An Efficient Algorithm for Solving the Transmission Network Expansion Planning Problem Integrating Machine Learning with Mathematical Decomposition
Authors: Pablo Oteiza, Ricardo Alvarez, Mehrdad Pirnia, Fuat Can
Abstract:
To effectively combat climate change, many countries around the world have committed to a decarbonisation of their electricity, along with promoting a large-scale integration of renewable energy sources (RES). While this trend represents a unique opportunity to effectively combat climate change, achieving a sound and cost-efficient energy transition towards low-carbon power systems poses significant challenges for the multi-year Transmission Network Expansion Planning (TNEP) problem. The objective of the multi-year TNEP is to determine the necessary network infrastructure to supply the projected demand in a cost-efficient way, considering the evolution of the new generation mix, including the integration of RES. The rapid integration of large-scale RES increases the variability and uncertainty in the power system operation, which in turn increases short-term flexibility requirements. To meet these requirements, flexible generating technologies such as energy storage systems must be considered within the TNEP as well, along with proper models for capturing the operational challenges of future power systems. As a consequence, TNEP formulations are becoming more complex and difficult to solve, especially for its application in realistic-sized power system models. To meet these challenges, there is an increasing need for developing efficient algorithms capable of solving the TNEP problem with reasonable computational time and resources. In this regard, a promising research area is the use of artificial intelligence (AI) techniques for solving large-scale mixed-integer optimization problems, such as the TNEP. In particular, the use of AI along with mathematical optimization strategies based on decomposition has shown great potential. In this context, this paper presents an efficient algorithm for solving the multi-year TNEP problem. The algorithm combines AI techniques with Column Generation, a traditional decomposition-based mathematical optimization method. One of the challenges of using Column Generation for solving the TNEP problem is that the subproblems are of mixed-integer nature, and therefore solving them requires significant amounts of time and resources. Hence, in this proposal we solve a linearly relaxed version of the subproblems, and trained a binary classifier that determines the value of the binary variables, based on the results obtained from the linearized version. A key feature of the proposal is that we integrate the binary classifier into the optimization algorithm in such a way that the optimality of the solution can be guaranteed. The results of a study case based on the HRP 38-bus test system shows that the binary classifier has an accuracy above 97% for estimating the value of the binary variables. Since the linearly relaxed version of the subproblems can be solved with significantly less time than the integer programming counterpart, the integration of the binary classifier into the Column Generation algorithm allowed us to reduce the computational time required for solving the problem by 50%. The final version of this paper will contain a detailed description of the proposed algorithm, the AI-based binary classifier technique and its integration into the CG algorithm. To demonstrate the capabilities of the proposal, we evaluate the algorithm in case studies with different scenarios, as well as in other power system models.Keywords: integer optimization, machine learning, mathematical decomposition, transmission planning
Procedia PDF Downloads 85