Search results for: workflow applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6571

Search results for: workflow applications

3211 Optimal Economic Restructuring Aimed at an Optimal Increase in GDP Constrained by a Decrease in Energy Consumption and CO2 Emissions

Authors: Alexander Vaninsky

Abstract:

The objective of this paper is finding the way of economic restructuring - that is, change in the shares of sectoral gross outputs - resulting in the maximum possible increase in the gross domestic product (GDP) combined with decreases in energy consumption and CO2 emissions. It uses an input-output model for the GDP and factorial models for the energy consumption and CO2 emissions to determine the projection of the gradient of GDP, and the antigradients of the energy consumption and CO2 emissions, respectively, on a subspace formed by the structure-related variables. Since the gradient (antigradient) provides a direction of the steepest increase (decrease) of the objective function, and their projections retain this property for the functions' limitation to the subspace, each of the three directional vectors solves a particular problem of optimal structural change. In the next step, a type of factor analysis is applied to find a convex combination of the projected gradient and antigradients having maximal possible positive correlation with each of the three. This convex combination provides the desired direction of the structural change. The national economy of the United States is used as an example of applications.

Keywords: economic restructuring, input-output analysis, divisia index, factorial decomposition, E3 models

Procedia PDF Downloads 314
3210 Theoretical Modelling of Molecular Mechanisms in Stimuli-Responsive Polymers

Authors: Catherine Vasnetsov, Victor Vasnetsov

Abstract:

Context: Thermo-responsive polymers are materials that undergo significant changes in their physical properties in response to temperature changes. These polymers have gained significant attention in research due to their potential applications in various industries and medicine. However, the molecular mechanisms underlying their behavior are not well understood, particularly in relation to cosolvency, which is crucial for practical applications. Research Aim: This study aimed to theoretically investigate the phenomenon of cosolvency in long-chain polymers using the Flory-Huggins statistical-mechanical framework. The main objective was to understand the interactions between the polymer, solvent, and cosolvent under different conditions. Methodology: The research employed a combination of Monte Carlo computer simulations and advanced machine-learning methods. The Flory-Huggins mean field theory was used as the basis for the simulations. Spinodal graphs and ternary plots were utilized to develop an initial computer model for predicting polymer behavior. Molecular dynamic simulations were conducted to mimic real-life polymer systems. Machine learning techniques were incorporated to enhance the accuracy and reliability of the simulations. Findings: The simulations revealed that the addition of very low or very high volumes of cosolvent molecules resulted in smaller radii of gyration for the polymer, indicating poor miscibility. However, intermediate volume fractions of cosolvent led to higher radii of gyration, suggesting improved miscibility. These findings provide a possible microscopic explanation for the cosolvency phenomenon in polymer systems. Theoretical Importance: This research contributes to a better understanding of the behavior of thermo-responsive polymers and the role of cosolvency. The findings provide insights into the molecular mechanisms underlying cosolvency and offer specific predictions for future experimental investigations. The study also presents a more rigorous analysis of the Flory-Huggins free energy theory in the context of polymer systems. Data Collection and Analysis Procedures: The data for this study was collected through Monte Carlo computer simulations and molecular dynamic simulations. The interactions between the polymer, solvent, and cosolvent were analyzed using the Flory-Huggins mean field theory. Machine learning techniques were employed to enhance the accuracy of the simulations. The collected data was then analyzed to determine the impact of cosolvent volume fractions on the radii of gyration of the polymer. Question Addressed: The research addressed the question of how cosolvency affects the behavior of long-chain polymers. Specifically, the study aimed to investigate the interactions between the polymer, solvent, and cosolvent under different volume fractions and understand the resulting changes in the radii of gyration. Conclusion: In conclusion, this study utilized theoretical modeling and computer simulations to investigate the phenomenon of cosolvency in long-chain polymers. The findings suggest that moderate cosolvent volume fractions can lead to improved miscibility, as indicated by higher radii of gyration. These insights contribute to a better understanding of the molecular mechanisms underlying cosolvency in polymer systems and provide predictions for future experimental studies. The research also enhances the theoretical analysis of the Flory-Huggins free energy theory.

Keywords: molecular modelling, flory-huggins, cosolvency, stimuli-responsive polymers

Procedia PDF Downloads 70
3209 A Simple and Efficient Method for Accurate Measurement and Control of Power Frequency Deviation

Authors: S. J. Arif

Abstract:

In the presented technique, a simple method is given for accurate measurement and control of power frequency deviation. The sinusoidal signal for which the frequency deviation measurement is required is transformed to a low voltage level and passed through a zero crossing detector to convert it into a pulse train. Another stable square wave signal of 10 KHz is obtained using a crystal oscillator and decade dividing assemblies (DDA). These signals are combined digitally and then passed through decade counters to give a unique combination of pulses or levels, which are further encoded to make them equally suitable for both control applications and display units. The developed circuit using discrete components has a resolution of 0.5 Hz and completes measurement within 20 ms. The realized circuit is simulated and synthesized using Verilog HDL and subsequently implemented on FPGA. The results of measurement on FPGA are observed on a very high resolution logic analyzer. These results accurately match the simulation results as well as the results of same circuit implemented with discrete components. The proposed system is suitable for accurate measurement and control of power frequency deviation.

Keywords: digital encoder for frequency measurement, frequency deviation measurement, measurement and control systems, power systems

Procedia PDF Downloads 376
3208 Lunar Exploration based on Ground-Based Radar: Current Research Progress and Future Prospects

Authors: Jiangwan Xu, Chunyu Ding

Abstract:

Lunar exploration is of significant importance in the development and utilization of in-situ lunar resources, water ice exploration, space and astronomical science, as well as in political and military strategy. In recent years, ground-based radar (GBR) has gained increasing attention in the field of lunar exploration due to its flexibility, low cost, and penetrating capabilities. This paper reviews the scientific research on lunar exploration using GBR, outlining the basic principles of GBR and the progress made in lunar exploration studies. It introduces the fundamental principles of lunar imaging using GBR, and systematically reviews studies on lunar surface layer detection, inversion of lunar regolith dielectric properties, and polar water ice detection using GBR. In particular, the paper summarizes the current development status of Chinese GBR and forecasts future development trends in China. This review will enhance the understanding of lunar exploration results using GBR radar, systematically demonstrate the main applications and scientific achievements of GBR in lunar exploration, and provide a reference for future GBR radar lunar exploration missions.

Keywords: ground-based radar, lunar exploration, radar imaging, lunar surface/subsurface detection

Procedia PDF Downloads 30
3207 Simulation and Analysis of Mems-Based Flexible Capacitive Pressure Sensors with COMSOL

Authors: Ding Liangxiao

Abstract:

The technological advancements in Micro-Electro-Mechanical Systems (MEMS) have significantly contributed to the development of new, flexible capacitive pressure sensors,which are pivotal in transforming wearable and medical device technologies. This study employs the sophisticated simulation tools available in COMSOL Multiphysics® to develop and analyze a MEMS-based sensor with a tri-layered design. This sensor comprises top and bottom electrodes made from gold (Au), noted for their excellent conductivity, a middle dielectric layer made from a composite of Silver Nanowires (AgNWs) embedded in Thermoplastic Polyurethane (TPU), and a flexible, durable substrate of Polydimethylsiloxane (PDMS). This research was directed towards understanding how changes in the physical characteristics of the AgNWs/TPU dielectric layer—specifically, its thickness and surface area—impact the sensor's operational efficacy. We assessed several key electrical properties: capacitance, electric potential, and membrane displacement under varied pressure conditions. These investigations are crucial for enhancing the sensor's sensitivity and ensuring its adaptability across diverse applications, including health monitoring systems and dynamic user interface technologies. To ensure the reliability of our simulations, we applied the Effective Medium Theory to calculate the dielectric constant of the AgNWs/TPU composite accurately. This approach is essential for predicting how the composite material will perform under different environmental and operational stresses, thus facilitating the optimization of the sensor design for enhanced performance and longevity. Moreover, we explored the potential benefits of innovative three-dimensional structures for the dielectric layer compared to traditional flat designs. Our hypothesis was that 3D configurations might improve the stress distribution and optimize the electrical field interactions within the sensor, thereby boosting its sensitivity and accuracy. Our simulation protocol includes comprehensive performance testing under simulated environmental conditions, such as temperature fluctuations and mechanical pressures, which mirror the actual operational conditions. These tests are crucial for assessing the sensor's robustness and its ability to function reliably over extended periods, ensuring high reliability and accuracy in complex real-world environments. In our current research, although a full dynamic simulation analysis of the three-dimensional structures has not yet been conducted, preliminary explorations through three-dimensional modeling have indicated the potential for mechanical and electrical performance improvements over traditional planar designs. These initial observations emphasize the potential advantages and importance of incorporating advanced three-dimensional modeling techniques in the development of Micro-Electro-Mechanical Systems (MEMS)sensors, offering new directions for the design and functional optimization of future sensors. Overall, this study not only highlights the powerful capabilities of COMSOL Multiphysics® for modeling sophisticated electronic devices but also underscores the potential of innovative MEMS technology in advancing the development of more effective, reliable, and adaptable sensor solutions for a broad spectrum of technological applications.

Keywords: MEMS, flexible sensors, COMSOL Multiphysics, AgNWs/TPU, PDMS, 3D modeling, sensor durability

Procedia PDF Downloads 45
3206 Medicinal and Edible Plants in the Highlands of Tigray, Ethiopia

Authors: Masho Mebrahtom Gebrehiwot, Gidey Yirga

Abstract:

Tigray highlands in northern Ethiopia, is characterized by a wide range of ecological conditions and climate. The siege of Tigray is believed to cause the deaths of nearly 600,000 civilians mainly due to starvation and lack of medicine. In this study, the most important edible and medicinal plants used during the siege of Tigray were investigated. Semi-structured interviews, observation and guided field walks were used in 500 informants (300 males and 200 females) selected randomly from two districts. A total of 25 species of medicinal plants were collected and identified for treating 30 human ailments. Furthermore, a total of 21 edible plants were also collected and identified. Nearly 68.75% of these species were wild and harvested mainly for their leaves and the remedies were administered through dermal, nasal and oral routes. Oral and dermal applications were the highest and most used route of application. Famen foods significantly saved thousands of human lives during the siege of Tigray both in urban and rural communities. We suggest domestication of some of the wild medicinal plants for long term conservation of the species. Documentation of farmers’ knowledge, attitude and practices of ethnobotany would be very important before the indigenous knowledge is lost forever.

Keywords: ethnobotany, tigray, siege, application

Procedia PDF Downloads 13
3205 Hafnium and Samarium Hydroxyapatite Composites and Their Characterization

Authors: Meltem Nur Erdöl, Feyzanur Bayrak, Elif Emanetçi, Faik Nüzhet Oktar, Cevriye Kalkandelen, Oğuzhan Gündüz

Abstract:

Nowadays, the bioceramic graft applications are very important due to the fact that especially European population is getting much older. Consequently, healing approaches for some health problems become more important in the near future. For instance, osteoporosis is one of the reasons for serious hip fractures. Beside these, the traffic accidents playing role increasing of various hip fractures and other bone fractures. Naturally all these are leading the importance developing new bioceramic graft materials. Hydroxyapatite (HA) is one of the leading bioceramics on the market. Beside the high biocompatibility HA bioceramics unfortunately are weak materials for loaded areas. For improvement mechanical properties of HA material, some oxides and metallic powders can be added. In this study, some rare earth oxides like hafnium (IV) oxide (HfO₂) and samarium (III) oxide (Sm₂O₃) are added to HA for improvement of their material characteristics. Thus, compression, microhardness and theoretical density tests are performed. X-ray diffraction patterns are also investigated corresponding x-ray diffraction equipment. At the end, studies of scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDX) are completed. All values were compared with past BHA and various composites.

Keywords: biocomposite, hafnium oxide, hydroxyapatite, nanotechnology, samarium oxide

Procedia PDF Downloads 174
3204 Active Bio-Packaging Fabricated from Coated Bagasse Papers with Polystyrene Nanocomposites

Authors: Hesham Moustafa, Ahmed M. Youssef

Abstract:

The demand for green packagingin the food field has been gained increasing attention in recent decades because of its degradability and safely. Thus, this study revealed that the by-product bagasse papers (BPs) derived from sugarcane waste can be decorated with a thin layer of polystyrene (PS) nanocomposites using the spreading approach.Three variable concentrations of TiO2 nanoparticles (i.e. 0.5, 1.0, 1.5 wt.%) were used to fabricate PS nanocomposites. The morphology of coated BP-PS biofilms was examined by X-ray diffraction, Fourier transferred Infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Moreover, other measurements such as mechanical, thermal stability, flammability, wettability by the contact angle, water vapor, and gas barrier properties were carried out on the fabricated BP-PS biofilms. Most outcomes showed that the major properties were enhanced when the PS nanocomposites were implemented. The use of 1.5 wt.% TiO2 in PS nanocomposite for coated BP-PS biofilm increased the tensile stress by ~ 217 % compared to uncoated BP film. Furthermore, the rate of burning for BP-PS-1.5% film was reduced to ~ 33 mm/min because of the crystallinity of PS and the barrier effect provided by TiO₂ NPs. These coated sheets provide a promising candidate for use in advanced packaging applications.

Keywords: bagasse paper, polystyrene nanocomposites, TiO2 nanoparticles, active packaging, mechanical properties, flammability

Procedia PDF Downloads 85
3203 Research Trends on Magnetic Graphene for Water Treatment: A Bibliometric Analysis

Authors: J. C. M. Santos, J. C. A. Sousa, A. J. Rubio, L. S. Soletti, F. Gasparotto, N. U. Yamaguchi

Abstract:

Magnetic graphene has received widespread attention for their capability of water and wastewater treatment, which has been attracted many researchers in this field. A bibliometric analysis based on the Web of Science database was employed to analyze the global scientific outputs of magnetic graphene for water treatment until the present time (2012 to 2017), to improve the understanding of the research trends. The publication year, place of publication, institutes, funding agencies, journals, most cited articles, distribution outputs in thematic categories and applications were analyzed. Three major aspects analyzed including type of pollutant, treatment process and composite composition have further contributed to revealing the research trends. The most relevant research aspects of the main technologies using magnetic graphene for water treatment were summarized in this paper. The results showed that research on magnetic graphene for water treatment goes through a period of decline that might be related to a saturated field and a lack of bibliometric studies. Thus, the result of the present work will lead researchers to establish future directions in further studies using magnetic graphene for water treatment.

Keywords: composite, graphene oxide, nanomaterials, scientometrics

Procedia PDF Downloads 247
3202 Molecular Dynamics Simulation Studies of High-Intensity, Nanosecond Pulsed Electric Fields Induced Membrane Electroporation

Authors: Jiahui Song

Abstract:

The use of high-intensity, nanosecond electric pulses has been a recent development in biomedical. High-intensity (∼100 kV/cm), nanosecond duration-pulsed electric fields have been shown to induce cellular electroporation. This will lead to an increase in transmembrane conductivity and diffusive permeability. These effects will also alter the electrical potential across the membrane. The applications include electrically triggered intracellular calcium release, shrinkage of tumors, and temporary blockage of the action potential in nerves. In this research, the dynamics of pore formation with the presence of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations show pore formation occurs for a pulse with the amplitude of 0.5V/nm at 1ns at temperature 316°K. Also increasing temperatures facilitate pore formation. When the temperature is increased to 323°K, pore forms at 0.75ns with the pulse amplitude of 0.5V/nm. For statistical significance, a total of eight MD simulations are carried out with different starting molecular velocities for each simulation. Also, actual experimental observations are compared against MD simulation results.

Keywords: molecular dynamics, high-intensity, nanosecond, electroporation

Procedia PDF Downloads 112
3201 NiAl-Layered Double Hydroxide: Preparation, Characterization and Applications in Photo-Catalysis and Hydrogen Storage

Authors: Ahmed Farghali, Heba Amar, Mohamed Khedr

Abstract:

NiAl-Layered Double Hydroxide (NiAl-LDH), one of anionic functional layered materials, has been prepared by a simple co-precipitation process. X-ray diffraction patterns confirm the formation of the desired compounds of NiAl hydroxide single phase and the crystallite size was found to be about 4.6 nm. The morphology of the prepared samples was investigated using scanning electron microscopy and the layered structure was appeared under the transmission electron microscope. The thermal stability and the function groups of NiAl-LDH were investigated using thermal gravimetric analysis (TGA) and Fourier transform infrared (FTIR) respectively. NiAl-LDH was investigated as a photo-catalyst for the degradation of some toxic dyes such as toluidine blue and bromopyrogallol red. It shows good catalytic efficiency in visible light and even in dark. For the first time NiAl-LDH was used for hydrogen storage application. NiAl-LDH samples were exposed to 20 bar applied hydrogen pressure at room temperature, 100 and -193 oC. NiAl-LDH samples appear to have feasible hydrogen storage capacity. It was capable to adsorb 0.1wt% at room temperature, 0.15 wt% at 100oC and storage capacity reached 0.3 wt% at -193 oC.

Keywords: NiAl-LDH, preparation, characterization, photo-catalysis, hydrogen storage

Procedia PDF Downloads 313
3200 Palace Diplomacy: The Means and the End to the Chinese Control of African Economy

Authors: Toyin Cotties Adetiba

Abstract:

Notably, China is a major global economy, thus increasing debate parlance of foreign policy that sees China as a superpower. China’s investment in Africa is visibly seen in African markets with substantial involvement of its multinationals in key commercial sectors such as infrastructure, telecoms, and agriculture. Not minding its positive economic impact on Africa, the debate around the China-African relationship has continued to be filled with some sort of inconsistency and ambiguity. This work engaged a qualitative research method while answering the question of whether the socioeconomic marriage of convenience between African states and China, is a means and the end to the Chinese control of African economy? Can China-Africa’s relationship engender Africa’s economic development or is it a threat to Africa’s development? The paper argued that through the secret dealings of the Chinese companies with African leaders, couched as palace diplomacy, the Chinese have cornered African economy. Concluding that there is need for the reform of the approaches to curtailing socio-economic and political corruption in Africa in the form of applications of ideas molded and refined to transparency in dealing with the Chinese, while economic institutions in African is empowered to effectively fight corruption.

Keywords: Africans, corruption, diplomacy, companies, development

Procedia PDF Downloads 158
3199 Getting to Know the Types of Concrete and its Production Methods

Authors: Mokhtar Nikgoo

Abstract:

Definition of Concrete and Concreting: Concrete (in French: Béton) in a broad sense is any substance or combination that consists of a sticky substance with the property of cementation. In general, concrete refers to concrete made by Portland cement, which is produced by mixing fine and coarse aggregates, Portland cement and water. After enough time, this mixture turns into a stone-like substance. During the hardening or processing of the concrete, cement is chemically combined with water to form strong crystals that bind the aggregates together, a process called hydration. During this process, significant heat is released called hydration heat. Additionally, concrete shrinks slightly, especially as excess water evaporates, a phenomenon known as drying shrinkage. The process of hardening and the gradual increase in concrete strength that occurs with it does not end suddenly unless it is artificially interrupted. Instead, it decreases more over long periods of time, although, in practical applications, concrete is usually set after 28 days and is considered at full design strength. Concrete may be made from different types of cement as well as pozzolans, furnace slag, additives, additives, polymers, fibers, etc. It may also be used in the way it is made, heating, water vapor, autoclave, vacuum, hydraulic pressures and various condensers.

Keywords: concrete, RCC, batching, cement, Pozzolan, mixing plan

Procedia PDF Downloads 98
3198 Study of the Nonlinear Optic Properties of Thin Films of Europium Doped Zinc Oxide

Authors: Ali Ballouch, Nourelhouda Choukri, Zouhair Soufiani, Mohamed El Jouad, Mohamed Addou

Abstract:

For several years, significant research has been developed in the areas of applications of semiconductor wide bandgap such as ZnO in optoelectronics. This oxide has the advantage of having a large exciton energy (60 meV) three times higher than that of GaN (21 meV) or ZnS (20 meV). This energy makes zinc oxide resistant for laser irradiations and very interesting for the near UV-visible optic, as well as for studying physical microcavities. A high-energy direct gap at room temperature (Eg > 1 eV) which makes it a potential candidate for emitting devices in the near UV and visible. Our work is to study the nonlinear optical properties, mainly the nonlinear third-order susceptibility of europium doped Zinc oxide thin films. The samples were prepared by chemical vapor spray method (Spray), XRD, SEM technique, THG were used for characterization. In this context, the influence of europium doping on the nonlinear optical response of the Zinc oxide was investigated. The nonlinear third-order properties depend on the physico-chemical parameters (crystallinity, strain, and surface roughness), the nature and the level of doping, temperature.

Keywords: ZnO, characterization, non-linear optical properties, optoelectronics

Procedia PDF Downloads 482
3197 Latency-Based Motion Detection in Spiking Neural Networks

Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang

Abstract:

Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.

Keywords: neural network, motion detection, signature detection, convolutional neural network

Procedia PDF Downloads 88
3196 Enhanced Enzymes Production through Immobilization of Filamentous Fungi

Authors: Zhanara B. Suleimenova, Zhazira K. Saduyeva

Abstract:

Filamentous fungi are major producers of enzymes that have important applications in the food and beverage industries. The overall objective of this research is a strain improvement technology for efficient industrial enzymes production. The new way of filamentous fungi cultivation method has been developed. Such technology prolong producers’ cultivation period up to 60 days and create the opportunity to obtain enzymes repeatedly in every 2-3 days of fungal cultivation. This method is based on immobilizing enzymes producers with solid support in submerged conditions of growth. Immobilizing has a range of advantages: Decreasing the price of the final product, absence of foreign substances, controlled process of enzyme-genesis, ability of various enzymes simultaneous production, etc. Design of proposed technology gives the opportunity to increase the activity of immobilized cells culture filtrate comparing to free cells, growing in periodic culture conditions. Thus, proposed research focuses on new, more versatile, microorganisms capable of squeezing more end-products as well as proposed cultivation technology led to increased enzymatic productivity by several times.

Keywords: filamentous fungi, immobilization, industrial enzymes production, strain improvement

Procedia PDF Downloads 360
3195 Unified Assessment of Power System Reserve-based Reliability Levels

Authors: B. M. Alshammari, M. A. El-Kady

Abstract:

This paper presents a unified framework for assessment of reserve-based reliability levels in electric power systems. The unified approach is based on reserve-based analysis and assessment of the relationship between available generation capacities and required demand levels. The developed approach takes into account the load variations as well as contingencies which occur randomly causing some generation and/or transmission capacities to be lost (become unavailable). The calculated reserve based indices, which are important to assess the reserve capabilities of the power system for various operating scenarios are therefore probabilistic in nature. They reflect the fact that neither the load levels nor the generation or transmission capacities are known with absolute certainty. They are rather subjects to random variations and consequently. The calculated reserve-based reliability indices are all subjects to random variations where only expected values of these indices can be evaluated. This paper presents a unified approach to reserve-based reliability assessment of power systems using various reserve assessment criteria. Practical applications are also presented for demonstration purposes to the Saudi electricity power grid.

Keywords: assessment, power system, reserve, reliability

Procedia PDF Downloads 617
3194 Validation of Contemporary Physical Activity Tracking Technologies through Exercise in a Controlled Environment

Authors: Reem I. Altamimi, Geoff D. Skinner

Abstract:

Extended periods engaged in sedentary behavior increases the risk of becoming overweight and/or obese which is linked to other health problems. Adding technology to the term ‘active living’ permits its inclusion in promoting and facilitating habitual physical activity. Technology can either act as a barrier to, or facilitate this lifestyle, depending on the chosen technology. Physical Activity Monitoring Technologies (PAMTs) are a popular example of such technologies. Different contemporary PAMTs have been evaluated based on customer reviews; however, there is a lack of published experimental research into the efficacy of PAMTs. This research aims to investigate the reliability of four PAMTs: two wristbands (Fitbit Flex and Jawbone UP), a waist-clip (Fitbit One), and a mobile application (iPhone Health Application) for recording a specific distance walked on a treadmill (1.5km) at constant speed. Physical activity tracking technologies are varied in their recordings, even while performing the same activity. This research demonstrates that Jawbone UP band recorded the most accurate distance compared to Fitbit One, Fitbit Flex, and iPhone Health Application.

Keywords: Fitbit, jawbone up, mobile tracking applications, physical activity tracking technologies

Procedia PDF Downloads 322
3193 An Investigation of Influential Factors in Adopting the Cloud Computing in Saudi Arabia: An Application of Technology Acceptance Model

Authors: Shayem Saleh ALresheedi, Lu Song Feng, Abdulaziz Abdulwahab M. Fatani

Abstract:

Cloud computing is an emerging concept in the technological sphere. Its development enables many applications to avail information online and on demand. It is becoming an essential element for businesses due to its ability to diminish the costs of IT infrastructure and is being adopted in Saudi Arabia. However, there exist many factors that affect its adoption. Several researchers in the field have ignored the study of the TAM model for identifying the relevant factors and their impact for adopting of cloud computing. This study focuses on evaluating the acceptability of cloud computing and analyzing its impacting factors using Technology Acceptance Model (TAM) of technology adoption in Saudi Arabia. It suggests a model to examine the influential factors of the TAM model along with external factors of technical support in adapting the cloud computing. The proposed model has been tested through the use of multiple hypotheses based on calculation tools and collected data from customers through questionnaires. The findings of the study prove that the TAM model along with external factors can be applied in measuring the expected adoption of cloud computing. The study presents an investigation of influential factors and further recommendation in adopting cloud computing in Saudi Arabia.

Keywords: cloud computing, acceptability, adoption, determinants

Procedia PDF Downloads 194
3192 Mutagenicity Evaluation of Locally Produced Biphasic Calcium Phosphate Using Ames Test

Authors: Nur Fathin Alia Che Wahab, Thirumulu Ponnuraj Kannan, Zuliani Mahmood, Ismail Ab. Rahman, Hanafi Ismail

Abstract:

Locally produced Biphasic Calcium Phosphate (BCP) consists of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) which is a promising material for dentin and bone regeneration as well as in tissue engineering applications. The study was carried out to investigate the mutagenic effect of locally produced BCP using Ames test. Mutagenicity was evaluated with and without the addition of metabolic activation system (S9). This study was performed on Salmonella typhimurium TA98, TA102, TA1537, and TA1538 strains using preincubation assay method. The doses tested were 5000, 2500, 1250, 625, 313 µg/plate. Negative and positive controls were also included. The bacteria were incubated for 48 hours at 37 ± 0.5 °C. Then, the revertant colonies were counted. Data obtained were evaluated using non-statistical method. The mean number of revertant colonies in strains with and without S9 mix treated with locally produced BCP was less than double when compared to negative control for all the tested concentrations. The results from this study indicate that the locally produced BCP is non-mutagenic under the present test conditions.

Keywords: ames test, biphasic calcium phosphate, dentin regeneration, mutagenicity

Procedia PDF Downloads 323
3191 Ultra-High Frequency Passive Radar Coverage for Cars Detection in Semi-Urban Scenarios

Authors: Pedro Gómez-del-Hoyo, Jose-Luis Bárcena-Humanes, Nerea del-Rey-Maestre, María-Pilar Jarabo-Amores, David Mata-Moya

Abstract:

A study of achievable coverages using passive radar systems in terrestrial traffic monitoring applications is presented. The study includes the estimation of the bistatic radar cross section of different commercial vehicle models that provide challenging low values which make detection really difficult. A semi-urban scenario is selected to evaluate the impact of excess propagation losses generated by an irregular relief. A bistatic passive radar exploiting UHF frequencies radiated by digital video broadcasting transmitters is assumed. A general method of coverage estimation using electromagnetic simulators in combination with estimated car average bistatic radar cross section is applied. In order to reduce the computational cost, hybrid solution is implemented, assuming free space for the target-receiver path but estimating the excess propagation losses for the transmitter-target one.

Keywords: bistatic radar cross section, passive radar, propagation losses, radar coverage

Procedia PDF Downloads 336
3190 Intelligent Tooling Embedded Sensors for Monitoring the Wear of Cutting Tools in Turning Applications

Authors: Hatim Laalej, Jon Stammers

Abstract:

In machining, monitoring of tool wear is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Currently, the task of monitoring the wear on the cutting tool is carried out by the operator who performs manual inspections of the cutting tool, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from loss of productivity. The cutting tool consumable costs may also be higher than necessary when tools are changed before the end of their useful life. Furthermore, damage can be caused to the workpiece when tools are not changed soon enough leading to a significant increase in the costs of manufacturing. The present study is concerned with the development of break sensor printed on the flank surface of poly-crystalline diamond (PCD) cutting to perform on-line condition monitoring of the cutting tool used to machine Titanium Ti-6al-4v bar. The results clearly show that there is a strong correlation between the break sensor measurements and the amount of wear in the cutting tool. These findings are significant in that they help the user/operator of the machine tool to determine the condition of the cutting tool without the need of performing manual inspection, thereby reducing the manufacturing costs such as the machine down time.

Keywords: machining, manufacturing, tool wear, signal processing

Procedia PDF Downloads 245
3189 TRIZ-Based Conflicts-Solving Applications in New Product Development (NPD) Process and Knowledge Management (KM) System

Authors: Chi-Hao Yeh

Abstract:

The aim of this paper is to show how to apply TRIZ to resolve conflicts in management area, which can be readily applied in new product development (NPD) process and Knowledge Management (KM) system in desinging and manfacturing stages. TRIZ has been well-known as a creative and innovative thinking theory in solving engineering and technology contradictions in the last two decades. However, few studies and practical usage were proposed in management area. Conflicts occurring including schedule, budget, and risk plannings at smart phone R&D process are discussed to demonstrate the ideas guided by 39 TRIZ management parameters, 40 TRIZ innovative principles, and contradiction matrix. The results show that TRIZ is able to provide direct, quick and effective alternatives to resolve the management conflicts. In this manner, huge effort and cost can be actually saved and practical experince can be stored in KM system. In this paper, an innovative 3C consuming product such as smart-phone is utilized as a case study to describe the proposed TRIZ-based conflicts-solving approaches in NPD process and Knowledge Management (KM) system.

Keywords: TRIZ, conflicts-solving in managment area, new product development (NPD), knowledge management (KM), smart-phone

Procedia PDF Downloads 520
3188 Solar-Powered Adsorption Cooling System: A Case Study on the Climatic Conditions of Al Minya

Authors: El-Sadek H. Nour El-deen, K. Harby

Abstract:

Energy saving and environment friendly applications are turning out to be one of the most important topics nowadays. In this work, a simulation analysis using TRNSYS software has been carried out to study the benefit of employing a solar adsorption cooling system under the climatic conditions of Al-Minya city, Egypt. A theoretical model was carried out on a two bed adsorption cooling system employing granular activated carbon-HFC-404A as working pair. Temporal and averaged history of solar collector, adsorbent beds, evaporator and condenser has been shown. System performance in terms of daily average cooling capacity and average coefficient of performance around the year has been investigated. The results showed that maximum yearly average coefficient of performance (COP) and cooling capacity are about 0.26 and 8 kW respectively. The maximum value of the both average cooling capacity and COP cyclic is directly proportional to the maximum solar radiation. The system performance was found to be increased with the average ambient temperature. Finally, the proposed solar powered adsorption cooling systems can be used effectively under Al-Minya climatic conditions.

Keywords: adsorption, cooling, Egypt, environment, solar energy

Procedia PDF Downloads 160
3187 Comparison of User Experience in VR When Hand Gestures Are Used vs. Using Controller

Authors: Sanu Muhammed C., Nihal Vadakkan, Sahil Athrij, Sasi Gopalan

Abstract:

Currently, the content entertainment industry is dominated by mobile devices. As the trends slowly shift towards AR/VR applications, the user experience on these devices should be considered, and we are trying to improve user experience in VR. This paper proposes a survey-based solution to improve user experience in VR. By creating a VR environment where users can move a ball from one position to another using a remote controller and another VR environment where users can move a ball from one place to another using hand gestures/ By allowing a set of audience to use these two environments, we can get their feedback. There are two steps in this comparison, 1) Using Hand Gestures To Move Ball In VR Environment: Here, we create a VR environment where two baskets are there, and one ball will be there in a basket. Here users can transfer the ball to another basket using hand gestures. They will be able to move the ball using hand gestures. 2) Using Remote Control To Move Ball In VR Environment: Here, we create a VR environment where two baskets are there, and one ball will be there in a basket. Here users can transfer the ball to another basket using a remote control. They will be able to move the ball using a remote controller. The above two environments are given to users to experience, and their responses will be recorded to compare the user experience in the above two environments.

Keywords: virtual reality, user experience, hand gestures, remote control

Procedia PDF Downloads 146
3186 A Low-Cost Air Quality Monitoring Internet of Things Platform

Authors: Christos Spandonidis, Stefanos Tsantilas, Elias Sedikos, Nektarios Galiatsatos, Fotios Giannopoulos, Panagiotis Papadopoulos, Nikolaos Demagos, Dimitrios Reppas, Christos Giordamlis

Abstract:

In the present paper, a low cost, compact and modular Internet of Things (IoT) platform for air quality monitoring in urban areas is presented. This platform comprises of dedicated low cost, low power hardware and the associated embedded software that enable measurement of particles (PM2.5 and PM10), NO, CO, CO2 and O3 concentration in the air, along with relative temperature and humidity. This integrated platform acts as part of a greater air pollution data collecting wireless network that is able to monitor the air quality in various regions and neighborhoods of an urban area, by providing sensor measurements at a high rate that reaches up to one sample per second. It is therefore suitable for Big Data analysis applications such as air quality forecasts, weather forecasts and traffic prediction. The first real world test for the developed platform took place in Thessaloniki, Greece, where 16 devices were installed in various buildings in the city. In the near future, many more of these devices are going to be installed in the greater Thessaloniki area, giving a detailed air quality map of the city.

Keywords: distributed sensor system, environmental monitoring, Internet of Things, smart cities

Procedia PDF Downloads 147
3185 Beginner Steps of the First Dendrochronology Lab in Montenegro - Dendrochronology Research in The Bosnian Pine (Pinus heldreichii) Forests

Authors: Jelena Popović, Andrijana Mićanović

Abstract:

Officially, 60% of Montenegrin territory is covered in forests, but they are continually being destroyed by illegal cutting, concession politics and wildfires. Montenegrin Ecologists Society started the first dendrochronology lab in Montenegro, and data collection began in the Summer of 2021. The cores were taken from 3 localities around the peak Lisac on the mt. Prekornica, where biggest P.heldreichii forests existed until recent huge wildfires. This research is the first step towards comprehensive dendrochronology research in Montenegro. It will show how old certain forest stands of Pinus heldreichii on mountain Prekornica are, that were not destroyed in huge wildfires from the recent years. It will also show how do they correlate between each other. Per locality 15 trees were sampled. Electric sanders (150 - 2000) were used for preparation. Cores were scanned, then measured in CooRecorder. Analysis is done in Cofecha. Process will be repeated with Lintab 6 and TSAP (Time Series Analysis and Presentation for Dendrochronology and Related Applications) - Win Scientific software by Rinntech. Since this is the first dendrochronology research entirely done in Montenegro it is a foundation for the dendroclimatology research. Besides, it’ll contribute to the understanding of the life of these forests in this part of its areal, and in designing good management practices.

Keywords: dendrochronology, bosnian pine, pinus heldreichii, montenegro, forests

Procedia PDF Downloads 96
3184 The Implementation of the Multi-Agent Classification System (MACS) in Compliance with FIPA Specifications

Authors: Mohamed R. Mhereeg

Abstract:

The paper discusses the implementation of the MultiAgent classification System (MACS) and utilizing it to provide an automated and accurate classification of end users developing applications in the spreadsheet domain. However, different technologies have been brought together to build MACS. The strength of the system is the integration of the agent technology with the FIPA specifications together with other technologies, which are the .NET widows service based agents, the Windows Communication Foundation (WCF) services, the Service Oriented Architecture (SOA), and Oracle Data Mining (ODM). Microsoft's .NET windows service based agents were utilized to develop the monitoring agents of MACS, the .NET WCF services together with SOA approach allowed the distribution and communication between agents over the WWW. The Monitoring Agents (MAs) were configured to execute automatically to monitor excel spreadsheets development activities by content. Data gathered by the Monitoring Agents from various resources over a period of time was collected and filtered by a Database Updater Agent (DUA) residing in the .NET client application of the system. This agent then transfers and stores the data in Oracle server database via Oracle stored procedures for further processing that leads to the classification of the end user developers.

Keywords: MACS, implementation, multi-agent, SOA, autonomous, WCF

Procedia PDF Downloads 274
3183 Vortex-Induced Vibrations of Two Cylinders in Close Proximity

Authors: Ravi Chaithanya Mysa, Abouzar Kaboudian, Boo Cheong Khoo, Rajeev Kumar Jaiman

Abstract:

The phenomenon of vortex-induced vibration has applications in off-shore industry, power transmission, energy extraction, etc. Two cylinders in crossflow whose centers are displaced in transverse direction are considered in the present work. The effects of the gap distance between the cylinders on the vortex shedding are presented. The inline distance between the cylinder centers is kept at zero. Two setups are considered for the study: first, we assume the two cylinders vibrate as a single rigid body mounted on a spring, and in the other case, each cylinder is mounted on a separate spring with no rigid connection to the other cylinder. The study focuses on the effect of transverse gap on the fluid-structure coupled response of two setups mentioned and corresponding flow contours. Incompressible flow is assumed in the Eulerian framework. The cylinder movement is modeled by a single degree of freedom rigid body motion (translational motion) in the Lagrangian framework. The governing equations were numerically solved by standard Petrov-Galerkin second order finite element schemes.

Keywords: cross-flow, vortex-induced vibrations, cylinder, close proximity

Procedia PDF Downloads 497
3182 Corrosion Inhibition of Mild Steel by Calcium Gluconate in Magnesium Chloride Solution

Authors: Olaitan Akanji, Cleophas Loto, Patricia Popoola, Andrei Kolesnikov

Abstract:

Studies involving performance of corrosion inhibitors had been identified as one of the critical research needs for improving the durability of mild steel used in various industrial applications. This paper investigates the inhibiting effect of calcium gluconate against the corrosion of mild steel in 2.5M magnesium chloride using weight loss method and linear polarization technique, calculated corrosion rates from the obtained weight loss data, potentiodynamic polarization measurements are in good agreement. Results revealed calcium gluconate has strong inhibitory effects with inhibitor efficiency increasing with increase in inhibitor concentration at ambient temperature, the efficiency of the inhibitor increased in the following order of concentrations 2%g/vol,1.5%g/vol,1%g/vol,0.5%g/vol. Further results obtained from potentiodynamics experiments had good correlation with those of the gravimetric methods, the adsorption of the inhibitor on the mild steel surface from the chloride has been found to obey Langmuir, Frumkin and Freudlich adsorption isotherm. Scanning electron microscopy (SEM) observation confirmed the existence of an absorbed protective film on the metal surface.

Keywords: calcium gluconate, corrosion, magnesium chloride, mild steel

Procedia PDF Downloads 348