Search results for: optimum learning outcomes
8402 Tip-Apex Distance as a Long-Term Risk Factor for Hospital Readmission Following Intramedullary Fixation of Intertrochanteric Fractures
Authors: Brandon Knopp, Matthew Harris
Abstract:
Purpose: Tip-apex distance (TAD) has long been discussed as a metric for determining risk of failure in the fixation of peritrochanteric fractures. TAD measurements over 25 millimeters (mm) have been associated with higher rates of screw cut out and other complications in the first several months after surgery. However, there is limited evidence for the efficacy of this measurement in predicting the long-term risk of negative outcomes following hip fixation surgery. The purpose of our study was to investigate risk factors including TAD for hospital readmission, loss of pre-injury ambulation and development of complications within 1 year after hip fixation surgery. Methods: A retrospective review of proximal hip fractures treated with single screw intramedullary devices between 2016 and 2020 was performed at a 327-bed regional medical center. Patients included had a postoperative follow-up of at least 12 months or surgery-related complications developing within that time. Results: 44 of the 67 patients in this study met the inclusion criteria with adequate follow-up post-surgery. There was a total of 10 males (22.7%) and 34 females (77.3%) meeting inclusion criteria with a mean age of 82.1 (± 12.3) at the time of surgery. The average TAD in our study population was 19.57mm and the average 1-year readmission rate was 15.9%. 3 out of 6 patients (50%) with a TAD > 25mm were readmitted within one year due to surgery-related complications. In contrast, 3 out of 38 patients (7.9%) with a TAD < 25mm were readmitted within one year due to surgery-related complications (p=0.0254). Individual TAD measurements, averaging 22.05mm in patients readmitted within 1 year of surgery and 19.18mm in patients not readmitted within 1 year of surgery, were not significantly different between the two groups (p=0.2113). Conclusions: Our data indicate a significant improvement in hospital readmission rates up to one year after hip fixation surgery in patients with a TAD < 25mm with a decrease in readmissions of over 40% (50% vs 7.9%). This result builds upon past investigations by extending the follow-up time to 1 year after surgery and utilizing hospital readmissions as a metric for surgical success. With the well-documented physical and financial costs of hospital readmission after hip surgery, our study highlights a reduction of TAD < 25mm as an effective method of improving patient outcomes and reducing financial costs to patients and medical institutions. No relationship was found between TAD measurements and secondary outcomes, including loss of pre-injury ambulation and development of complications.Keywords: hip fractures, hip reductions, readmission rates, open reduction internal fixation
Procedia PDF Downloads 1458401 The Impact of Enhanced Recovery after Surgery (ERAS) Protocols on Anesthesia Management in High-Risk Surgical Patients
Authors: Rebar Mohammed Hussein
Abstract:
Enhanced Recovery After Surgery (ERAS) protocols have transformed perioperative care, aiming to reduce surgical stress, optimize pain management, and accelerate recovery. This study evaluates the impact of ERAS on anesthesia management in high-risk surgical patients, focusing on opioid-sparing techniques and multimodal analgesia. A retrospective analysis was conducted on patients undergoing major surgeries within an ERAS program, comparing outcomes with a historical cohort receiving standard care. Key metrics included postoperative pain scores, opioid consumption, length of hospital stay, and complication rates. Results indicated that the implementation of ERAS protocols significantly reduced postoperative opioid use by 40% and improved pain management outcomes, with 70% of patients reporting satisfactory pain control on postoperative day one. Additionally, patients in the ERAS group experienced a 30% reduction in length of stay and a 20% decrease in complication rates. These findings underscore the importance of integrating ERAS principles into anesthesia practice, particularly for high-risk patients, to enhance recovery, improve patient satisfaction, and reduce healthcare costs. Future directions include prospective studies to further refine anesthesia techniques within ERAS frameworks and explore their applicability across various surgical specialties.Keywords: ERAS protocols, high-risk surgical patients, anesthesia management, recovery
Procedia PDF Downloads 258400 Optimizing the Design Parameters of Acoustic Power Transfer Model to Achieve High Power Intensity and Compact System
Authors: Ariba Siddiqui, Amber Khan
Abstract:
The need for bio-implantable devices in the field of medical sciences has been increasing day by day; however, the charging of these devices is a major issue. Batteries, a very common method of powering the implants, have a limited lifetime and bulky nature. Therefore, as a replacement of batteries, acoustic power transfer (APT) technology is being accepted as the most suitable technique to wirelessly power the medical implants in the present scenario. The basic model of APT consists of piezoelectric transducers that work on the principle of converse piezoelectric effect at the transmitting end and direct piezoelectric effect at the receiving end. This paper provides mechanistic insight into the parameters affecting the design and efficient working of acoustic power transfer systems. The optimum design considerations have been presented that will help to compress the size of the device and augment the intensity of the pressure wave. A COMSOL model of the PZT (Lead Zirconate Titanate) transducer was developed. The model was simulated and analyzed on a frequency spectrum. The simulation results displayed that the efficiency of these devices is strongly dependent on the frequency of operation, and a wrong choice of the operating frequency leads to the high absorption of acoustic field inside the tissue (medium), poor power strength, and heavy transducers, which in effect influence the overall configuration of the acoustic systems. Considering all the tradeoffs, the simulations were performed again by determining an optimum frequency (900 kHz) that resulted in the reduction of the transducer's thickness to 1.96 mm and augmented the power strength with an intensity of 432 W/m². Thus, the results obtained after the second simulation contribute to lesser attenuation, lightweight systems, high power intensity, and also comply with safety limits provided by the U.S Food and Drug Administration (FDA). It was also found that the chosen operating frequency enhances the directivity of the acoustic wave at the receiver side.Keywords: acoustic power, bio-implantable, COMSOL, Lead Zirconate Titanate, piezoelectric, transducer
Procedia PDF Downloads 1748399 The Cloud Systems Used in Education: Properties and Overview
Authors: Agah Tuğrul Korucu, Handan Atun
Abstract:
Diversity and usefulness of information that used in education are have increased due to development of technology. Web technologies have made enormous contributions to the distance learning system especially. Mobile systems, one of the most widely used technology in distance education, made much easier to access web technologies. Not bounding by space and time, individuals have had the opportunity to access the information on web. In addition to this, the storage of educational information and resources and accessing these information and resources is crucial for both students and teachers. Because of this importance, development and dissemination of web technologies supply ease of access to information and resources are provided by web technologies. Dynamic web technologies introduced as new technologies that enable sharing and reuse of information, resource or applications via the Internet and bring websites into expandable platforms are commonly known as Web 2.0 technologies. Cloud systems are one of the dynamic web technologies that defined as a model provides approaching the demanded information independent from time and space in appropriate circumstances and developed by NIST. One of the most important advantages of cloud systems is meeting the requirements of users directly on the web regardless of hardware, software, and dealing with install. Hence, this study aims at using cloud services in education and investigating the services provided by the cloud computing. Survey method has been used as research method. In the findings of this research the fact that cloud systems are used such studies as resource sharing, collaborative work, assignment submission and feedback, developing project in the field of education, and also, it is revealed that cloud systems have plenty of significant advantages in terms of facilitating teaching activities and the interaction between teacher, student and environment.Keywords: cloud systems, cloud systems in education, online learning environment, integration of information technologies, e-learning, distance learning
Procedia PDF Downloads 3498398 Omni-Modeler: Dynamic Learning for Pedestrian Redetection
Authors: Michael Karnes, Alper Yilmaz
Abstract:
This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition
Procedia PDF Downloads 768397 Locus of Control and Self-Esteem as Predictors of Maternal and Child Healthcare Services Utilization in Nigeria
Authors: Josephine Aikpitanyi, Friday Okonofua, Lorrettantoimo, Sandy Tubeuf
Abstract:
Every day, 800 women die from conditions related to pregnancy and childbirth, resulting in an estimated 300,000 maternal deaths worldwide per year. Over 99 percent of all maternal deaths occur in developing countries, with more than half of them occurring in sub-Saharan Africa. Nigeria being the most populous nation in sub-Saharan Africa bears a significant burden of worsening maternal and child health outcomes with a maternal mortality rate of 917 per 100,000 live births and child mortality rate of 117 per 1,000 live births. While several studies have documented that financial barriers disproportionately discourage poor women from seeking needed maternal and child healthcare, other studies have indicated otherwise. Evidence shows that there are instances where health facilities with skilled healthcare providers exist, and yet maternal, and child health outcomes remain abysmally low, indicating the presence of non-cognitive and behavioural factors that may affect the utilization of healthcare services. This study investigated the influence of locus of control and self-esteem on utilization of maternal and child healthcare services in Nigeria. Specifically, it explored the differences in utilization of antenatal care, skilled birth care, postnatal care, and child vaccination by women having an internal and external locus of control and women having high and low self-esteem. We collected information on non-cognitive traits of 1411 randomly selected women, along with information on utilization of the various indicators of maternal and child healthcare. Estimating logistic regression models for various components of healthcare services utilization, we found that women’s internal locus of control was a significant predictor of utilization of antenatal care, skilled birth care, and completion of child vaccination. We also found that having high self-esteem was a significant predictor of utilization of antenatal care, postnatal care, and completion of child vaccination after adjusting for other control variables. By improving our understanding of non-cognitive traits as possible barriers to maternal and child healthcare utilization, our findings offer important insights for enhancing participant engagement in intervention programs that are initiated to improve maternal and child health outcomes in low-and-middle-income countries.Keywords: behavioural economics, health-seeking behaviour, locus of control and self-esteem, maternal and child healthcare, non-cognitive traits, and healthcare utilization
Procedia PDF Downloads 1658396 Learners’ Conspicuous and Significant Errors in Arithmetic
Authors: Michael Lousis
Abstract:
The systematic identification of the most conspicuous and significant errors made by learners during three-years of testing of their progress in learning Arithmetic are presented in this article. How these errors have changed over three-years of school instruction of Arithmetic also is shown. The sample is comprised of two hundred (200) English students and one hundred and fifty (150) Greek students. These students were purposefully selected according to their participation in each testing session in the development of the three-year Kassel Project in England and Greece, in both domains simultaneously in Arithmetic and Algebra. The data sample includes six test-scripts corresponding to three testing sessions in both Arithmetic and Algebra respectively.Keywords: arithmetic, errors, Kassel Project, progress of learning
Procedia PDF Downloads 2648395 Students’ Speech Anxiety in Blended Learning
Authors: Mary Jane B. Suarez
Abstract:
Public speaking anxiety (PSA), also known as speech anxiety, is innumerably persistent in any traditional communication classes, especially for students who learn English as a second language. The speech anxiety intensifies when communication skills assessments have taken their toll in an online or a remote mode of learning due to the perils of the COVID-19 virus. Both teachers and students have experienced vast ambiguity on how to realize a still effective way to teach and learn speaking skills amidst the pandemic. Communication skills assessments like public speaking, oral presentations, and student reporting have defined their new meaning using Google Meet, Zoom, and other online platforms. Though using such technologies has paved for more creative ways for students to acquire and develop communication skills, the effectiveness of using such assessment tools stands in question. This mixed method study aimed to determine the factors that affected the public speaking skills of students in a communication class, to probe on the assessment gaps in assessing speaking skills of students attending online classes vis-à-vis the implementation of remote and blended modalities of learning, and to recommend ways on how to address the public speaking anxieties of students in performing a speaking task online and to bridge the assessment gaps based on the outcome of the study in order to achieve a smooth segue from online to on-ground instructions maneuvering towards a much better post-pandemic academic milieu. Using a convergent parallel design, both quantitative and qualitative data were reconciled by probing on the public speaking anxiety of students and the potential assessment gaps encountered in an online English communication class under remote and blended learning. There were four phases in applying the convergent parallel design. The first phase was the data collection, where both quantitative and qualitative data were collected using document reviews and focus group discussions. The second phase was data analysis, where quantitative data was treated using statistical testing, particularly frequency, percentage, and mean by using Microsoft Excel application and IBM Statistical Package for Social Sciences (SPSS) version 19, and qualitative data was examined using thematic analysis. The third phase was the merging of data analysis results to amalgamate varying comparisons between desired learning competencies versus the actual learning competencies of students. Finally, the fourth phase was the interpretation of merged data that led to the findings that there was a significantly high percentage of students' public speaking anxiety whenever students would deliver speaking tasks online. There were also assessment gaps identified by comparing the desired learning competencies of the formative and alternative assessments implemented and the actual speaking performances of students that showed evidence that public speaking anxiety of students was not properly identified and processed.Keywords: blended learning, communication skills assessment, public speaking anxiety, speech anxiety
Procedia PDF Downloads 1028394 Embodied Communication - Examining Multimodal Actions in a Digital Primary School Project
Authors: Anne Öman
Abstract:
Today in Sweden and in other countries, a variety of digital artefacts, such as laptops, tablets, interactive whiteboards, are being used at all school levels. From an educational perspective, digital artefacts challenge traditional teaching because they provide a range of modes for expression and communication and are not limited to the traditional medium of paper. Digital technologies offer new opportunities for representations and physical interactions with objects, which put forward the role of the body in interaction and learning. From a multimodal perspective the emphasis is on the use of multiple semiotic resources for meaning- making and the study presented here has examined the differential use of semiotic resources by pupils interacting in a digitally designed task in a primary school context. The instances analyzed in this paper come from a case study where the learning task was to create an advertising film in a film-software. The study in focus involves the analysis of a single case with the emphasis on the examination of the classroom setting. The research design used in this paper was based on a micro ethnographic perspective and the empirical material was collected through video recordings of small-group work in order to explore pupils’ communication within the group activity. The designed task described here allowed students to build, share, collaborate upon and publish the redesigned products. The analysis illustrates the variety of communicative modes such as body position, gestures, visualizations, speech and the interaction between these modes and the representations made by the pupils. The findings pointed out the importance of embodied communication during the small- group processes from a learning perspective as well as a pedagogical understanding of pupils’ representations, which were similar from a cultural literacy perspective. These findings open up for discussions with further implications for the school practice concerning the small- group processes as well as the redesigned products. Wider, the findings could point out how multimodal interactions shape the learning experience in the meaning-making processes taking into account that language in a globalized society is more than reading and writing skills.Keywords: communicative learning, interactive learning environments, pedagogical issues, primary school education
Procedia PDF Downloads 4088393 Evaluation of the Trauma System in a District Hospital Setting in Ireland
Authors: Ahmeda Ali, Mary Codd, Susan Brundage
Abstract:
Importance: This research focuses on devising and improving Health Service Executive (HSE) policy and legislation and therefore improving patient trauma care and outcomes in Ireland. Objectives: The study measures components of the Trauma System in the district hospital setting of the Cavan/Monaghan Hospital Group (CMHG), HSE, Ireland, and uses the collected data to identify the strengths and weaknesses of the CMHG Trauma System organisation, to include governance, injury data, prevention and quality improvement, scene care and facility-based care, and rehabilitation. The information will be made available to local policy makers to provide objective situational analysis to assist in future trauma service planning and service provision. Design, setting and participants: From 28 April to May 28, 2016 a cross-sectional survey using World Health Organisation (WHO) Trauma System Assessment Tool (TSAT) was conducted among healthcare professionals directly involved in the level III trauma system of CMHG. Main outcomes: Identification of the strengths and weaknesses of the Trauma System of CMHG. Results: The participants who reported inadequate funding for pre hospital (62.3%) and facility based trauma care at CMHG (52.5%) were high. Thirty four (55.7%) respondents reported that a national trauma registry (TARN) exists but electronic health records are still not used in trauma care. Twenty one respondents (34.4%) reported that there are system wide protocols for determining patient destination and adequate, comprehensive legislation governing the use of ambulances was enforced, however, there is a lack of a reliable advisory service. Over 40% of the respondents reported uncertainty of the injury prevention programmes available in Ireland; as well as the allocated government funding for injury and violence prevention. Conclusions: The results of this study contributed to a comprehensive assessment of the trauma system organisation. The major findings of the study identified three fundamental areas: the inadequate funding at CMHG, the QI techniques and corrective strategies used, and the unfamiliarity of existing prevention strategies. The findings direct the need for further research to guide future development of the trauma system at CMHG (and in Ireland as a whole) in order to maximise best practice and to improve functional and life outcomes.Keywords: trauma, education, management, system
Procedia PDF Downloads 2438392 Comparing the Detection of Autism Spectrum Disorder within Males and Females Using Machine Learning Techniques
Authors: Joseph Wolff, Jeffrey Eilbott
Abstract:
Autism Spectrum Disorders (ASD) are a spectrum of social disorders characterized by deficits in social communication, verbal ability, and interaction that can vary in severity. In recent years, researchers have used magnetic resonance imaging (MRI) to help detect how neural patterns in individuals with ASD differ from those of neurotypical (NT) controls for classification purposes. This study analyzed the classification of ASD within males and females using functional MRI data. Functional connectivity (FC) correlations among brain regions were used as feature inputs for machine learning algorithms. Analysis was performed on 558 cases from the Autism Brain Imaging Data Exchange (ABIDE) I dataset. When trained specifically on females, the algorithm underperformed in classifying the ASD subset of our testing population. Although the subject size was relatively smaller in the female group, the manual matching of both male and female training groups helps explain the algorithm’s bias, indicating the altered sex abnormalities in functional brain networks compared to typically developing peers. These results highlight the importance of taking sex into account when considering how generalizations of findings on males with ASD apply to females.Keywords: autism spectrum disorder, machine learning, neuroimaging, sex differences
Procedia PDF Downloads 2098391 Effect of Parenting Style on Aggression and Empathy in Children Between the Age of 10-12
Authors: Debangana Mukherjee
Abstract:
This study delves into the pivotal role of parenting styles in shaping the development of aggression and empathy in children aged 10 to 12. Using a sample of 300 school students, we employed self-assessment questionnaires and scales to investigate correlations between parenting styles—authoritative, authoritarian, permissive, and neglectful—and behavioural traits, focusing on aggression and empathy as primary outcomes. The findings underscore the intricate relationships between parenting styles, aggressive behaviours, and empathetic tendencies. Notably, certain parenting approaches demonstrated strong correlations with specific behavioural outcomes. For instance, authoritarian parenting showed associations with increased aggression and reduced empathy, while authoritative parenting exhibited the opposite trend. These correlations emphasize the potential impact of parenting styles on children's behavioural development during this critical transitional phase. However, this study is limited by its correlational nature, which does not imply causation. The complexities of human behaviour, the limited scope of analysis, and the need for further research into causative relationships and cultural influences call for a nuanced understanding of these dynamics. Moving forward, longitudinal studies, causality investigations, consideration of cultural diversity, and exploration of additional variables could enrich our understanding of the interplay between parenting styles, empathy, and aggression. Validating these findings across diverse populations and refining interventions could pave the way for nurturing healthy behavioural development in children.Keywords: aggression, correlational nature, empathy, longitudinal studies, parenting style
Procedia PDF Downloads 568390 Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes
Authors: David F. Nettleton, Christian Wasiak, Jonas Dorissen, David Gillen, Alexandr Tretyak, Elodie Bugnicourt, Alejandro Rosales
Abstract:
In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems.Keywords: calibration, data modeling, industrial processes, machine learning
Procedia PDF Downloads 2998389 Managing the Cognitive Load of Medical Students during Anatomy Lecture
Authors: Siti Nurma Hanim Hadie, Asma’ Hassan, Zul Izhar Ismail, Ahmad Fuad Abdul Rahim, Mohd. Zarawi Mat Nor, Hairul Nizam Ismail
Abstract:
Anatomy is a medical subject, which contributes to high cognitive load during learning. Despite its complexity, anatomy remains as the most important basic sciences subject with high clinical relevancy. Although anatomy knowledge is required for safe practice, many medical students graduated without having sufficient knowledge. In fact, anatomy knowledge among the medical graduates was reported to be declining and this had led to various medico-legal problems. Applying cognitive load theory (CLT) in anatomy teaching particularly lecture would be able to address this issue since anatomy information is often perceived as cognitively challenging material. CLT identifies three types of loads which are intrinsic, extraneous and germane loads, which combine to form the total cognitive load. CLT describe that learning can only occur when the total cognitive load does not exceed human working memory capacity. Hence, managing these three types of loads with the aim of optimizing the working memory capacity would be beneficial to the students in learning anatomy and retaining the knowledge for future application.Keywords: cognitive load theory, intrinsic load, extraneous load, germane load
Procedia PDF Downloads 4678388 Multimedia Technologies Utilisation as Predictors of Lecturers’ Teaching Effectiveness in Colleges of Education in South-West, Nigeria
Authors: Abel Olusegun Egunjobi, Olusegun Oyeleye Adesanya
Abstract:
Teaching effectiveness of lecturers in a tertiary institution in Nigeria is one of the determinants of the lecturer’s productivity. In this study, therefore, lecturers’ teaching effectiveness was examined vis-à-vis their multimedia technologies utilisation in Colleges of Education (CoE) in South-West, Nigeria. This is for the purpose of ascertaining the relationship and contribution of multimedia technologies utilisation to lecturers’ teaching effectiveness in Nigerian colleges of education. The descriptive survey research design was adopted in the study, while a multi-stage sampling procedure was used in the study. A stratified sampling technique was used to select colleges of education, and a simple random sampling method was employed to select lecturers from the selected colleges of education. A total of 862 lecturers (627 males and 235 females) were selected from the colleges of education used for the study. The instrument used was lecturers’ questionnaire on multimedia technologies utilisation and teaching effectiveness with a reliability coefficient of 0.85 at 0.05 level of significance. The data collected were analysed using descriptive statistics, multiple regression, and t-test. The findings showed that the level of multimedia technologies utilisation in colleges of education was low, whereas lecturers’ teaching effectiveness was high. Findings also revealed that the lecturers used multimedia technologies purposely for personal and professional developments, so also for up to date news on economic and political matters. Also, findings indicated that laptop, Ipad, CD-ROMs, and computer instructional software were the multimedia technologies frequently utilised by the lecturers. There was also a significant difference in the teaching effectiveness between lecturers in the Federal and State COE. The government should, therefore, make adequate provision for multimedia technologies in the COE in Nigeria for lecturers’ utilisation in their instructions so as to boost their students’ learning outcomes.Keywords: colleges of education, lecturers’ teaching effectiveness, multimedia technologies utilisation, Southwest Nigeria
Procedia PDF Downloads 1408387 Engineering Topology of Construction Ecology in Urban Environments: Suez Canal Economic Zone
Authors: Moustafa Osman Mohammed
Abstract:
Integration sustainability outcomes give attention to construction ecology in the design review of urban environments to comply with Earth’s System that is composed of integral parts of the (i.e., physical, chemical and biological components). Naturally, exchange patterns of industrial ecology have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. When engineering topology is affecting internal and external processes in system networks, it postulated the valence of the first-level spatial outcome (i.e., project compatibility success). These instrumentalities are dependent on relating the second-level outcome (i.e., participant security satisfaction). Construction ecology approach feedback energy from resources flows between biotic and abiotic in the entire Earth’s ecosystems. These spatial outcomes are providing an innovation, as entails a wide range of interactions to state, regulate and feedback “topology” to flow as “interdisciplinary equilibrium” of ecosystems. The interrelation dynamics of ecosystems are performing a process in a certain location within an appropriate time for characterizing their unique structure in “equilibrium patterns”, such as biosphere and collecting a composite structure of many distributed feedback flows. These interdisciplinary systems regulate their dynamics within complex structures. These dynamic mechanisms of the ecosystem regulate physical and chemical properties to enable a gradual and prolonged incremental pattern to develop a stable structure. The engineering topology of construction ecology for integration sustainability outcomes offers an interesting tool for ecologists and engineers in the simulation paradigm as an initial form of development structure within compatible computer software. This approach argues from ecology, resource savings, static load design, financial other pragmatic reasons, while an artistic/architectural perspective, these are not decisive. The paper described an attempt to unify analytic and analogical spatial modeling in developing urban environments as a relational setting, using optimization software and applied as an example of integrated industrial ecology where the construction process is based on a topology optimization approach.Keywords: construction ecology, industrial ecology, urban topology, environmental planning
Procedia PDF Downloads 1308386 Channel Estimation Using Deep Learning for Reconfigurable Intelligent Surfaces-Assisted Millimeter Wave Systems
Authors: Ting Gao, Mingyue He
Abstract:
Reconfigurable intelligent surfaces (RISs) are expected to be an important part of next-generation wireless communication networks due to their potential to reduce the hardware cost and energy consumption of millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) technology. However, owing to the lack of signal processing abilities of the RIS, the perfect channel state information (CSI) in RIS-assisted communication systems is difficult to acquire. In this paper, the uplink channel estimation for mmWave systems with a hybrid active/passive RIS architecture is studied. Specifically, a deep learning-based estimation scheme is proposed to estimate the channel between the RIS and the user. In particular, the sparse structure of the mmWave channel is exploited to formulate the channel estimation as a sparse reconstruction problem. To this end, the proposed approach is derived to obtain the distribution of non-zero entries in a sparse channel. After that, the channel is reconstructed by utilizing the least-squares (LS) algorithm and compressed sensing (CS) theory. The simulation results demonstrate that the proposed channel estimation scheme is superior to existing solutions even in low signal-to-noise ratio (SNR) environments.Keywords: channel estimation, reconfigurable intelligent surface, wireless communication, deep learning
Procedia PDF Downloads 1518385 Monitor Student Concentration Levels on Online Education Sessions
Authors: M. K. Wijayarathna, S. M. Buddika Harshanath
Abstract:
Monitoring student engagement has become a crucial part of the educational process and a reliable indicator of the capacity to retain information. As online learning classrooms are now more common these days, students' attention levels have become increasingly important, making it more difficult to check each student's concentration level in an online classroom setting. To profile student attention to various gradients of engagement, a study is a plan to conduct using machine learning models. Using a convolutional neural network, the findings and confidence score of the high accuracy model are obtained. In this research, convolutional neural networks are using to help discover essential emotions that are critical in defining various levels of participation. Students' attention levels were shown to be influenced by emotions such as calm, enjoyment, surprise, and fear. An improved virtual learning system was created as a result of these data, which allowed teachers to focus their support and advise on those students who needed it. Student participation has formed as a crucial component of the learning technique and a consistent predictor of a student's capacity to retain material in the classroom. Convolutional neural networks have a plan to implement the platform. As a preliminary step, a video of the pupil would be taken. In the end, researchers used a convolutional neural network utilizing the Keras toolkit to take pictures of the recordings. Two convolutional neural network methods are planned to use to determine the pupils' attention level. Finally, those predicted student attention level results plan to display on the graphical user interface of the System.Keywords: HTML5, JavaScript, Python flask framework, AI, graphical user
Procedia PDF Downloads 1008384 Hull Detection from Handwritten Digit Image
Authors: Sriraman Kothuri, Komal Teja Mattupalli
Abstract:
In this paper we proposed a novel algorithm for recognizing hulls in a hand written digits. This is an extension to the work on “Digit Recognition Using Freeman Chain code”. In order to find out the hulls in a user given digit it is necessary to follow three steps. Those are pre-processing, Boundary Extraction and at last apply the Hull Detection system in a way to attain the better results. The detection of Hull Regions is mainly intended to increase the machine learning capability in detection of characters or digits. This can also extend this in order to get the hull regions and their intensities in Black Holes in Space Exploration.Keywords: chain code, machine learning, hull regions, hull recognition system, SASK algorithm
Procedia PDF Downloads 4008383 Training the Hospitality Entrepreneurship on the Account of Constructing Nascent Entrepreneurial Competence
Authors: Ching-Hsu Huang, Yao-Ling Liu
Abstract:
Over the past several decades there has been considerable research on the topics of entrepreneurship education and nascent entrepreneurial competence. The purpose of this study is to explore the nascent entrepreneurial competence within entrepreneurship education via the use of three studies. It will be a three-phrases longitudinal study and the effective plan will combine the qualitative and quantitative mixed research methodology in order to understand the issues of nascent entrepreneurship and entrepreneurial competence in hospitality industry in Taiwan. In study one, the systematic literature reviews and twelve nascent entrepreneurs who graduated from hospitality management department will be conducted simultaneously to construct the nascent entrepreneurial competence indicators. Nine subjects who are from industry, government, and academia will be the decision makers in terms of forming the systematic nascent entrepreneurial competence indicators. The relative importance of indicators to each decision maker will be synthesized and compared using the Analytic Hierarchy Process method. According to the results of study one, this study will develop the teaching module of nascent hospitality entrepreneurship. It will include the objectives, context, content, audiences, assessment, pedagogy and outcomes. Based on the results of the second study, the quasi-experiment will be conducted in third study to explore the influence of nascent hospitality entrepreneurship teaching module on learners’ learning effectiveness. The nascent hospitality entrepreneurship education program and entrepreneurial competence will be promoted all around the hospitality industry and vocational universities. At the end, the implication for designing the nascent hospitality entrepreneurship teaching module and training programs will be suggested for the nascent entrepreneurship education. All of the proposed hypotheses will be examined and major finding, implication, discussion, and recommendations will be provided for the government and education administration in hospitality field.Keywords: entrepreneurial competence, hospitality entrepreneurship, nascent entrepreneurial, training in hospitality entrepreneurship
Procedia PDF Downloads 2448382 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies
Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk
Abstract:
Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, this project proposes AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project presents the best-in-school techniques used to preserve the data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptographic techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures and identifies potential correction/mitigation measures.Keywords: data privacy, artificial intelligence (AI), healthcare AI, data sharing, healthcare organizations (HCOs)
Procedia PDF Downloads 938381 Young People, the Internet and Inequality: What are the Causes and Consequences of Exclusion?
Authors: Albin Wallace
Abstract:
Part of the provision within educational institutions is the design, commissioning and implementation of ICT facilities to improve teaching and learning. Inevitably, these facilities focus largely on Internet Protocol (IP) based provisions including access to the World Wide Web, email, interactive software and hardware tools. Educators should be committed to the use of ICT to improve learning and teaching as well as to issues relating to the Internet and educational disadvantage, especially with respect to access and exclusion concerns. In this paper I examine some recent research into the issue of inequality and use of the Internet during which I discuss the causes and consequences of exclusion in the context of social inequality, digital literacy and digital inequality, also touching on issues of global inequality.Keywords: inequality, internet, education, design
Procedia PDF Downloads 4888380 Research Study on the Environmental Conditions in the Foreign
Authors: Vahid Bairami Rad, Shapoor Norazar, Moslem Talebi Asl
Abstract:
The fast growing accessibility and capability of emerging technologies have fashioned enormous possibilities of designing, developing and implementing innovative teaching methods in the classroom. Using teaching methods and technology together have a fantastic results, because the global technological scenario has paved the way to new pedagogies in teaching-learning process. At the other side methods by focusing on students and the ways of learning in them, that can demonstrate logical ways of improving student achievement in English as a foreign language in Iran. The sample of study was 90 students of 10th grade of high school located in Ardebil. A pretest-posttest equivalent group designed to compare the achievement of groups. Students divided to 3 group, Control base, computer base, method and technology base. Pretest and post test contain 30 items each from English textbook were developed and administrated, then obtained data were analyzed. The results showed that there was an important difference. The 3rd group performance was better than other groups. On the basis of this result it was obviously counseled that teaching-learning capabilities.Keywords: method, technology based environment, computer based environment, english as a foreign language, student achievement
Procedia PDF Downloads 4748379 Exploring Equity and Inclusion in the Context of Distance Education Using a Social Location Perspective
Authors: Boadi Agyekum
Abstract:
In this study, a social location perspective is used to explore the challenges of creating opportunities that will foster lifelong education, inclusion, and equity for residents of rural communities in Ghana. The differentiated experiences of rural adults are under-researched and often unacknowledged in lifelong education literature and distance education policy. There is a need to examine carefully the structural inequalities that create disadvantages for residents of rural communities and women in pursuing distance education in designated cities in Ghana. The paper uses in-depth interviews to explore participants’ experiences of learning at a distance and to scrutinise the narratives of lifelong education. The paper reflects on the implications of the framework employed for educators and social justice in lifelong education. It further recommends the need to provide IT laboratories and fully online programs that would require stable and regular internet and access to ICT equipment for potential learning in rural communities. The social location approach presented a number of axes of diversity as comparatively more important than others; these included gender, age, education, work commitment, geography, and degree of social connectedness. This can inform lifelong education policy and programs to sustain quality education.Keywords: equity, distance education, lifelong learning, social location, intersectionality, rural communities
Procedia PDF Downloads 1018378 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs
Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare
Abstract:
The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio
Procedia PDF Downloads 988377 Investigating the performance of machine learning models on PM2.5 forecasts: A case study in the city of Thessaloniki
Authors: Alexandros Pournaras, Anastasia Papadopoulou, Serafim Kontos, Anastasios Karakostas
Abstract:
The air quality of modern cities is an important concern, as poor air quality contributes to human health and environmental issues. Reliable air quality forecasting has, thus, gained scientific and governmental attention as an essential tool that enables authorities to take proactive measures for public safety. In this study, the potential of Machine Learning (ML) models to forecast PM2.5 at local scale is investigated in the city of Thessaloniki, the second largest city in Greece, which has been struggling with the persistent issue of air pollution. ML models, with proven ability to address timeseries forecasting, are employed to predict the PM2.5 concentrations and the respective Air Quality Index 5-days ahead by learning from daily historical air quality and meteorological data from 2014 to 2016 and gathered from two stations with different land use characteristics in the urban fabric of Thessaloniki. The performance of the ML models on PM2.5 concentrations is evaluated with common statistical methods, such as R squared (r²) and Root Mean Squared Error (RMSE), utilizing a portion of the stations’ measurements as test set. A multi-categorical evaluation is utilized for the assessment of their performance on respective AQIs. Several conclusions were made from the experiments conducted. Experimenting on MLs’ configuration revealed a moderate effect of various parameters and training schemas on the model’s predictions. Their performance of all these models were found to produce satisfactory results on PM2.5 concentrations. In addition, their application on untrained stations showed that these models can perform well, indicating a generalized behavior. Moreover, their performance on AQI was even better, showing that the MLs can be used as predictors for AQI, which is the direct information provided to the general public.Keywords: Air Quality, AQ Forecasting, AQI, Machine Learning, PM2.5
Procedia PDF Downloads 778376 The Use of Authentic Materials in the Chinese Language Classroom
Authors: Yiwen Jin, Jing Xiao, Pinfang Su
Abstract:
The idea of adapting authentic materials in language teaching is from the communicative method in the 1970s. Different from the language in language textbooks, authentic materials is not deliberately written, it is from the native speaker’s real life and contains real information, which can meet social needs. It could improve learners ' interest, create authentic context and improve learners ' communicative competence. Authentic materials play an important role in CFL(Chinese as a foreign language) classroom. Different types of authentic materials can be used in different ways during learning and teaching. Because of the COVID-19 pandemic,a lot of Chinese learners are learning Chinese without the real language environment. Although there are some well-written textbooks, there is a certain distance between textbook language materials and daily life. Learners cannot automatically fill this gap. That is why it is necessary to apply authentic materials as a supplement to the language textbook to create the real context. Chinese teachers around the world are working together, trying to integrate the resources and apply authentic materials through different approach. They apply authentic materials in the form of new textbooks, manuals, apps and short videos they collect and create to help Chinese learning and teaching. A review of previous research on authentic materials and the Chinese teachers’ attempt to adapt it in the classroom are offered in this manuscript.Keywords: authentic materials, Chinese as a second language, developmental use of digital resources, materials development for language teaching
Procedia PDF Downloads 1748375 Effect of Parenting Style on Aggression and Empathy in Children Between the Ages of 10-12
Authors: Debangana Mukherjee
Abstract:
This study delves into the pivotal role of parenting styles in shaping the development of aggression and empathy in children aged 10 to 12. Using a sample of 300 school students, we employed self-assessment questionnaires and scales to investigate correlations between parenting styles—authoritative, authoritarian, permissive, and neglectful—and behavioural traits, focusing on aggression and empathy as primary outcomes. The findings underscore the intricate relationships between parenting styles, aggressive behaviours, and empathetic tendencies. Notably, certain parenting approaches demonstrated strong correlations with specific behavioural outcomes. For instance, authoritarian parenting showed associations with increased aggression and reduced empathy, while authoritative parenting exhibited the opposite trend. These correlations emphasize the potential impact of parenting styles on children's behavioural development during this critical transitional phase. However, this study is limited by its correlational nature, which does not imply causation. The complexities of human behaviour, the limited scope of analysis, and the need for further research into causative relationships and cultural influences call for a nuanced understanding of these dynamics. Moving forward, longitudinal studies, causality investigations, consideration of cultural diversity, and exploration of additional variables could enrich our understanding of the interplay between parenting styles, empathy, and aggression. Validating these findings across diverse populations and refining interventions could pave the way for nurturing healthy behavioural development in children.Keywords: aggression, correlational nature, empathy, longitudinal studies, parenting style
Procedia PDF Downloads 538374 Online Monitoring and Control of Continuous Mechanosynthesis by UV-Vis Spectrophotometry
Authors: Darren A. Whitaker, Dan Palmer, Jens Wesholowski, James Flaherty, John Mack, Ahmad B. Albadarin, Gavin Walker
Abstract:
Traditional mechanosynthesis has been performed by either ball milling or manual grinding. However, neither of these techniques allow the easy application of process control. The temperature may change unpredictably due to friction in the process. Hence the amount of energy transferred to the reactants is intrinsically non-uniform. Recently, it has been shown that the use of Twin-Screw extrusion (TSE) can overcome these limitations. Additionally, TSE enables a platform for continuous synthesis or manufacturing as it is an open-ended process, with feedstocks at one end and product at the other. Several materials including metal-organic frameworks (MOFs), co-crystals and small organic molecules have been produced mechanochemically using TSE. The described advantages of TSE are offset by drawbacks such as increased process complexity (a large number of process parameters) and variation in feedstock flow impacting on product quality. To handle the above-mentioned drawbacks, this study utilizes UV-Vis spectrophotometry (InSpectroX, ColVisTec) as an online tool to gain real-time information about the quality of the product. Additionally, this is combined with real-time process information in an Advanced Process Control system (PharmaMV, Perceptive Engineering) allowing full supervision and control of the TSE process. Further, by characterizing the dynamic behavior of the TSE, a model predictive controller (MPC) can be employed to ensure the process remains under control when perturbed by external disturbances. Two reactions were studied; a Knoevenagel condensation reaction of barbituric acid and vanillin and, the direct amidation of hydroquinone by ammonium acetate to form N-Acetyl-para-aminophenol (APAP) commonly known as paracetamol. Both reactions could be carried out continuously using TSE, nuclear magnetic resonance (NMR) spectroscopy was used to confirm the percentage conversion of starting materials to product. This information was used to construct partial least squares (PLS) calibration models within the PharmaMV development system, which relates the percent conversion to product to the acquired UV-Vis spectrum. Once this was complete, the model was deployed within the PharmaMV Real-Time System to carry out automated optimization experiments to maximize the percentage conversion based on a set of process parameters in a design of experiments (DoE) style methodology. With the optimum set of process parameters established, a series of PRBS process response tests (i.e. Pseudo-Random Binary Sequences) around the optimum were conducted. The resultant dataset was used to build a statistical model and associated MPC. The controller maximizes product quality whilst ensuring the process remains at the optimum even as disturbances such as raw material variability are introduced into the system. To summarize, a combination of online spectral monitoring and advanced process control was used to develop a robust system for optimization and control of two TSE based mechanosynthetic processes.Keywords: continuous synthesis, pharmaceutical, spectroscopy, advanced process control
Procedia PDF Downloads 1788373 Comparison of Different Machine Learning Algorithms for Solubility Prediction
Authors: Muhammet Baldan, Emel Timuçin
Abstract:
Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.Keywords: random forest, machine learning, comparison, feature extraction
Procedia PDF Downloads 41