Search results for: improvement of model accuracy and reliability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23631

Search results for: improvement of model accuracy and reliability

20271 A Genre-Based Approach to the Teaching of Pronunciation

Authors: Marden Silva, Danielle Guerra

Abstract:

Some studies have indicated that pronunciation teaching hasn’t been paid enough attention by teachers regarding EFL contexts. In particular, segmental and suprasegmental features through genre-based approach may be an opportunity on how to integrate pronunciation into a more meaningful learning practice. Therefore, the aim of this project was to carry out a survey on some aspects related to English pronunciation that Brazilian students consider more difficult to learn, thus enabling the discussion of strategies that can facilitate the development of oral skills in English classes by integrating the teaching of phonetic-phonological aspects into the genre-based approach. Notions of intelligibility, fluency and accuracy were proposed by some authors as an ideal didactic sequence. According to their proposals, basic learners should be exposed to activities focused on the notion of intelligibility as well as intermediate students to the notion of fluency, and finally more advanced ones to accuracy practices. In order to test this hypothesis, data collection was conducted during three high school English classes at Federal Center for Technological Education of Minas Gerais (CEFET-MG), in Brazil, through questionnaires and didactic activities, which were recorded and transcribed for further analysis. The genre debate was chosen to facilitate the oral expression of the participants in a freer way, making them answering questions and giving their opinion about a previously selected topic. The findings indicated that basic students demonstrated more difficulty with aspects of English pronunciation than the others. Many of the intelligibility aspects analyzed had to be listened more than once for a better understanding. For intermediate students, the speeches recorded were considerably easier to understand, but nevertheless they found it more difficult to pronounce the words fluently, often interrupting their speech to think about what they were going to say and how they would talk. Lastly, more advanced learners seemed to express their ideas more fluently, but still subtle errors related to accuracy were perceptible in speech, thereby confirming the proposed hypothesis. It was also seen that using genre-based approach to promote oral communication in English classes might be a relevant method, considering the socio-communicative function inherent in the suggested approach.

Keywords: EFL, genre-based approach, oral skills, pronunciation

Procedia PDF Downloads 130
20270 Older Consumer’s Willingness to Trust Social Media Advertising: A Case of Australian Social Media Users

Authors: Simon J. Wilde, David M. Herold, Michael J. Bryant

Abstract:

Social media networks have become the hotbed for advertising activities due mainly to their increasing consumer/user base and, secondly, owing to the ability of marketers to accurately measure ad exposure and consumer-based insights on such networks. More than half of the world’s population (4.8 billion) now uses social media (60%), with 150 million new users having come online within the last 12 months (to June 2022). As the use of social media networks by users grows, key business strategies used for interacting with these potential customers have matured, especially social media advertising. Unlike other traditional media outlets, social media advertising is highly interactive and digital channel specific. Social media advertisements are clearly targetable, providing marketers with an extremely powerful marketing tool. Yet despite the measurable benefits afforded to businesses engaged in social media advertising, recent controversies (such as the relationship between Facebook and Cambridge Analytica in 2018) have only heightened the role trust and privacy play within these social media networks. Using a web-based quantitative survey instrument, survey participants were recruited via a reputable online panel survey site. Respondents to the survey represented social media users from all states and territories within Australia. Completed responses were received from a total of 258 social media users. Survey respondents represented all core age demographic groupings, including Gen Z/Millennials (18-45 years = 60.5% of respondents) and Gen X/Boomers (46-66+ years = 39.5% of respondents). An adapted ADTRUST scale, using a 20 item 7-point Likert scale, measured trust in social media advertising. The ADTRUST scale has been shown to be a valid measure of trust in advertising within traditional media, such as broadcast media and print media, and, more recently, the Internet (as a broader platform). The adapted scale was validated through exploratory factor analysis (EFA), resulting in a three-factor solution. These three factors were named reliability, usefulness and affect, and the willingness to rely on. Factor scores (weighted measures) were then calculated for these factors. Factor scores are estimates of the scores survey participants would have received on each of the factors had they been measured directly, with the following results recorded (Reliability = 4.68/7; Usefulness and Affect = 4.53/7; and Willingness to Rely On = 3.94/7). Further statistical analysis (independent samples t-test) determined the difference in factor scores between the factors when age (Gen Z/Millennials vs. Gen X/Boomers) was utilized as the independent, categorical variable. The results showed the difference in mean scores across all three factors to be statistically significant (p<0.05) for these two core age groupings: (1) Gen Z/Millennials Reliability = 4.90/7 vs. Gen X/Boomers Reliability = 4.34/7; (2) Gen Z/Millennials Usefulness and Affect = 4.85/7 vs Gen X/Boomers Usefulness and Affect = 4.05/7; and (3) Gen Z/Millennials Willingness to Rely On = 4.53/7 vs Gen X/Boomers Willingness to Rely On = 3.03/7. The results clearly indicate that older social media users lack trust in the quality of information conveyed in social media ads when compared to younger, more social media-savvy consumers. This is especially evident with respect to Factor 3 (Willingness to Rely On), whose underlying variables reflect one’s behavioral intent to act based on the information conveyed in advertising. These findings can be useful to marketers, advertisers, and brand managers in that the results highlight a critical need to design ‘authentic’ advertisements on social media sites to better connect with these older users in an attempt to foster positive behavioral responses from within this large demographic group – whose engagement with social media sites continues to increase year on year.

Keywords: social media advertising, trust, older consumers, internet studies

Procedia PDF Downloads 40
20269 Advanced Model for Calculation of the Neutral Axis Shifting and the Wall Thickness Distribution in Rotary Draw Bending Processes

Authors: B. Engel, H. Hassan

Abstract:

Rotary draw bending is a method which is being used in tube forming. In the tube bending process, the neutral axis moves towards the inner arc and the wall thickness distribution changes for tube’s cross section. Thinning takes place in the outer arc of the tube (extrados) due to the stretching of the material, whereas thickening occurs in the inner arc of the tube (intrados) due to the comparison of the material. The calculations of the wall thickness distribution, neutral axis shifting, and strain distribution have not been accurate enough, so far. The previous model (the geometrical model) describes the neutral axis shifting and wall thickness distribution. The geometrical of the tube, bending radius and bending angle are considered in the geometrical model, while the influence of the material properties of the tube forming are ignored. The advanced model is a modification of the previous model using material properties that depends on the correction factor. The correction factor is a purely empirically determined factor. The advanced model was compared with the Finite element simulation (FE simulation) using a different bending factor (Bf=bending radius/ diameter of the tube), wall thickness (Wf=diameter of the tube/ wall thickness), and material properties (strain hardening exponent). Finite element model of rotary draw bending has been performed in PAM-TUBE program (version: 2012). Results from the advanced model resemble the FE simulation and the experimental test.

Keywords: rotary draw bending, material properties, neutral axis shifting, wall thickness distribution

Procedia PDF Downloads 397
20268 Domains of Socialization Interview: Development and Psychometric Properties

Authors: Dilek Saritas Atalar, Cansu Alsancak Akbulut, İrem Metin Orta, Feyza Yön, Zeynep Yenen, Joan Grusec

Abstract:

Objective: The aim of this study was to develop semi-structured Domains of Socialization Interview and its coding manual and to test their psychometric properties. Domains of Socialization Interview was designed to assess maternal awareness regarding effective parenting in five socialization domains (protection, mutual reciprocity, control, guided learning, and group participation) within the framework of the domains-of-socialization approach. Method: A series of two studies were conducted to develop and validate the interview and its coding manual. The pilot study, sampled 13 mothers of preschool-aged children, was conducted to develop the assessment tools and to test their function and clarity. Participants of the main study were 82 Turkish mothers (Xage = 34.25, SD = 3.53) who have children aged between 35-76 months (Xage = 50.75, SD = 11.24). Mothers filled in a questionnaire package including Coping with Children’s Negative Emotions Questionnaire, Social Competence and Behavior Evaluation-30, Child Rearing Questionnaire, and Two Dimensional Social Desirability Questionnaire. Afterward, interviews were conducted online by a single interviewer. Interviews were rated independently by two graduate students based on the coding manual. Results: The relationships of the awareness of effective parenting scores to the other measures demonstrate convergent, discriminant, and predictive validity of the coding manual. Intra-class correlation coefficient estimates were ranged between 0.82 and 0.90, showing high interrater reliability of the coding manual. Conclusion: Taken as a whole, the results of these studies demonstrate the validity and reliability of a new and useful interview to measure maternal awareness regarding effective parenting within the framework of the domains-of-socialization approach.

Keywords: domains of socialization, parenting, interview, assessment

Procedia PDF Downloads 189
20267 Seismic Hazard Prediction Using Seismic Bumps: Artificial Neural Network Technique

Authors: Belkacem Selma, Boumediene Selma, Tourkia Guerzou, Abbes Labdelli

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. The Earthquakes prediction to prevent the loss of human lives and even property damage is an important factor; that is why it is crucial to develop techniques for predicting this natural disaster. This present study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 10^4J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines has been analyzed. The results obtained show that the ANN with high accuracy was able to predict earthquake parameters; the classification accuracy through neural networks is more than 94%, and that the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: earthquake prediction, ANN, seismic bumps

Procedia PDF Downloads 127
20266 The Confounding Role of Graft-versus-Host Disease in Animal Models of Cancer Immunotherapy: A Systematic Review

Authors: Hami Ashraf, Mohammad Heydarnejad

Abstract:

Introduction: The landscape of cancer treatment has been revolutionized by immunotherapy, offering novel therapeutic avenues for diverse cancer types. Animal models play a pivotal role in the development and elucidation of these therapeutic modalities. Nevertheless, the manifestation of Graft-versus-Host Disease (GVHD) in such models poses significant challenges, muddling the interpretation of experimental data within the ambit of cancer immunotherapy. This study is dedicated to scrutinizing the role of GVHD as a confounding factor in animal models used for cancer immunotherapy, alongside proposing viable strategies to mitigate this complication. Method: Employing a systematic review framework, this study undertakes a comprehensive literature survey including academic journals in PubMed, Embase, and Web of Science databases and conference proceedings to collate pertinent research that delves into the impact of GVHD on animal models in cancer immunotherapy. The acquired studies undergo rigorous analysis and synthesis, aiming to assess the influence of GVHD on experimental results while identifying strategies to alleviate its confounding effects. Results: Findings indicate that GVHD incidence significantly skews the reliability and applicability of experimental outcomes, occasionally leading to erroneous interpretations. The literature surveyed also sheds light on various methodologies under exploration to counteract the GVHD dilemma, thereby bolstering the experimental integrity in this domain. Conclusion: GVHD's presence critically affects both the interpretation and validity of experimental findings, underscoring the imperative for strategies to curtail its confounding impacts. Current research endeavors are oriented towards devising solutions to this issue, aiming to augment the dependability and pertinence of experimental results. It is incumbent upon researchers to diligently consider and adjust for GVHD's effects, thereby enhancing the translational potential of animal model findings to clinical applications and propelling progress in the arena of cancer immunotherapy.

Keywords: graft-versus-host disease, cancer immunotherapy, animal models, preclinical model

Procedia PDF Downloads 51
20265 Benchmarking of Pentesting Tools

Authors: Esteban Alejandro Armas Vega, Ana Lucila Sandoval Orozco, Luis Javier García Villalba

Abstract:

The benchmarking of tools for dynamic analysis of vulnerabilities in web applications is something that is done periodically, because these tools from time to time update their knowledge base and search algorithms, in order to improve their accuracy. Unfortunately, the vast majority of these evaluations are made by software enthusiasts who publish their results on blogs or on non-academic websites and always with the same evaluation methodology. Similarly, academics who have carried out this type of analysis from a scientific approach, the majority, make their analysis within the same methodology as well the empirical authors. This paper is based on the interest of finding answers to questions that many users of this type of tools have been asking over the years, such as, to know if the tool truly test and evaluate every vulnerability that it ensures do, or if the tool, really, deliver a real report of all the vulnerabilities tested and exploited. This kind of questions have also motivated previous work but without real answers. The aim of this paper is to show results that truly answer, at least on the tested tools, all those unanswered questions. All the results have been obtained by changing the common model of benchmarking used for all those previous works.

Keywords: cybersecurity, IDS, security, web scanners, web vulnerabilities

Procedia PDF Downloads 319
20264 Statistical Data Analysis of Migration Impact on the Spread of HIV Epidemic Model Using Markov Monte Carlo Method

Authors: Ofosuhene O. Apenteng, Noor Azina Ismail

Abstract:

Over the last several years, concern has developed over how to minimize the spread of HIV/AIDS epidemic in many countries. AIDS epidemic has tremendously stimulated the development of mathematical models of infectious diseases. The transmission dynamics of HIV infection that eventually developed AIDS has taken a pivotal role of much on building mathematical models. From the initial HIV and AIDS models introduced in the 80s, various improvements have been taken into account as how to model HIV/AIDS frameworks. In this paper, we present the impact of migration on the spread of HIV/AIDS. Epidemic model is considered by a system of nonlinear differential equations to supplement the statistical method approach. The model is calibrated using HIV incidence data from Malaysia between 1986 and 2011. Bayesian inference based on Markov Chain Monte Carlo is used to validate the model by fitting it to the data and to estimate the unknown parameters for the model. The results suggest that the migrants stay for a long time contributes to the spread of HIV. The model also indicates that susceptible individual becomes infected and moved to HIV compartment at a rate that is more significant than the removal rate from HIV compartment to AIDS compartment. The disease-free steady state is unstable since the basic reproduction number is 1.627309. This is a big concern and not a good indicator from the public heath point of view since the aim is to stabilize the epidemic at the disease equilibrium.

Keywords: epidemic model, HIV, MCMC, parameter estimation

Procedia PDF Downloads 601
20263 An Overbooking Model for Car Rental Service with Different Types of Cars

Authors: Naragain Phumchusri, Kittitach Pongpairoj

Abstract:

Overbooking is a very useful revenue management technique that could help reduce costs caused by either undersales or oversales. In this paper, we propose an overbooking model for two types of cars that can minimize the total cost for car rental service. With two types of cars, there is an upgrade possibility for lower type to upper type. This makes the model more complex than one type of cars scenario. We have found that convexity can be proved in this case. Sensitivity analysis of the parameters is conducted to observe the effects of relevant parameters on the optimal solution. Model simplification is proposed using multiple linear regression analysis, which can help estimate the optimal overbooking level using appropriate independent variables. The results show that the overbooking level from multiple linear regression model is relatively close to the optimal solution (with the adjusted R-squared value of at least 72.8%). To evaluate the performance of the proposed model, the total cost was compared with the case where the decision maker uses a naïve method for the overbooking level. It was found that the total cost from optimal solution is only 0.5 to 1 percent (on average) lower than the cost from regression model, while it is approximately 67% lower than the cost obtained by the naïve method. It indicates that our proposed simplification method using regression analysis can effectively perform in estimating the overbooking level.

Keywords: overbooking, car rental industry, revenue management, stochastic model

Procedia PDF Downloads 172
20262 Hybrid Quasi-Steady Thermal Lattice Boltzmann Model for Studying the Behavior of Oil in Water Emulsions Used in Machining Tool Cooling and Lubrication

Authors: W. Hasan, H. Farhat, A. Alhilo, L. Tamimi

Abstract:

Oil in water (O/W) emulsions are utilized extensively for cooling and lubricating cutting tools during parts machining. A robust Lattice Boltzmann (LBM) thermal-surfactants model, which provides a useful platform for exploring complex emulsions’ characteristics under variety of flow conditions, is used here for the study of the fluid behavior during conventional tools cooling. The transient thermal capabilities of the model are employed for simulating the effects of the flow conditions of O/W emulsions on the cooling of cutting tools. The model results show that the temperature outcome is slightly affected by reversing the direction of upper plate (workpiece). On the other hand, an important increase in effective viscosity is seen which supports better lubrication during the work.

Keywords: hybrid lattice Boltzmann method, Gunstensen model, thermal, surfactant-covered droplet, Marangoni stress

Procedia PDF Downloads 304
20261 A Simple Design Procedure for Calculating the Column Ultimate Load of Steel Frame Structures

Authors: Abdul Hakim Chikho

Abstract:

Calculating the ultimate load of a column in a sway framed structure involves, in the currently used design method, the calculation of the column effective length and utilizing the interaction formulas or tables. Therefore, no allowance is usually made for the effects of the presence of semi rigid connections or the presence of infill panels. In this paper, a new and simple design procedure is recommend to calculate the ultimate load of a framed Column allowing for the presence of rotational end restraints, semi rigid connections, the column end moments resulted from the applied vertical and horizontal loading and infill panels in real steel structure. In order to verify the accuracy of the recommended method to predict good and safe estimations of framed column ultimate loads, several examples have been solved utilizing the recommended procedure, and the results were compared to those obtained using a second order computer program, and good correlation had been obtained. Therefore, the accuracy of the proposed method to predict the Behaviour of practical steel columns in framed structures has been verified.

Keywords: column ultimate load, semi rigid connections, steel column, infill panel, steel structure

Procedia PDF Downloads 178
20260 Specified Human Motion Recognition and Unknown Hand-Held Object Tracking

Authors: Jinsiang Shaw, Pik-Hoe Chen

Abstract:

This paper aims to integrate human recognition, motion recognition, and object tracking technologies without requiring a pre-training database model for motion recognition or the unknown object itself. Furthermore, it can simultaneously track multiple users and multiple objects. Unlike other existing human motion recognition methods, our approach employs a rule-based condition method to determine if a user hand is approaching or departing an object. It uses a background subtraction method to separate the human and object from the background, and employs behavior features to effectively interpret human object-grabbing actions. With an object’s histogram characteristics, we are able to isolate and track it using back projection. Hence, a moving object trajectory can be recorded and the object itself can be located. This particular technique can be used in a camera surveillance system in a shopping area to perform real-time intelligent surveillance, thus preventing theft. Experimental results verify the validity of the developed surveillance algorithm with an accuracy of 83% for shoplifting detection.

Keywords: Automatic Tracking, Back Projection, Motion Recognition, Shoplifting

Procedia PDF Downloads 333
20259 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System

Authors: Ben Soltane Cheima, Ittansa Yonas Kelbesa

Abstract:

Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.

Keywords: feature extraction, speaker modeling, feature matching, Mel frequency cepstrum coefficient (MFCC), Gaussian mixture model (GMM), vector quantization (VQ), Linde-Buzo-Gray (LBG), expectation maximization (EM), pre-processing, voice activity detection (VAD), short time energy (STE), background noise statistical modeling, closed-set tex-independent speaker identification system (CISI)

Procedia PDF Downloads 309
20258 Developing and Evaluating Clinical Risk Prediction Models for Coronary Artery Bypass Graft Surgery

Authors: Mohammadreza Mohebbi, Masoumeh Sanagou

Abstract:

The ability to predict clinical outcomes is of great importance to physicians and clinicians. A number of different methods have been used in an effort to accurately predict these outcomes. These methods include the development of scoring systems based on multivariate statistical modelling, and models involving the use of classification and regression trees. The process usually consists of two consecutive phases, namely model development and external validation. The model development phase consists of building a multivariate model and evaluating its predictive performance by examining calibration and discrimination, and internal validation. External validation tests the predictive performance of a model by assessing its calibration and discrimination in different but plausibly related patients. A motivate example focuses on prediction modeling using a sample of patients undergone coronary artery bypass graft (CABG) has been used for illustrative purpose and a set of primary considerations for evaluating prediction model studies using specific quality indicators as criteria to help stakeholders evaluate the quality of a prediction model study has been proposed.

Keywords: clinical prediction models, clinical decision rule, prognosis, external validation, model calibration, biostatistics

Procedia PDF Downloads 297
20257 Document-level Sentiment Analysis: An Exploratory Case Study of Low-resource Language Urdu

Authors: Ammarah Irum, Muhammad Ali Tahir

Abstract:

Document-level sentiment analysis in Urdu is a challenging Natural Language Processing (NLP) task due to the difficulty of working with lengthy texts in a language with constrained resources. Deep learning models, which are complex neural network architectures, are well-suited to text-based applications in addition to data formats like audio, image, and video. To investigate the potential of deep learning for Urdu sentiment analysis, we implemented five different deep learning models, including Bidirectional Long Short Term Memory (BiLSTM), Convolutional Neural Network (CNN), Convolutional Neural Network with Bidirectional Long Short Term Memory (CNN-BiLSTM), and Bidirectional Encoder Representation from Transformer (BERT). In this study, we developed a hybrid deep learning model called BiLSTM-Single Layer Multi Filter Convolutional Neural Network (BiLSTM-SLMFCNN) by fusing BiLSTM and CNN architecture. The proposed and baseline techniques are applied on Urdu Customer Support data set and IMDB Urdu movie review data set by using pre-trained Urdu word embedding that are suitable for sentiment analysis at the document level. Results of these techniques are evaluated and our proposed model outperforms all other deep learning techniques for Urdu sentiment analysis. BiLSTM-SLMFCNN outperformed the baseline deep learning models and achieved 83%, 79%, 83% and 94% accuracy on small, medium and large sized IMDB Urdu movie review data set and Urdu Customer Support data set respectively.

Keywords: urdu sentiment analysis, deep learning, natural language processing, opinion mining, low-resource language

Procedia PDF Downloads 72
20256 Modeling and Simulation of a CMOS-Based Analog Function Generator

Authors: Madina Hamiane

Abstract:

Modelling and simulation of an analogy function generator is presented based on a polynomial expansion model. The proposed function generator model is based on a 10th order polynomial approximation of any of the required functions. The polynomial approximations of these functions can then be implemented using basic CMOS circuit blocks. In this paper, a circuit model is proposed that can simultaneously generate many different mathematical functions. The circuit model is designed and simulated with HSPICE and its performance is demonstrated through the simulation of a number of non-linear functions.

Keywords: modelling and simulation, analog function generator, polynomial approximation, CMOS transistors

Procedia PDF Downloads 459
20255 Development and Validation of Work Movement Task Analysis: Part 1

Authors: Mohd Zubairy Bin Shamsudin

Abstract:

Work-related Musculoskeletal Disorder (WMSDs) is one of the occupational health problems encountered by workers over the world. In Malaysia, there is increasing in trend over the years, particularly in the manufacturing sectors. Current method to observe workplace WMSDs is self-report questionnaire, observation and direct measurement. Observational method is most frequently used by the researcher and practitioner because of the simplified, quick and versatile when it applies to the worksite. However, there are some limitations identified e.g. some approach does not cover a wide spectrum of biomechanics activity and not sufficiently sensitive to assess the actual risks. This paper elucidates the development of Work Movement Task Analysis (WMTA), which is an observational tool for industrial practitioners’ especially untrained personnel to assess WMSDs risk factors and provide a basis for suitable intervention. First stage of the development protocol involved literature reviews, practitioner survey, tool validation and reliability. A total of six themes/comments were received in face validity stage. New revision of WMTA consisted of four sections of postural (neck, back, shoulder, arms, and legs) and associated risk factors; movement, load, coupling and basic environmental factors (lighting, noise, odorless, heat and slippery floor). For inter-rater reliability study shows substantial agreement among rater with K = 0.70. Meanwhile, WMTA validation shows significant association between WMTA score and self-reported pain or discomfort for the back, shoulder&arms and knee&legs with p<0.05. This tool is expected to provide new workplace ergonomic observational tool to assess WMSDs for the next stage of the case study.

Keywords: assessment, biomechanics, musculoskeletal disorders, observational tools

Procedia PDF Downloads 469
20254 A Model to Assess Sustainability Using Multi-Criteria Analysis and Geographic Information Systems: A Case Study

Authors: Antonio Boggia, Luisa Paolotti, Gianluca Massei, Lucia Rocchi, Elaine Pace, Maria Attard

Abstract:

The aim of this paper is to present a methodology and a computer model for sustainability assessment based on the integration of Multi-criteria Decision Analysis (MCDA) with a Geographic Information System (GIS). It presents the result of a study for the implementation of a model for measuring sustainability to address the policy actions for the improvement of sustainability at territory level. The aim is to rank areas in order to understand the specific technical and/or financial support that is required to develop sustainable growth. Assessing sustainable development is a multidimensional problem: economic, social and environmental aspects have to be taken into account at the same time. The tool for a multidimensional representation is a proper set of indicators. The set of indicators must be integrated into a model, that is an assessment methodology, to be used for measuring sustainability. The model, developed by the Environmental Laboratory of the University of Perugia, is called GeoUmbriaSUIT. It is a calculation procedure developed as a plugin working in the open-source GIS software QuantumGIS. The multi-criteria method used within GeoUmbriaSUIT is the algorithm TOPSIS (Technique for Order Preference by Similarity to Ideal Design), which defines a ranking based on the distance from the worst point and the closeness to an ideal point, for each of the criteria used. For the sustainability assessment procedure, GeoUmbriaSUIT uses a geographic vector file where the graphic data represent the study area and the single evaluation units within it (the alternatives, e.g. the regions of a country, or the municipalities of a region), while the alphanumeric data (attribute table), describe the environmental, economic and social aspects related to the evaluation units by means of a set of indicators (criteria). The use of the algorithm available in the plugin allows to treat individually the indicators representing the three dimensions of sustainability, and to compute three different indices: environmental index, economic index and social index. The graphic output of the model allows for an integrated assessment of the three dimensions, avoiding aggregation. The presence of separate indices and graphic output make GeoUmbriaSUIT a readable and transparent tool, since it doesn’t produce an aggregate index of sustainability as final result of the calculations, which is often cryptic and difficult to interpret. In addition, it is possible to develop a “back analysis”, able to explain the positions obtained by the alternatives in the ranking, based on the criteria used. The case study presented is an assessment of the level of sustainability in the six regions of Malta, an island state in the middle of the Mediterranean Sea and the southernmost member of the European Union. The results show that the integration of MCDA-GIS is an adequate approach for sustainability assessment. In particular, the implemented model is able to provide easy to understand results. This is a very important condition for a sound decision support tool, since most of the time decision makers are not experts and need understandable output. In addition, the evaluation path is traceable and transparent.

Keywords: GIS, multi-criteria analysis, sustainability assessment, sustainable development

Procedia PDF Downloads 289
20253 Robust Optimisation Model and Simulation-Particle Swarm Optimisation Approach for Vehicle Routing Problem with Stochastic Demands

Authors: Mohanad Al-Behadili, Djamila Ouelhadj

Abstract:

In this paper, a specific type of vehicle routing problem under stochastic demand (SVRP) is considered. This problem is of great importance because it models for many of the real world vehicle routing applications. This paper used a robust optimisation model to solve the problem along with the novel Simulation-Particle Swarm Optimisation (Sim-PSO) approach. The proposed Sim-PSO approach is based on the hybridization of the Monte Carlo simulation technique with the PSO algorithm. A comparative study between the proposed model and the Sim-PSO approach against other solution methods in the literature has been given in this paper. This comparison including the Analysis of Variance (ANOVA) to show the ability of the model and solution method in solving the complicated SVRP. The experimental results show that the proposed model and Sim-PSO approach has a significant impact on the obtained solution by providing better quality solutions comparing with well-known algorithms in the literature.

Keywords: stochastic vehicle routing problem, robust optimisation model, Monte Carlo simulation, particle swarm optimisation

Procedia PDF Downloads 277
20252 SMEs Access to Finance in Croatia – Model Approach

Authors: Vinko Vidučić, Ljiljana Vidučić, Damir Boras

Abstract:

The goals of the research include the determination of the characteristics of SMEs finance in Croatia, as well as the determination of indirect growth rates of the information model of the entrepreneurs` perception of business environment. The research results show that cost of finance and access to finance are most important constraining factor in setting up and running the business of small entrepreneurs in Croatia. Furthermore, small entrepreneurs in Croatia are significantly dissatisfied with the administrative barriers although relatively to a lesser extent than was the case in the pre-crisis time. High collateral requirement represents the main characteristic of bank lending concerning SMEs followed by long credit elaboration process. Formulated information model has defined the individual impact of indirect growth rates of the remaining variables on the model’s specific variable.

Keywords: business environment, information model, indirect growth rates, SME finance

Procedia PDF Downloads 365
20251 Development of Intake System for Improvement of Performance of Compressed Natural Gas Spark Ignition Engine

Authors: Mardani Ali Serah, Yuriadi Kusuma, Chandrasa Soekardi

Abstract:

The improvement of flow strategy was implemented in the intake system of the engine to produce better Compressed Natural Gas engine performance. Three components were studied, designed, simulated, developed,tested and validated in this research. The components are: the mixer, swirl device and fuel cooler device. The three components were installed to produce pressurised turbulent flow with higher fuel volume in the intake system, which is ideal condition for Compressed Natural Gas (CNG) fuelled engine. A combination of experimental work with simulation technique were carried out. The work included design and fabrication of the engine test rig; the CNG fuel cooling system; fitting of instrumentation and measurement system for the performance testing of both gasoline and CNG modes. The simulation work was utilised to design appropriate mixer and swirl device. The flow test rig, known as the steady state flow rig (SSFR) was constructed to validate the simulation results. Then the investigation of the effect of these components on the CNG engine performance was carried out. A venturi-inlet holes mixer with three variables: number of inlet hole (8, 12, and 16); the inlet angles (300, 400, 500, and 600) and the outlet angles (200, 300, 400, and 500) were studied. The swirl-device with number of revolution and the plane angle variables were also studied. The CNG fuel cooling system with the ability to control water flow rate and the coolant temperature was installed. In this study it was found that the mixer and swirl-device improved the swirl ratio and pressure condition inside the intake manifold. The installation of the mixer, swirl device and CNG fuel cooling system had successfully increased 5.5%, 5%, and 3% of CNG engine performance respectively compared to that of existing operating condition. The overall results proved that there is a high potential of this mixer and swirl device method in increasing the CNG engine performance. The overall improvement on engine performance of power and torque was about 11% and 13% compared to the original mixer.

Keywords: intake system, Compressed Natural Gas, volumetric efficiency, engine performance

Procedia PDF Downloads 340
20250 Spread of Measles Disease in Indonesia with Susceptible Vaccinated Infected Recovered Model

Authors: Septiawan A. Saputro, Purnami Widyaningsih, Sutanto Sastraredja

Abstract:

Measles is a disease which can spread caused by a virus and has been a priority’s Ministry of Health in Indonesia to be solved. Each infected person can be recovered and get immunity so that the spread of the disease can be constructed with susceptible infected recovered (SIR). To prevent the spread of measles transmission, the Ministry of Health holds vaccinations program. The aims of the research are to derive susceptible vaccinated infected recovered (SVIR) model, to determine the patterns of disease spread with SVIR model, and also to apply the SVIR model on the spread of measles in Indonesia. Based on the article, it can be concluded that the spread model of measles with vaccinations, that is SVIR model. It is a first-order differential equation system. The patterns of disease spread is determined by solution of the model. Based on that model Indonesia will be a measles-free nation in 2186 with the average of vaccinations scope about 88% and the average score of vaccinations failure about 4.9%. If it is simulated as Ministry of Health new programs with the average of vaccinations scope about 95% and the average score of vaccinations failure about 3%, then Indonesia will be a measles-free nation in 2184. Even with the average of vaccinations scope about 100% and no failure of vaccinations, Indonesia will be a measles-free nation in 2183. Indonesia’s target as a measles-free nation in 2020 has not been reached.

Keywords: measles, vaccination, susceptible infected recovered (SIR), susceptible vaccinated infected recovered (SVIR)

Procedia PDF Downloads 247
20249 Non-Circular Carbon Fiber Reinforced Polymers Chainring Failure Analysis

Authors: A. Elmikaty, Z. Thanawarothon, L. Mezeix

Abstract:

This paper presents a finite element model to simulate the teeth failure of non-circular composite chainring. Model consists of the chainring and a part of the chain. To reduce the size of the model, only the first 11 rollers are simulated. In order to validate the model, it is firstly applied to a circular aluminum chainring and evolution of the stress in the teeth is compared with the literature. Then, effect of the non-circular shape is studied through three different loading positions. Strength of non-circular composite chainring and failure scenario is investigated. Moreover, two composite lay-ups are proposed to observe the influence of the stacking. Results show that composite material can be used but the lay-up has a large influence on the strength. Finally, loading position does not have influence on the first composite failure that always occurs in the first tooth.

Keywords: CFRP, composite failure, FEA, non-circular chainring

Procedia PDF Downloads 295
20248 Sports Business Services Model: A Research Model Study in Reginal Sport Authority of Thailand

Authors: Siriraks Khawchaimaha, Sangwian Boonto

Abstract:

Sport Authority of Thailand (SAT) is the state enterprise, promotes and supports all sports kind both professional and athletes for competitions, and administer under government policy and government officers and therefore, all financial supports whether cash inflows and cash outflows are strictly committed to government budget and limited to the planned projects at least 12 to 16 months ahead of reality, as results of ineffective in sport events, administration and competitions. In order to retain in the sports challenges around the world, SAT need to has its own sports business services model by each stadium, region and athletes’ competencies. Based on the HMK model of Khawchaimaha, S. (2007), this research study is formalized into each 10 regional stadiums to details into the characteristics root of fans, athletes, coaches, equipments and facilities, and stadiums. The research designed is firstly the evaluation of external factors: hardware whereby competition or practice of stadiums, playground, facilities, and equipments. Secondly, to understand the software of the organization structure, staffs and management, administrative model, rules and practices. In addition, budget allocation and budget administration with operating plan and expenditure plan. As results for the third step, issues and limitations which require action plan for further development and support, or to cease that unskilled sports kind. The final step, based on the HMK model and modeling canvas by Alexander O and Yves P (2010) are those of template generating Sports Business Services Model for each 10 SAT’s regional stadiums.

Keywords: HMK model, not for profit organization, sport business model, sport services model

Procedia PDF Downloads 305
20247 High-Fidelity Materials Screening with a Multi-Fidelity Graph Neural Network and Semi-Supervised Learning

Authors: Akeel A. Shah, Tong Zhang

Abstract:

Computational approaches to learning the properties of materials are commonplace, motivated by the need to screen or design materials for a given application, e.g., semiconductors and energy storage. Experimental approaches can be both time consuming and costly. Unfortunately, computational approaches such as ab-initio electronic structure calculations and classical or ab-initio molecular dynamics are themselves can be too slow for the rapid evaluation of materials, often involving thousands to hundreds of thousands of candidates. Machine learning assisted approaches have been developed to overcome the time limitations of purely physics-based approaches. These approaches, on the other hand, require large volumes of data for training (hundreds of thousands on many standard data sets such as QM7b). This means that they are limited by how quickly such a large data set of physics-based simulations can be established. At high fidelity, such as configuration interaction, composite methods such as G4, and coupled cluster theory, gathering such a large data set can become infeasible, which can compromise the accuracy of the predictions - many applications require high accuracy, for example band structures and energy levels in semiconductor materials and the energetics of charge transfer in energy storage materials. In order to circumvent this problem, multi-fidelity approaches can be adopted, for example the Δ-ML method, which learns a high-fidelity output from a low-fidelity result such as Hartree-Fock or density functional theory (DFT). The general strategy is to learn a map between the low and high fidelity outputs, so that the high-fidelity output is obtained a simple sum of the physics-based low-fidelity and correction, Although this requires a low-fidelity calculation, it typically requires far fewer high-fidelity results to learn the correction map, and furthermore, the low-fidelity result, such as Hartree-Fock or semi-empirical ZINDO, is typically quick to obtain, For high-fidelity outputs the result can be an order of magnitude or more in speed up. In this work, a new multi-fidelity approach is developed, based on a graph convolutional network (GCN) combined with semi-supervised learning. The GCN allows for the material or molecule to be represented as a graph, which is known to improve accuracy, for example SchNet and MEGNET. The graph incorporates information regarding the numbers of, types and properties of atoms; the types of bonds; and bond angles. They key to the accuracy in multi-fidelity methods, however, is the incorporation of low-fidelity output to learn the high-fidelity equivalent, in this case by learning their difference. Semi-supervised learning is employed to allow for different numbers of low and high-fidelity training points, by using an additional GCN-based low-fidelity map to predict high fidelity outputs. It is shown on 4 different data sets that a significant (at least one order of magnitude) increase in accuracy is obtained, using one to two orders of magnitude fewer low and high fidelity training points. One of the data sets is developed in this work, pertaining to 1000 simulations of quinone molecules (up to 24 atoms) at 5 different levels of fidelity, furnishing the energy, dipole moment and HOMO/LUMO.

Keywords: .materials screening, computational materials, machine learning, multi-fidelity, graph convolutional network, semi-supervised learning

Procedia PDF Downloads 41
20246 Adaptive Energy-Aware Routing (AEAR) for Optimized Performance in Resource-Constrained Wireless Sensor Networks

Authors: Innocent Uzougbo Onwuegbuzie

Abstract:

Wireless Sensor Networks (WSNs) are crucial for numerous applications, yet they face significant challenges due to resource constraints such as limited power and memory. Traditional routing algorithms like Dijkstra, Ad hoc On-Demand Distance Vector (AODV), and Bellman-Ford, while effective in path establishment and discovery, are not optimized for the unique demands of WSNs due to their large memory footprint and power consumption. This paper introduces the Adaptive Energy-Aware Routing (AEAR) model, a solution designed to address these limitations. AEAR integrates reactive route discovery, localized decision-making using geographic information, energy-aware metrics, and dynamic adaptation to provide a robust and efficient routing strategy. We present a detailed comparative analysis using a dataset of 50 sensor nodes, evaluating power consumption, memory footprint, and path cost across AEAR, Dijkstra, AODV, and Bellman-Ford algorithms. Our results demonstrate that AEAR significantly reduces power consumption and memory usage while optimizing path weight. This improvement is achieved through adaptive mechanisms that balance energy efficiency and link quality, ensuring prolonged network lifespan and reliable communication. The AEAR model's superior performance underlines its potential as a viable routing solution for energy-constrained WSN environments, paving the way for more sustainable and resilient sensor network deployments.

Keywords: wireless sensor networks (WSNs), adaptive energy-aware routing (AEAR), routing algorithms, energy, efficiency, network lifespan

Procedia PDF Downloads 37
20245 Influencing Factors of Residents’ Intention to Participate in the Governance of Old Community Renewal: A Case Study of Nanjing

Authors: Tiantian Gu, Dezhi Li, Mian Zhang, Ying Jiang

Abstract:

Considering the characteristics of residents’ participation in the governance of old community renewal (OCR), a theoretical model of the determinant of residents’ intention to participate in the governance of OCR has been built based on the theory of planned behavior. Seven old communities in Nanjing have been chosen as cases to conduct empirical analysis. The result indicates that participation attitude, subjective norm and perceived behavioral control have significant positive effects on residents’ intention to participate in the governance of the OCR. Recognition of the community, cognition of the OCR and perceived behavioral control have indirect positive effects on residents’ intention to participate in the OCR. In addition, the education level and the length of residence have positive effects on their participation intention, while the gender, age, and monthly income have little effect on it. The research result provides suggestions for the improvement of residents’ participation in the OCR.

Keywords: old community renewal, residents’ participation in governance, intention, theory of planned behavior

Procedia PDF Downloads 187
20244 Identifying the Level of Awareness on Value Management Practice amongst Construction Practitioners in Nigeria

Authors: Alhassan Dahiru

Abstract:

Value management is widely accepted technique of eliminating unnecessary cost at different stages of project development that maximizes the functional value of a project by managing its evolution and development from concept to completion. Many construction industry practitioners are not aware of Value Management practice, and its use is less widespread in Nigeria. The aim of this research is to identify the level of awareness on value management practice amongst construction practitioners with a view to contribute to the improvement of the implementation of value management practice in the Nigerian construction industry. In this study, construction practitioners have been chosen as respondents from the 6 geopolitical zones of the federation including FCT Abuja. Through the survey, a total number of 360 semi-structured questionnaires were administered and 284 were returned and remained good for the analysis. The results indicate that most of the respondents were aware of the value management concept and issues surrounding construction industry in Nigeria, while about 32% of the respondents were not aware of its potential benefits. Therefore, organisations should review their techniques and processes from time to time for improvement on effective service delivery. Additionally, a change management strategy should also be part of every organization to ease the introduction of new techniques such as value management. There is also the need for more value management training workshops and seminars in order to enlighten the participants of the construction industry on the principles, concept, and techniques involved in the value management process.

Keywords: sustainability, value management, construction practitioners, Nigeria

Procedia PDF Downloads 231
20243 Competency Model as a Key Tool for Managing People in Organizations: Presentation of a Model

Authors: Andrea ČopíKová

Abstract:

Competency Based Management is a new approach to management, which solves organization’s challenges with complexity and with the aim to find and solve organization’s problems and learn how to avoid these in future. They teach the organizations to create, apart from the state of stability – that is temporary, vital organization, which is permanently able to utilize and profit from internal and external opportunities. The aim of this paper is to propose a process of competency model design, based on which a competency model for a financial department manager in a production company will be created. Competency models are very useful tool in many personnel processes in any organization. They are used for acquiring and selection of employees, designing training and development activities, employees’ evaluation, and they can be used as a guide for a career planning and as a tool for succession planning especially for managerial positions. When creating a competency model the method AHP (Analytic Hierarchy Process) and quantitative pair-wise comparison (Saaty’s method) will be used; these methods belong among the most used methods for the determination of weights, and it is used in the AHP procedure. The introduction part of the paper consists of the research results pertaining to the use of competency model in practice and then the issue of competency and competency models is explained. The application part describes in detail proposed methodology for the creation of competency models, based on which the competency model for the position of financial department manager in a foreign manufacturing company, will be created. In the conclusion of the paper, the final competency model will be shown for above mentioned position. The competency model divides selected competencies into three groups that are managerial, interpersonal and functional. The model describes in detail individual levels of competencies, their target value (required level) and the level of importance.

Keywords: analytic hierarchy process, competency, competency model, quantitative pairwise comparison

Procedia PDF Downloads 244
20242 Association between Substance Use Disorder, PTSD and the Effectiveness of Collaborative Care for Depression in Primary Care: A Systematic Literature Search and Narrative Review

Authors: J. Raub, H. Schillok, L. Kaupe, C. Jung-Sievers, G. Pitschel-Walz, M. Bühner, J. Gensichen, F. D. Pokal-Gruppe

Abstract:

Introduction: In Germany, depression ranks among the top ten diseases with the highest disease burden and often occurs with comorbidities. Collaborative Care (CC), a concept developed in the United States for the primary care management of chronic diseases, has been identified as an efficient model for the treatment of depression in general medicine. A recent meta-analysis highlights research gaps regarding CC in patients with psychiatric multimorbidity. The highest prevalence of psychiatric comorbidities in depression is observed in anxiety disorders, post-traumatic stress disorder (PTSD), and substance use disorders. Methods: We conducted a literature search following the PRISMA guidelines with three components: Collaborative Care, Depression and randomized controlled trial on the common databases. We focused on the examination of psychiatric comorbidities in depression, specifically Posttraumatic Stress Disorder (PTSD) and Substance Use Disorder (SUD). Results: During the screening process, we identified nine relevant articles related to PTSD, the number of articles related to Substance Use Disorder (SUD) was ten. We examined a total of 8,634 individuals. Our literature review did not reveal any overall significant superiority of the Collaborative Care model compared to Usual Care in patients with depression with comorbid Substance Use Disorder (SUD) or Posttraumatic Stress Disorder (PTSD). Discussion: Five studies demonstrate a faster and statistically significant improvement in depression outcomes among patients with Substance Use Disorder (SUD) and Posttraumatic Stress Disorder (PTSD). Currently, several randomized controlled trials on the topic of Collaborative Care in depression with psychiatric comorbidity are ongoing, such as miCare, Claro and COMET.

Keywords: Depression, primary care, collaborative care, PTSD, Substance use Disorder

Procedia PDF Downloads 83