Search results for: project classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7089

Search results for: project classification

3759 Methods of Interpolating Temperature and Rainfall Distribution in Northern Vietnam

Authors: Thanh Van Hoang, Tien Yin Chou, Yao Min Fang, Yi Min Huang, Xuan Linh Nguyen

Abstract:

Reliable information on the spatial distribution of annual rainfall and temperature is essential in research projects relating to urban and regional planning. This research presents results of a classification of temperature and rainfall in the Red River Delta of northern Vietnam based on measurements from seven meteorological stations (Ha Nam, Hung Yen, Lang, Nam Dinh, Ninh Binh, Phu Lien, Thai Binh) in the river basin over a thirty-years period from 1982-2011. The average accumulated rainfall trends in the delta are analysed and form the basis of research essential to weather and climate forecasting. This study employs interpolation based on the Kriging Method for daily rainfall (min and max) and daily temperature (min and max) in order to improve the understanding of sources of variation and uncertainly in these important meteorological parameters. To the Kriging method, the results will show the different models and the different parameters based on the various precipitation series. The results provide a useful reference to assist decision makers in developing smart agriculture strategies for the Red River Delta in Vietnam.

Keywords: spatial interpolation method, ArcGIS, temperature variability, rainfall variability, Red River Delta, Vietnam

Procedia PDF Downloads 330
3758 A Distinct Method Based on Mamba-Unet for Brain Tumor Image Segmentation

Authors: Djallel Bouamama, Yasser R. Haddadi

Abstract:

Accurate brain tumor segmentation is crucial for diagnosis and treatment planning, yet it remains a challenging task due to the variability in tumor shapes and intensities. This paper introduces a distinct approach to brain tumor image segmentation by leveraging an advanced architecture known as Mamba-Unet. Building on the well-established U-Net framework, Mamba-Unet incorporates distinct design enhancements to improve segmentation performance. Our proposed method integrates a multi-scale attention mechanism and a hybrid loss function to effectively capture fine-grained details and contextual information in brain MRI scans. We demonstrate that Mamba-Unet significantly enhances segmentation accuracy compared to conventional U-Net models by utilizing a comprehensive dataset of annotated brain MRI scans. Quantitative evaluations reveal that Mamba-Unet surpasses traditional U-Net architectures and other contemporary segmentation models regarding Dice coefficient, sensitivity, and specificity. The improvements are attributed to the method's ability to manage class imbalance better and resolve complex tumor boundaries. This work advances the state-of-the-art in brain tumor segmentation and holds promise for improving clinical workflows and patient outcomes through more precise and reliable tumor detection.

Keywords: brain tumor classification, image segmentation, CNN, U-NET

Procedia PDF Downloads 36
3757 Analysis of Vocal Fold Vibrations from High-Speed Digital Images Based on Dynamic Time Warping

Authors: A. I. A. Rahman, Sh-Hussain Salleh, K. Ahmad, K. Anuar

Abstract:

Analysis of vocal fold vibration is essential for understanding the mechanism of voice production and for improving clinical assessment of voice disorders. This paper presents a Dynamic Time Warping (DTW) based approach to analyze and objectively classify vocal fold vibration patterns. The proposed technique was designed and implemented on a Glottal Area Waveform (GAW) extracted from high-speed laryngeal images by delineating the glottal edges for each image frame. Feature extraction from the GAW was performed using Linear Predictive Coding (LPC). Several types of voice reference templates from simulations of clear, breathy, fry, pressed and hyperfunctional voice productions were used. The patterns of the reference templates were first verified using the analytical signal generated through Hilbert transformation of the GAW. Samples from normal speakers’ voice recordings were then used to evaluate and test the effectiveness of this approach. The classification of the voice patterns using the technique of LPC and DTW gave the accuracy of 81%.

Keywords: dynamic time warping, glottal area waveform, linear predictive coding, high-speed laryngeal images, Hilbert transform

Procedia PDF Downloads 239
3756 Impacts of Climate Change and Natural Gas Operations on the Hydrology of Northeastern BC, Canada: Quantifying the Water Budget for Coles Lake

Authors: Sina Abadzadesahraei, Stephen Déry, John Rex

Abstract:

Climate research has repeatedly identified strong associations between anthropogenic emissions of ‘greenhouses gases’ and observed increases of global mean surface air temperature over the past century. Studies have also demonstrated that the degree of warming varies regionally. Canada is not exempt from this situation, and evidence is mounting that climate change is beginning to cause diverse impacts in both environmental and socio-economic spheres of interest. For example, northeastern British Columbia (BC), whose climate is controlled by a combination of maritime, continental and arctic influences, is warming at a greater rate than the remainder of the province. There are indications that these changing conditions are already leading to shifting patterns in the region’s hydrological cycle, and thus its available water resources. Coincident with these changes, northeastern BC is undergoing rapid development for oil and gas extraction: This depends largely on subsurface hydraulic fracturing (‘fracking’), which uses enormous amounts of freshwater. While this industrial activity has made substantial contributions to regional and provincial economies, it is important to ensure that sufficient and sustainable water supplies are available for all those dependent on the resource, including ecological systems. In this turn demands a comprehensive understanding of how water in all its forms interacts with landscapes, the atmosphere, and of the potential impacts of changing climatic conditions on these processes. The aim of this study is therefore to characterize and quantify all components of the water budget in the small watershed of Coles Lake (141.8 km², 100 km north of Fort Nelson, BC), through a combination of field observations and numerical modelling. Baseline information will aid the assessment of the sustainability of current and future plans for freshwater extraction by the oil and gas industry, and will help to maintain the precarious balance between economic and environmental well-being. This project is a perfect example of interdisciplinary research, in that it not only examines the hydrology of the region but also investigates how natural gas operations and growth can affect water resources. Therefore, a fruitful collaboration between academia, government and industry has been established to fulfill the objectives of this research in a meaningful manner. This project aims to provide numerous benefits to BC communities. Further, the outcome and detailed information of this research can be a huge asset to researchers examining the effect of climate change on water resources worldwide.

Keywords: northeastern British Columbia, water resources, climate change, oil and gas extraction

Procedia PDF Downloads 264
3755 SLIITBOT: Design of a Socially Assistive Robot for SLIIT

Authors: Chandimal Jayawardena, Ridmal Mendis, Manoji Tennakoon, Theekshana Wijayathilaka, Randima Marasinghe

Abstract:

This research paper defines the research area of the implementation of the socially assistive robot (SLIITBOT). It consists of the overall process implemented within the robot’s system and limitations, along with a literature survey. This project considers developing a socially assistive robot called SLIITBOT that will interact using its voice outputs and graphical user interface with people within the university and benefit them with updates and tasks. The robot will be able to detect a person when he/she enters the room, navigate towards the position the human is standing, welcome and greet the particular person with a simple conversation using its voice, introduce the services through its voice, and provide the person with services through an electronic input via an app while guiding the person with voice outputs.

Keywords: application, detection, dialogue, navigation

Procedia PDF Downloads 169
3754 Proposal to Increase the Efficiency, Reliability and Safety of the Centre of Data Collection Management and Their Evaluation Using Cluster Solutions

Authors: Martin Juhas, Bohuslava Juhasova, Igor Halenar, Andrej Elias

Abstract:

This article deals with the possibility of increasing efficiency, reliability and safety of the system for teledosimetric data collection management and their evaluation as a part of complex study for activity “Research of data collection, their measurement and evaluation with mobile and autonomous units” within project “Research of monitoring and evaluation of non-standard conditions in the area of nuclear power plants”. Possible weaknesses in existing system are identified. A study of available cluster solutions with possibility of their deploying to analysed system is presented.

Keywords: teledosimetric data, efficiency, reliability, safety, cluster solution

Procedia PDF Downloads 515
3753 Bug Localization on Single-Line Bugs of Apache Commons Math Library

Authors: Cherry Oo, Hnin Min Oo

Abstract:

Software bug localization is one of the most costly tasks in program repair technique. Therefore, there is a high claim for automated bug localization techniques that can monitor programmers to the locations of bugs, with slight human arbitration. Spectrum-based bug localization aims to help software developers to discover bugs rapidly by investigating abstractions of the program traces to make a ranking list of most possible buggy modules. Using the Apache Commons Math library project, we study the diagnostic accuracy using our spectrum-based bug localization metric. Our outcomes show that the greater performance of a specific similarity coefficient, used to inspect the program spectra, is mostly effective on localizing of single line bugs.

Keywords: software testing, bug localization, program spectra, bug

Procedia PDF Downloads 143
3752 Challenges for Competency-Based Learning Design in Primary School Mathematics in Mozambique

Authors: Satoshi Kusaka

Abstract:

The term ‘competency’ is attracting considerable scholarly attention worldwide with the advance of globalization in the 21st century and with the arrival of a knowledge-based society. In the current world environment, familiarity with varied disciplines is regarded to be vital for personal success. The idea of a competency-based educational system was mooted by the ‘Definition and Selection of Competencies (DeSeCo)’ project that was conducted by the Organization for Economic Cooperation and Development (OECD). Further, attention to this topic is not limited to developed countries; it can also be observed in developing countries. For instance, the importance of a competency-based curriculum was mentioned in the ‘2013 Harmonized Curriculum Framework for the East African Community’, which recommends key competencies that should be developed in primary schools. The introduction of such curricula and the reviews of programs are actively being executed, primarily in the East African Community but also in neighboring nations. Taking Mozambique as a case in point, the present paper examines the conception of ‘competency’ as a target of frontline education in developing countries. It also aims to discover the manner in which the syllabus, textbooks and lessons, among other things, in primary-level math education are developed and to determine the challenges faced in the process. This study employs the perspective of competency-based education design to analyze how the term ‘competency’ is defined in the primary-level math syllabus, how it is reflected in the textbooks, and how the lessons are actually developed. ‘Practical competency’ is mentioned in the syllabus, and the description of the term lays emphasis on learners' ability to interactively apply socio-cultural and technical tools, which is one of the key competencies that are advocated in OECD's ‘Definition and Selection of Competencies’ project. However, most of the content of the textbooks pertains to ‘basic academic ability’, and in actual classroom practice, teachers often impart lessons straight from the textbooks. It is clear that the aptitude of teachers and their classroom routines are greatly dependent on the cultivation of their own ‘practical competency’ as it is defined in the syllabus. In other words, there is great divergence between the ‘syllabus’, which is the intended curriculum, and the content of the ‘textbooks’. In fact, the material in the textbooks should serve as the bridge between the syllabus, which forms the guideline, and the lessons, which represent the ‘implemented curriculum’. Moreover, the results obtained from this investigation reveal that the problem can only be resolved through the cultivation of ‘practical competency’ in teachers, which is currently not sufficient.

Keywords: competency, curriculum, mathematics education, Mozambique

Procedia PDF Downloads 194
3751 Researching Apache Hama: A Pure BSP Computing Framework

Authors: Kamran Siddique, Yangwoo Kim, Zahid Akhtar

Abstract:

In recent years, the technological advancements have led to a deluge of data from distinctive domains and the need for development of solutions based on parallel and distributed computing has still long way to go. That is why, the research and development of massive computing frameworks is continuously growing. At this particular stage, highlighting a potential research area along with key insights could be an asset for researchers in the field. Therefore, this paper explores one of the emerging distributed computing frameworks, Apache Hama. It is a Top Level Project under the Apache Software Foundation, based on Bulk Synchronous Processing (BSP). We present an unbiased and critical interrogation session about Apache Hama and conclude research directions in order to assist interested researchers.

Keywords: apache hama, bulk synchronous parallel, BSP, distributed computing

Procedia PDF Downloads 250
3750 Eco-Drive Predictive Analytics

Authors: Sharif Muddsair, Eisels Martin, Giesbrecht Eugenie

Abstract:

With development of society increase the demand for the movement of people also increases gradually. The various modes of the transport in different extent which expat impacts, which depends on mainly technical-operating conditions. The up-to-date telematics systems provide the transport industry a revolutionary. Appropriate use of these systems can help to substantially improve the efficiency. Vehicle monitoring and fleet tracking are among services used for improving efficiency and effectiveness of utility vehicle. There are many telematics systems which may contribute to eco-driving. Generally, they can be grouped according to their role in driving cycle. • Before driving - eco-route selection, • While driving – Advanced driver assistance, • After driving – remote analysis. Our point of interest is regulated in third point [after driving – remote analysis]. TS [Telematics-system] make it possible to record driving patterns in real time and analysis the data later on, So that driver- classification-specific hints [fast driver, slow driver, aggressive driver…)] are given to imitate eco-friendly driving style. Together with growing number of vehicle and development of information technology, telematics become an ‘active’ research subject in IT and the car industry. Telematics has gone a long way from providing navigation solution/assisting the driver to become an integral part of the vehicle. Today’s telematics ensure safety, comfort and become convenience of the driver.

Keywords: internet of things, iot, connected vehicle, cv, ts, telematics services, ml, machine learning

Procedia PDF Downloads 306
3749 Effect of Mineral Additives on Improving the Geotechnical Properties of Soils in Chief

Authors: Rabah Younes

Abstract:

The reduction of available land resources and the increased cout associated with the use of high quality materials have led to the need for local soils to be used in geotechnical construction, however; poor engineering properties of these soils pose difficulties for constructions project and need to be stabilized to improve their properties in other works unsuitable soils with low bearing capacity , high plasticity coupled with high instability are frequently encountered hence, there is a need to improve the physical and mechanical characteristics of these soils to make theme more suitable for construction this can be done by using different mechanical and chemical methods clayey soil stabilization has been practiced for sometime but mixing additives, such us cement, lime and fly ash to the soil to increase its strength.

Keywords: clay, soil stabilization, naturaln pozzolana, atterberg limits, compaction, compressive strength shear strength, curing

Procedia PDF Downloads 313
3748 A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction

Authors: Khalaf Khatatneh, Nabeel Al-Milli, Amjad Hudaib, Monther Ali Tarawneh

Abstract:

Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios.

Keywords: feature selection, neural network, particle swarm optimization, software fault prediction

Procedia PDF Downloads 95
3747 Design of a Real Time Heart Sounds Recognition System

Authors: Omer Abdalla Ishag, Magdi Baker Amien

Abstract:

Physicians used the stethoscope for listening patient heart sounds in order to make a diagnosis. However, the determination of heart conditions by acoustic stethoscope is a difficult task so it requires special training of medical staff. This study developed an accurate model for analyzing the phonocardiograph signal based on PC and DSP processor. The system has been realized into two phases; offline and real time phase. In offline phase, 30 cases of heart sounds files were collected from medical students and doctor's world website. For experimental phase (real time), an electronic stethoscope has been designed, implemented and recorded signals from 30 volunteers, 17 were normal cases and 13 were various pathologies cases, these acquired 30 signals were preprocessed using an adaptive filter to remove lung sounds. The background noise has been removed from both offline and real data, using wavelet transform, then graphical and statistics features vector elements were extracted, finally a look-up table was used for classification heart sounds cases. The obtained results of the implemented system showed accuracy of 90%, 80% and sensitivity of 87.5%, 82.4% for offline data, and real data respectively. The whole system has been designed on TMS320VC5509a DSP Platform.

Keywords: code composer studio, heart sounds, phonocardiograph, wavelet transform

Procedia PDF Downloads 446
3746 Developing a Recommendation Library System based on Android Application

Authors: Kunyanuth Kularbphettong, Kunnika Tenprakhon, Pattarapan Roonrakwit

Abstract:

In this paper, we present a recommendation library application on Android system. The objective of this system is to support and advice user to use library resources based on mobile application. We describe the design approaches and functional components of this system. The system was developed based on under association rules, Apriori algorithm. In this project, it was divided the result by the research purposes into 2 parts: developing the Mobile application for online library service and testing and evaluating the system. Questionnaires were used to measure user satisfaction with system usability by specialists and users. The results were satisfactory both specialists and users.

Keywords: online library, Apriori algorithm, Android application, black box

Procedia PDF Downloads 489
3745 Study of Halophytic Vegetation of Chott Gamra (Batna, High Plateaus of Eastern Algeria)

Authors: Marref C., Marref S., Melakhssou M. A.

Abstract:

The halophytic vegetation of Chott Gamra (Gadaïne Eco-complex, High Plateaus of Eastern Algeria) is characterized by a very rich cover. It is structured according to the variation in soil salinity and moisture. The objective of this study is to understand the biodiversity, distribution, and classification of halophytic vegetation. This wetland is characterized by a Mediterranean climate in the semi-arid to cool winter stage. The wetland area of the High Plateaus of Eastern Algeria constitutes a biodiversity reservoir. It is considered exceptional, although it remains little explored and documented to date. The study was conducted over consecutive spring seasons (2020/2021). Indeed, the inventory we established includes forty plant species belonging to fourteen different families, the majority of which are resistant to salinity and drought. These halophytic species that thrive there establish themselves in bands according to their tolerance threshold to salinity and their affinity to the hygroscopic level of the soil. Thus, other edaphic factors may come into play in the zonation of halophytes in saline environments. Species belonging to the Juncaceae and Poaceae families dominate by far the non-flooded vegetation cover of this site. These plants are perfectly adapted to saline environments.

Keywords: halophytes, biodiversity, salinity, wetland

Procedia PDF Downloads 51
3744 Baseline Study of Water Quality in Indonesia Using Dynamic Methods and Technologies

Authors: R. L. P. de Lima, F. C. B. Boogaard, D. Setyo Rini, P. Arisandi, R. E. de Graaf-Van Dinther

Abstract:

Water quality in many Asian countries is very poor due to inefficient solid waste management, high population growth and the lack of sewage and purification systems for households and industry. A consortium of Indonesian and Dutch organizations has begun a large-scale international research project to evaluate and propose solutions to face the surface water pollution challenges in Brantas Basin, Indonesia (East Java: Malang / Surabaya). The first phase of the project consisted in a baseline study to assess the current status of surface water bodies and to determine the ambitions and strategies among local stakeholders. This study was conducted with high participatory / collaborative and knowledge sharing objectives. Several methods such as using mobile sensors (attached to boats or underwater drones), test strips and mobile apps, bio-monitoring (sediments), ecology scans using underwater cameras, or continuous / static measurements, were applied in different locations in the regions of the basin, at multiple locations within the water systems (e.g. spring, upstream / downstream of industry and urban areas, mouth of the Surabaya River, groundwater). Results gave an indication of (reference) values of basic water quality parameters such as turbidity, electrical conductivity, dissolved oxygen or nutrients (ammonium / nitrate). An important outcome was that collecting random samples may not be representative of a body of water, given that water quality parameters can vary widely in space (x, y, and depth) and time (day / night and seasonal). Innovative / dynamic monitoring methods (e.g. underwater drones, sensors on boats) can contribute to better understand the quality of the living environment (water, ecology, sediment) and factors that affect it. The field work activities, in particular, underwater drones, revealed potential as awareness actions as they attracted interest from locals and local press. This baseline study involved the cooperation with local managing organizations with Dutch partners, and their willingness to work together is important to ensure participatory actions and social awareness regarding the process of adaptation and strengthening of regulations, or for the construction of facilities such as sewage.

Keywords: water quality monitoring, pollution, underwater drones, social awareness

Procedia PDF Downloads 192
3743 Possibilistic Aggregations in the Investment Decision Making

Authors: I. Khutsishvili, G. Sirbiladze, B. Ghvaberidze

Abstract:

This work proposes a fuzzy methodology to support the investment decisions. While choosing among competitive investment projects, the methodology makes ranking of projects using the new aggregation OWA operator – AsPOWA, presented in the environment of possibility uncertainty. For numerical evaluation of the weighting vector associated with the AsPOWA operator the mathematical programming problem is constructed. On the basis of the AsPOWA operator the projects’ group ranking maximum criteria is constructed. The methodology also allows making the most profitable investments into several of the project using the method developed by the authors for discrete possibilistic bicriteria problems. The article provides an example of the investment decision-making that explains the work of the proposed methodology.

Keywords: expert evaluations, investment decision making, OWA operator, possibility uncertainty

Procedia PDF Downloads 558
3742 Development of Fuzzy Logic Control Ontology for E-Learning

Authors: Muhammad Sollehhuddin A. Jalil, Mohd Ibrahim Shapiai, Rubiyah Yusof

Abstract:

Nowadays, ontology is common in many areas like artificial intelligence, bioinformatics, e-commerce, education and many more. Ontology is one of the focus areas in the field of Information Retrieval. The purpose of an ontology is to describe a conceptual representation of concepts and their relationships within a particular domain. In other words, ontology provides a common vocabulary for anyone who needs to share information in the domain. There are several ontology domains in various fields including engineering and non-engineering knowledge. However, there are only a few available ontology for engineering knowledge. Fuzzy logic as engineering knowledge is still not available as ontology domain. In general, fuzzy logic requires step-by-step guidelines and instructions of lab experiments. In this study, we presented domain ontology for Fuzzy Logic Control (FLC) knowledge. We give Table of Content (ToC) with middle strategy based on the Uschold and King method to develop FLC ontology. The proposed framework is developed using Protégé as the ontology tool. The Protégé’s ontology reasoner, known as the Pellet reasoner is then used to validate the presented framework. The presented framework offers better performance based on consistency and classification parameter index. In general, this ontology can provide a platform to anyone who needs to understand FLC knowledge.

Keywords: engineering knowledge, fuzzy logic control ontology, ontology development, table of content

Procedia PDF Downloads 299
3741 Numerical Study on the Effect of Spudcan Penetration on the Jacket Platform

Authors: Xiangming Ge, Bing Pan, Wei He, Hao Chen, Yong Zhou, Jiayao Wu, Weijiang Chu

Abstract:

How the extraction and penetration of spudcan affect the performance of the adjacent pile foundation supporting the jacket platform was studied in the program FLAC3D depending on a wind farm project in Bohai sea. The simulations were conducted at the end of the spudcan penetration, which induced a pockmark in the seabed. The effects of the distance between the pile foundation and the pockmark were studied. The displacement at the mudline arose when the pockmark was closer. The bearing capacity of this jacket platform with deep pile foundations has been less influenced by the process of spudcan penetration, which can induce severe stresses on the pile foundation. The induced rotation was also satisfied with the rotation-controlling criteria.

Keywords: offshore foundation, pile-soil interaction, spudcan penetration, FLAC3D

Procedia PDF Downloads 215
3740 Real Time Traffic Performance Study over MPLS VPNs with DiffServ

Authors: Naveed Ghani

Abstract:

With the arrival of higher speed communication links and mature application running over the internet, the requirement for reliable, efficient and robust network designs rising day by day. Multi-Protocol Label Switching technology (MPLS) Virtual Private Networks (VPNs) have committed to provide optimal network services. They are gaining popularity in industry day by day. Enterprise customers are moving to service providers that offer MPLS VPNs. The main reason for this shifting is the capability of MPLS VPN to provide built in security features and any-to-any connectivity. MPLS VPNs improved the network performance due to fast label switching as compare to traditional IP Forwarding but traffic classification and policing was still required on per hop basis to enhance the performance of real time traffic which is delay sensitive (particularly voice and video). QoS (Quality of service) is the most important factor to prioritize enterprise networks’ real time traffic such as voice and video. This thesis is focused on the study of QoS parameters (e.g. delay, jitter and MOS (Mean Opinion Score)) for the real time traffic over MPLS VPNs. DiffServ (Differentiated Services) QoS model will be used over MPLS VPN network to get end-to-end service quality.

Keywords: network, MPLS, VPN, DiffServ, MPLS VPN, DiffServ QoS, QoS Model, GNS2

Procedia PDF Downloads 426
3739 Prosperous Digital Image Watermarking Approach by Using DCT-DWT

Authors: Prabhakar C. Dhavale, Meenakshi M. Pawar

Abstract:

In this paper, everyday tons of data is embedded on digital media or distributed over the internet. The data is so distributed that it can easily be replicated without error, putting the rights of their owners at risk. Even when encrypted for distribution, data can easily be decrypted and copied. One way to discourage illegal duplication is to insert information known as watermark, into potentially valuable data in such a way that it is impossible to separate the watermark from the data. These challenges motivated researchers to carry out intense research in the field of watermarking. A watermark is a form, image or text that is impressed onto paper, which provides evidence of its authenticity. Digital watermarking is an extension of the same concept. There are two types of watermarks visible watermark and invisible watermark. In this project, we have concentrated on implementing watermark in image. The main consideration for any watermarking scheme is its robustness to various attacks

Keywords: watermarking, digital, DCT-DWT, security

Procedia PDF Downloads 423
3738 On the Homology Modeling, Structural Function Relationship and Binding Site Prediction of Human Alsin Protein

Authors: Y. Ruchi, A. Prerna, S. Deepshikha

Abstract:

Amyotrophic lateral sclerosis (ALS), also known as “Lou Gehrig’s disease”. It is a neurodegenerative disease associated with degeneration of motor neurons in the cerebral cortex, brain stem, and spinal cord characterized by distal muscle weakness, atrophy, normal sensation, pyramidal signs and progressive muscular paralysis reflecting. ALS2 is a juvenile autosomal recessive disorder, slowly progressive, that maps to chromosome 2q33 and is associated with mutations in the alsin gene, a putative GTPase regulator. In this paper we have done homology modeling of alsin2 protein using multiple templates (3KCI_A, 4LIM_A, 402W_A, 4D9S_A, and 4DNV_A) designed using the Prime program in Schrödinger software. Further modeled structure is used to identify effective binding sites on the basis of structural and physical properties using sitemap program in Schrödinger software, structural and function analysis is done by using Prosite and ExPASy server that gives insight into conserved domains and motifs that can be used for protein classification. This paper summarizes the structural, functional and binding site property of alsin2 protein. These binding sites can be potential drug target sites and can be used for docking studies.

Keywords: ALS, binding site, homology modeling, neuronal degeneration

Procedia PDF Downloads 389
3737 An Output Oriented Super-Efficiency Model for Considering Time Lag Effect

Authors: Yanshuang Zhang, Byungho Jeong

Abstract:

There exists some time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in calculating efficiency of decision making units (DMU). Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. This problem can be resolved a super-efficiency model. However, a super efficiency model sometimes causes infeasibility problem. This paper suggests an output oriented super-efficiency model for efficiency evaluation under the consideration of time lag effect. A case example using a long term research project is given to compare the suggested model with the MpO model

Keywords: DEA, Super-efficiency, Time Lag, research activities

Procedia PDF Downloads 659
3736 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network

Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao

Abstract:

The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.

Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations

Procedia PDF Downloads 154
3735 Bidirectional Long Short-Term Memory-Based Signal Detection for Orthogonal Frequency Division Multiplexing With All Index Modulation

Authors: Mahmut Yildirim

Abstract:

This paper proposed the bidirectional long short-term memory (Bi-LSTM) network-aided deep learning (DL)-based signal detection for Orthogonal frequency division multiplexing with all index modulation (OFDM-AIM), namely Bi-DeepAIM. OFDM-AIM is developed to increase the spectral efficiency of OFDM with index modulation (OFDM-IM), a promising multi-carrier technique for communication systems beyond 5G. In this paper, due to its strong classification ability, Bi-LSTM is considered an alternative to the maximum likelihood (ML) algorithm, which is used for signal detection in the classical OFDM-AIM scheme. The performance of the Bi-DeepAIM is compared with LSTM network-aided DL-based OFDM-AIM (DeepAIM) and classic OFDM-AIM that uses (ML)-based signal detection via BER performance and computational time criteria. Simulation results show that Bi-DeepAIM obtains better bit error rate (BER) performance than DeepAIM and lower computation time in signal detection than ML-AIM.

Keywords: bidirectional long short-term memory, deep learning, maximum likelihood, OFDM with all index modulation, signal detection

Procedia PDF Downloads 72
3734 Comparison of Rumen Microbial Analysis Pipelines Based on 16s rRNA Gene Sequencing

Authors: Xiaoxing Ye

Abstract:

To investigate complex rumen microbial communities, 16S ribosomal RNA (rRNA) sequencing is widely used. Here, we evaluated the impact of bioinformatics pipelines on the observation of OTUs and taxonomic classification of 750 cattle rumen microbial samples by comparing three commonly used pipelines (LotuS, UPARSE, and QIIME) with Usearch. In LotuS-based analyses, 189 archaeal and 3894 bacterial OTUs were observed. The observed OTUs for the Usearch analysis were significantly larger than the LotuS results. We discovered 1495 OTUs for archaea and 92665 OTUs for bacteria using Usearch analysis. In addition, taxonomic assignments were made for the rumen microbial samples. All pipelines had consistent taxonomic annotations from the phylum to the genus level. A difference in relative abundance was calculated for all microbial levels, including Bacteroidetes (QIIME: 72.2%, Usearch: 74.09%), Firmicutes (QIIME: 18.3%, Usearch: 20.20%) for the bacterial phylum, Methanobacteriales (QIIME: 64.2%, Usearch: 45.7%) for the archaeal class, Methanobacteriaceae (QIIME: 35%, Usearch: 45.7%) and Methanomassiliicoccaceae (QIIME: 35%, Usearch: 31.13%) for archaeal family. However, the most prevalent archaeal class varied between these two annotation pipelines. The Thermoplasmata was the top class according to the QIIME annotation, whereas Methanobacteria was the top class according to Usearch.

Keywords: cattle rumen, rumen microbial, 16S rRNA gene sequencing, bioinformatics pipeline

Procedia PDF Downloads 88
3733 The Learning Loops in the Public Realm Project in South Verona: Air Quality and Noise Pollution Participatory Data Collection towards Co-Design, Planning and Construction of Mitigation Measures in Urban Areas

Authors: Massimiliano Condotta, Giovanni Borga, Chiara Scanagatta

Abstract:

Urban systems are places where the various actors involved interact and enter in conflict, in particular with reference to topics such as traffic congestion and security. But topics of discussion, and often clash because of their strong complexity, are air and noise pollution. For air pollution, the complexity stems from the fact that atmospheric pollution is due to many factors, but above all, the observation and measurement of the amount of pollution of a transparent, mobile and ethereal element like air is very difficult. Often the perceived condition of the inhabitants does not coincide with the real conditions, because it is conditioned - sometimes in positive ways other in negative ways - from many other factors such as the presence, or absence, of natural elements such as trees or rivers. These problems are seen with noise pollution as well, which is also less considered as an issue even if it’s problematic just as much as air quality. Starting from these opposite positions, it is difficult to identify and implement valid, and at the same time shared, mitigation solutions for the problem of urban pollution (air and noise pollution). The LOOPER (Learning Loops in the Public Realm) project –described in this paper – wants to build and test a methodology and a platform for participatory co-design, planning, and construction process inside a learning loop process. Novelties in this approach are various; the most relevant are three. The first is that citizens participation starts since from the research of problems and air quality analysis through a participatory data collection, and that continues in all process steps (design and construction). The second is that the methodology is characterized by a learning loop process. It means that after the first cycle of (1) problems identification, (2) planning and definition of design solution and (3) construction and implementation of mitigation measures, the effectiveness of implemented solutions is measured and verified through a new participatory data collection campaign. In this way, it is possible to understand if the policies and design solution had a positive impact on the territory. As a result of the learning process produced by the first loop, it will be possible to improve the design of the mitigation measures and start the second loop with new and more effective measures. The third relevant aspect is that the citizens' participation is carried out via Urban Living Labs that involve all stakeholder of the city (citizens, public administrators, associations of all urban stakeholders,…) and that the Urban Living Labs last for all the cycling of the design, planning and construction process. The paper will describe in detail the LOOPER methodology and the technical solution adopted for the participatory data collection and design and construction phases.

Keywords: air quality, co-design, learning loops, noise pollution, urban living labs

Procedia PDF Downloads 365
3732 Genetic Variation among the Wild and Hatchery Raised Populations of Labeo rohita Revealed by RAPD Markers

Authors: Fayyaz Rasool, Shakeela Parveen

Abstract:

The studies on genetic diversity of Labeo rohita by using molecular markers were carried out to investigate the genetic structure by RAPAD marker and the levels of polymorphism and similarity amongst the different groups of five populations of wild and farmed types. The samples were collected from different five locations as representatives of wild and hatchery raised populations. RAPAD data for Jaccard’s coefficient by following the un-weighted Pair Group Method with Arithmetic Mean (UPGMA) for Hierarchical Clustering of the similar groups on the basis of similarity amongst the genotypes and the dendrogram generated divided the randomly selected individuals of the five populations into three classes/clusters. The variance decomposition for the optimal classification values remained as 52.11% for within class variation, while 47.89% for the between class differences. The Principal Component Analysis (PCA) for grouping of the different genotypes from the different environmental conditions was done by Spearman Varimax rotation method for bi-plot generation of the co-occurrence of the same genotypes with similar genetic properties and specificity of different primers indicated clearly that the increase in the number of factors or components was correlated with the decrease in eigenvalues. The Kaiser Criterion based upon the eigenvalues greater than one, first two main factors accounted for 58.177% of cumulative variability.

Keywords: variation, clustering, PCA, wild, hatchery, RAPAD, Labeo rohita

Procedia PDF Downloads 449
3731 Seismic Hazard Prediction Using Seismic Bumps: Artificial Neural Network Technique

Authors: Belkacem Selma, Boumediene Selma, Tourkia Guerzou, Abbes Labdelli

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. The Earthquakes prediction to prevent the loss of human lives and even property damage is an important factor; that is why it is crucial to develop techniques for predicting this natural disaster. This present study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 10^4J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines has been analyzed. The results obtained show that the ANN with high accuracy was able to predict earthquake parameters; the classification accuracy through neural networks is more than 94%, and that the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: earthquake prediction, ANN, seismic bumps

Procedia PDF Downloads 127
3730 Identification System for Grading Banana in Food Processing Industry

Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan

Abstract:

In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.

Keywords: banana, food processing, identification system, neural network

Procedia PDF Downloads 471