Search results for: computing network control systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22526

Search results for: computing network control systems

19196 Control of Oxide and Silicon Loss during Exposure of Silicon Waveguide

Authors: Gu Zhonghua

Abstract:

Control method of bulk silicon dioxide etching process to approach then expose silicon waveguide has been developed. It has been demonstrated by silicon waveguide of photonics devices. It is also able to generalize other applications. Use plasma dry etching to etch bulk silicon dioxide and approach oxide-silicon interface accurately, then use dilute HF wet etching to etch silicon dioxide residue layer to expose the silicon waveguide as soft landing. Plasma dry etch macro loading effect and endpoint technology was used to determine dry etch time accurately with a low wafer expose ratio.

Keywords: waveguide, etch, control, silicon loss

Procedia PDF Downloads 414
19195 Using Dynamic Bayesian Networks to Characterize and Predict Job Placement

Authors: Xupin Zhang, Maria Caterina Bramati, Enrest Fokoue

Abstract:

Understanding the career placement of graduates from the university is crucial for both the qualities of education and ultimate satisfaction of students. In this research, we adapt the capabilities of dynamic Bayesian networks to characterize and predict students’ job placement using data from various universities. We also provide elements of the estimation of the indicator (score) of the strength of the network. The research focuses on overall findings as well as specific student groups including international and STEM students and their insight on the career path and what changes need to be made. The derived Bayesian network has the potential to be used as a tool for simulating the career path for students and ultimately helps universities in both academic advising and career counseling.

Keywords: dynamic bayesian networks, indicator estimation, job placement, social networks

Procedia PDF Downloads 379
19194 Logical-Probabilistic Modeling of the Reliability of Complex Systems

Authors: Sergo Tsiramua, Sulkhan Sulkhanishvili, Elisabed Asabashvili, Lazare Kvirtia

Abstract:

The paper presents logical-probabilistic methods, models, and algorithms for reliability assessment of complex systems, based on which a web application for structural analysis and reliability assessment of systems was created. It is important to design systems based on structural analysis, research, and evaluation of efficiency indicators. One of the important efficiency criteria is the reliability of the system, which depends on the components of the structure. Quantifying the reliability of large-scale systems is a computationally complex process, and it is advisable to perform it with the help of a computer. Logical-probabilistic modeling is one of the effective means of describing the structure of a complex system and quantitatively evaluating its reliability, which was the basis of our application. The reliability assessment process included the following stages, which were reflected in the application: 1) Construction of a graphical scheme of the structural reliability of the system; 2) Transformation of the graphic scheme into a logical representation and modeling of the shortest ways of successful functioning of the system; 3) Description of system operability condition with logical function in the form of disjunctive normal form (DNF); 4) Transformation of DNF into orthogonal disjunction normal form (ODNF) using the orthogonalization algorithm; 5) Replacing logical elements with probabilistic elements in ODNF, obtaining a reliability estimation polynomial and quantifying reliability; 6) Calculation of “weights” of elements of system. Using the logical-probabilistic methods, models and algorithms discussed in the paper, a special software was created, by means of which a quantitative assessment of the reliability of systems of a complex structure is produced. As a result, structural analysis of systems, research, and designing of optimal structure systems are carried out.

Keywords: complex systems, logical-probabilistic methods, orthogonalization algorithm, reliability of systems, “weights” of elements

Procedia PDF Downloads 66
19193 The Effect of Low and High Dose Curcumin Supplementation on Prevention and Treatment of Sarcopenia: The Concept of Hormesis

Authors: Sevana Daneghian, Leila Chodari, Sahar Mehranfar, Shadi Mohammadpour-Asl, Diman Mahdi

Abstract:

Sarcopenia is an age-related muscle disease. Lack of antioxidant protection, and cumulative oxidative damage to skeletal muscle are recognized mechanisms. Curcumin is a hormetin as it has a stimulating effect in low doses and an inhibitory effect in high doses. The purpose of this study was to examine the effects of four weeks of curcumin supplementation in presarcopenic and sarcopenic rats, and likelihood of potential negative effects while co-exist with sarcopenia. The rats were divided into 7 groups: young sham rats, 18 months old; presarcopenic control, supplemented with 400 and 1500 mg/kg/day, 24 months old; Sarcopenia control, sarcopenia supplemented with 400 and 1500 mg/kg/day. MDA levels were significantly reduced in the low-dose pre-sarcopenic group compared to the control group. Compared to the corresponding control groups, SOD levels decreased in the groups treated with low-dose presarcopenic supplementation and increased in the high-dose sarcopenic supplemented. GPx levels increased at both doses only in the sarcopenic group compared to the control group. SIRT-1 only increased at low doses in the sarcopenic groups and PGC-1α in both pre-sarcopenia groups compared to the corresponding control. IGF-1 increased compared to the control group at both doses in the pre-sarcopenic group and at high doses in sarcopenic group. Considering the hormetic effects of curcumin, it can be argued that, curcumin supplementation has some positive effects not only at low but also at high doses in both groups. This means that the high doses of curcumin have no negative synergistic effects in addition to oxidative stress during sarcopenia and high-dose supplementation in patients already suffering from high oxidative stress due to sarcopenia is safe and could be considered hormetic.

Keywords: curcumin, hormesis, sarcopenia, muscular atrophy, PGC protein, Sirtuins

Procedia PDF Downloads 40
19192 Artificial Neural Network Approach for Modeling and Optimization of Conidiospore Production of Trichoderma harzianum

Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Alejandro Tellez-Jurado, Juan C. Seck-Tuoh-Mora, Eva S. Hernandez-Gress, Norberto Hernandez-Romero, Iaina P. Medina-Serna

Abstract:

Trichoderma harzianum is a fungus that has been utilized as a low-cost fungicide for biological control of pests, and it is important to determine the optimal conditions to produce the highest amount of conidiospores of Trichoderma harzianum. In this work, the conidiospore production of Trichoderma harzianum is modeled and optimized by using Artificial Neural Networks (AANs). In order to gather data of this process, 30 experiments were carried out taking into account the number of hours of culture (10 distributed values from 48 to 136 hours) and the culture humidity (70, 75 and 80 percent), obtained as a response the number of conidiospores per gram of dry mass. The experimental results were used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers, and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The ANN with the best performance was chosen in order to simulate the process and be able to maximize the conidiospores production. The obtained ANN with the highest performance has 2 inputs and 1 output, three hidden layers with 3, 10 and 10 neurons in each layer, respectively. The ANN performance shows an R2 value of 0.9900, and the Root Mean Squared Error is 1.2020. This ANN predicted that 644175467 conidiospores per gram of dry mass are the maximum amount obtained in 117 hours of culture and 77% of culture humidity. In summary, the ANN approach is suitable to represent the conidiospores production of Trichoderma harzianum because the R2 value denotes a good fitting of experimental results, and the obtained ANN model was used to find the parameters to produce the biggest amount of conidiospores per gram of dry mass.

Keywords: Trichoderma harzianum, modeling, optimization, artificial neural network

Procedia PDF Downloads 160
19191 Numerical Simulation of Sloshing Control Using Input Shaping

Authors: Dongjoo Kim

Abstract:

Effective control of sloshing in a liquid container is an important issue to be resolved in many applications. In this study, numerical simulations are performed to design the velocity profile of rectangular container and investigate the effectiveness of input shaping for sloshing control. Trapezoidal profiles of container velocity are chosen to be reference commands and they are convolved with a series of impulses to generate shaped ones that induce minimal residual oscillations. The performances of several input shapers are compared from the viewpoint of transient peak and residual oscillations of sloshing. Results show that sloshing can be effectively controlled by input shaping (Supported by the NRF programs, NRF-2015R1D1A1A01059675, of Korean government).

Keywords: input shaping, rectangular container, sloshing, trapezoidal profile

Procedia PDF Downloads 260
19190 Effective Internal Control System in the Nasarawa State Tertiary Educational Institutions for Efficiency- A Case of Nasarawa State Polytechnic Lafia

Authors: Dauda Ibrahim Adagye

Abstract:

Effective internal control system in the bursary unit of tertiary educational institutions is geared toward achieving quality teaching, learning, and research environment and as well assist the management of the institutions, particularly when decisions are to be made. While internal control system exists in all institutions, the outlined objectives above are far from being achieved. The paper; therefore, assesses the effectiveness of internal control system in tertiary educational institutions in Nasarawa State, Nigeria with the specific focus on the Nasarawa state Polytechnic, Lafia. The study is survey; hence, a simple closed-ended questionnaire was developed and administered to a sample of twenty-seven (27) member staff from the Bursary and the internal audit unit of the Nasarawa State Polytechnic, Lafia to obtain data for analysis purposes and to test the study hypothesis. Responses from the questionnaire were analyzed using a simple percentage and chi-square. Findings shows that the right people are not assigned to the right job in the department, budget, and management accounting were never used in the institution’s operations and checking of subordinate by their superior officers is not regular. This renders the current internal control structure of the Polytechnic as ineffective and weak. The paper therefore, recommends that: transparency should be seen as significant, as the institution work toward meeting its objectives, therefore, it means that the right staff is assigned to the right job and regular checking of the subordinates by their ensued superiors.

Keywords: internal control, tertiary educational intuitions, efficiency

Procedia PDF Downloads 213
19189 Unsupervised Neural Architecture for Saliency Detection

Authors: Natalia Efremova, Sergey Tarasenko

Abstract:

We propose a novel neural network architecture for visual saliency detections, which utilizes neuro physiologically plausible mechanisms for extraction of salient regions. The model has been significantly inspired by recent findings from neuro physiology and aimed to simulate the bottom-up processes of human selective attention. Two types of features were analyzed: color and direction of maximum variance. The mechanism we employ for processing those features is PCA, implemented by means of normalized Hebbian learning and the waves of spikes. To evaluate performance of our model we have conducted psychological experiment. Comparison of simulation results with those of experiment indicates good performance of our model.

Keywords: neural network models, visual saliency detection, normalized Hebbian learning, Oja's rule, psychological experiment

Procedia PDF Downloads 348
19188 A Survey of Crowdsourcing Technology

Authors: Qianjia Cheng, Hongquan Jiang

Abstract:

Crowdsourcing solves the problems that computers can't handle by integrating computers and the Internet. Its extensive knowledge sources, high efficiency and high quality, make crowdsourcing attract wide attention in industry and academia in recent years. The development of online crowdsourcing platforms such as Clickworker and Amazon Mechanical Turk(Mturk) tend to mature gradually. This paper sorts out the concept of crowdsourcing, sorts out the workflow of competitive crowdsourcing, summarizes the related technologies of crowdsourcing based on the workflow, quality control, cost control and delay control, introduces the typical crowdsourcing platform. Finally, we highlight some open problems of the current crowdsourcing and present some future research direction in this area.

Keywords: application, crowdsourcing, crowdsourcing platform, system architecture

Procedia PDF Downloads 70
19187 Effects of Kinesio Taping on Postural Stability in Young Soccer Players

Authors: Mustafa Gulsen, Nihan Pekyavas, Emine Atıcı

Abstract:

Purpose: The aim of this study is to investigate the effects of Kinesio taping on postural stability and in young soccer players. Subjects and Methods: 62 volunteered soccer players from Cayyolu Sports Club were included in our study. Permissions were also taken from the club directors about the inclusion of their players to our study. Soccer players between the age of 12 and 16 were included in our study. Players that had previous injury on lower extremities were excluded from the study. Players were randomly divided into two groups: Kinesio taping (KT) (n=31), and control group (n = 31). KT application including gastrocnemius and quadriceps femoris muscle facilitation techniques were applied to the first group. A rest time for 45 minutes was given in order to see the best effectiveness of the tape. The second group was set as the control group and no application was made. All participants were assessed before the application and 45 minutes later. In order to provide the double-blind design of the study, an experienced physiotherapist has done the assessments and another experienced physiotherapist has done the taping. The patients were randomly assigned to one of the two groups using an online random allocation software program. Postural stability was assessed by using Tetrax Interactive Balance System. Thermographic assessment was done by using FLIR E5 (FLIR Systems AB, Sweden) thermal camera in order to see which muscles have the most thermal activity while maintaining postural stability. Results: Statistically significant differences were found in all assessment parameters in both Kinesio Taping and control groups (all p<0.05) except thermal imaging of dominant gastrocnemius muscle results (p=0.668) (Table 1). In comparison of the two groups, statistically significant differences were found in all parameters (all p<0.05). Conclusion: In this study, we investigated the effects of Kinesio taping on postural stability in young soccer players and found that KT application on Quadriceps and Gastrocnemius muscles may have decreased the risk of falling more than the control group. According to thermal imaging assessments, both Quadriceps and Gastrocnemius muscles may be active in maintaining postural stability but in KT group, the temperature of these muscles are higher which leads us to think that they are more activated.

Keywords: Kinesio taping, fall risk, muscle temperature, postural stability

Procedia PDF Downloads 241
19186 Network and Sentiment Analysis of U.S. Congressional Tweets

Authors: Chaitanya Kanakamedala, Hansa Pradhan, Carter Gilbert

Abstract:

Social media platforms, such as Twitter, are excellent datasets for understanding human interactions and sentiments. This report explores social dynamics among US Congressional members through a network analysis applied to a dataset of tweets spanning 2008 to 2017 from the ’US Congressional Tweets Dataset’. In this report, we preform network analysis where connections between users (edges) are established based on a similarity threshold: two tweets are connected if the tweets they post are similar. By utilizing the Natural Language Toolkit (NLTK) and NetworkX, we quantified tweet similarity and constructed a graph comprising various interconnected components. Each component represents a cluster of users with closely aligned content. We then preform sentiment analysis on each cluster to explore the prevalent emotions and opinions within these groups. Our findings reveal that despite the initial expectation of distinct ideological divisions typically aligning with party lines, the analysis exposed a high degree of topical convergence across tweets from different political affiliations. The analysis preformed in this report not only highlights the potential of social media as a tool for political communication but also suggests a complex layer of interaction that transcends traditional partisan boundaries, reflecting a complicated landscape of politics in the digital age.

Keywords: natural language processing, sentiment analysis, centrality analysis, topic modeling

Procedia PDF Downloads 35
19185 Participatory Air Quality Monitoring in African Cities: Empowering Communities, Enhancing Accountability, and Ensuring Sustainable Environments

Authors: Wabinyai Fidel Raja, Gideon Lubisa

Abstract:

Air pollution is becoming a growing concern in Africa due to rapid industrialization and urbanization, leading to implications for public health and the environment. Establishing a comprehensive air quality monitoring network is crucial to combat this issue. However, conventional methods of monitoring are insufficient in African cities due to the high cost of setup and maintenance. To address this, low-cost sensors (LCS) can be deployed in various urban areas through the use of participatory air quality network siting (PAQNS). PAQNS involves stakeholders from the community, local government, and private sector working together to determine the most appropriate locations for air quality monitoring stations. This approach improves the accuracy and representativeness of air quality monitoring data, engages and empowers community members, and reflects the actual exposure of the population. Implementing PAQNS in African cities can build trust, promote accountability, and increase transparency in the air quality management process. However, challenges to implementing this approach must be addressed. Nonetheless, improving air quality is essential for protecting public health and promoting a sustainable environment. Implementing participatory and data-informed air quality monitoring can take a significant step toward achieving these important goals in African cities and beyond.

Keywords: low-cost sensors, participatory air quality network siting, air pollution, air quality management

Procedia PDF Downloads 92
19184 Review: Wavelet New Tool for Path Loss Prediction

Authors: Danladi Ali, Abdullahi Mukaila

Abstract:

In this work, GSM signal strength (power) was monitored in an indoor environment. Samples of the GSM signal strength was measured on mobile equipment (ME). One-dimensional multilevel wavelet is used to predict the fading phenomenon of the GSM signal measured and neural network clustering to determine the average power received in the study area. The wavelet prediction revealed that the GSM signal is attenuated due to the fast fading phenomenon which fades about 7 times faster than the radio wavelength while the neural network clustering determined that -75dBm appeared more frequently followed by -85dBm. The work revealed that significant part of the signal measured is dominated by weak signal and the signal followed more of Rayleigh than Gaussian distribution. This confirmed the wavelet prediction.

Keywords: decomposition, clustering, propagation, model, wavelet, signal strength and spectral efficiency

Procedia PDF Downloads 448
19183 Land Cover Remote Sensing Classification Advanced Neural Networks Supervised Learning

Authors: Eiman Kattan

Abstract:

This study aims to evaluate the impact of classifying labelled remote sensing images conventional neural network (CNN) architecture, i.e., AlexNet on different land cover scenarios based on two remotely sensed datasets from different point of views such as the computational time and performance. Thus, a set of experiments were conducted to specify the effectiveness of the selected convolutional neural network using two implementing approaches, named fully trained and fine-tuned. For validation purposes, two remote sensing datasets, AID, and RSSCN7 which are publicly available and have different land covers features were used in the experiments. These datasets have a wide diversity of input data, number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in training, validation, and testing. As a result, the fully trained approach has achieved a trivial result for both of the two data sets, AID and RSSCN7 by 73.346% and 71.857% within 24 min, 1 sec and 8 min, 3 sec respectively. However, dramatic improvement of the classification performance using the fine-tuning approach has been recorded by 92.5% and 91% respectively within 24min, 44 secs and 8 min 41 sec respectively. The represented conclusion opens the opportunities for a better classification performance in various applications such as agriculture and crops remote sensing.

Keywords: conventional neural network, remote sensing, land cover, land use

Procedia PDF Downloads 370
19182 Reverse Logistics Network Optimization for E-Commerce

Authors: Albert W. K. Tan

Abstract:

This research consolidates a comprehensive array of publications from peer-reviewed journals, case studies, and seminar reports focused on reverse logistics and network design. By synthesizing this secondary knowledge, our objective is to identify and articulate key decision factors crucial to reverse logistics network design for e-commerce. Through this exploration, we aim to present a refined mathematical model that offers valuable insights for companies seeking to optimize their reverse logistics operations. The primary goal of this research endeavor is to develop a comprehensive framework tailored to advising organizations and companies on crafting effective networks for their reverse logistics operations, thereby facilitating the achievement of their organizational goals. This involves a thorough examination of various network configurations, weighing their advantages and disadvantages to ensure alignment with specific business objectives. The key objectives of this research include: (i) Identifying pivotal factors pertinent to network design decisions within the realm of reverse logistics across diverse supply chains. (ii) Formulating a structured framework designed to offer informed recommendations for sound network design decisions applicable to relevant industries and scenarios. (iii) Propose a mathematical model to optimize its reverse logistics network. A conceptual framework for designing a reverse logistics network has been developed through a combination of insights from the literature review and information gathered from company websites. This framework encompasses four key stages in the selection of reverse logistics operations modes: (1) Collection, (2) Sorting and testing, (3) Processing, and (4) Storage. Key factors to consider in reverse logistics network design: I) Centralized vs. decentralized processing: Centralized processing, a long-standing practice in reverse logistics, has recently gained greater attention from manufacturing companies. In this system, all products within the reverse logistics pipeline are brought to a central facility for sorting, processing, and subsequent shipment to their next destinations. Centralization offers the advantage of efficiently managing the reverse logistics flow, potentially leading to increased revenues from returned items. Moreover, it aids in determining the most appropriate reverse channel for handling returns. On the contrary, a decentralized system is more suitable when products are returned directly from consumers to retailers. In this scenario, individual sales outlets serve as gatekeepers for processing returns. Considerations encompass the product lifecycle, product value and cost, return volume, and the geographic distribution of returns. II) In-house vs. third-party logistics providers: The decision between insourcing and outsourcing in reverse logistics network design is pivotal. In insourcing, a company handles the entire reverse logistics process, including material reuse. In contrast, outsourcing involves third-party providers taking on various aspects of reverse logistics. Companies may choose outsourcing due to resource constraints or lack of expertise, with the extent of outsourcing varying based on factors such as personnel skills and cost considerations. Based on the conceptual framework, the authors have constructed a mathematical model that optimizes reverse logistics network design decisions. The model will consider key factors identified in the framework, such as transportation costs, facility capacities, and lead times. The authors have employed mixed LP to find the optimal solutions that minimize costs while meeting organizational objectives.

Keywords: reverse logistics, supply chain management, optimization, e-commerce

Procedia PDF Downloads 38
19181 Presenting a Model Based on Artificial Neural Networks to Predict the Execution Time of Design Projects

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

After feasibility study the design phase is started and the rest of other phases are highly dependent on this phase. forecasting the duration of design phase could do a miracle and would save a lot of time. This study provides a fast and accurate Machine learning (ML) and optimization framework, which allows a quick duration estimation of project design phase, hence improving operational efficiency and competitiveness of a design construction company. 3 data sets of three years composed of daily time spent for different design projects are used to train and validate the ML models to perform multiple projects. Our study concluded that Artificial Neural Network (ANN) performed an accuracy of 0.94.

Keywords: time estimation, machine learning, Artificial neural network, project design phase

Procedia PDF Downloads 97
19180 Effect of Entomopathogenic Fungi on the Food Consumption of Acrididae Species

Authors: S. Kumar, R. Sultana

Abstract:

This study was conducted to evaluate the effect of Aspergillus species on acridid populations which are major agricultural pests of rice, sugarcane, wheat, maize and fodder crops in Pakistan. Three and replicates i.e. Aspergillus flavus, A. fumigatus and A. niger, excluding the control, were held under laboratory conditions. It was observed that consumption faecal production of acridids was significantly reduced after the pathogenic application of Aspergillus. In the control replicate, the mortality ratio for stage (N4-N6) was maximum on day 2nd i.e. [F10.7 = 18.33, P < 0.05] followed by [F4.20 = 07.85, P < 0.05] and [F3.77 = 06.11, P < 0.05] on 4th and 3rd day, respectively. Similarly, it was a minimum i.e. [F0.48 = 84.65, P < 0.05] on the 1st day. It was also noted that faecal production of Acridid nymphs was not significantly affected when treated with conidial concentration in H2O formulation; however, it was significantly reduced after the contamination with conidial concentration in oil. The high morality of acridids after contamination of Aspergillus supports their use as bio-control agent for reducing pest population. The present study recommends that exploration and screening must be conducted to provide additional pathogens for evaluation as potential biological control against grasshoppers and locusts.

Keywords: acridid, agriculture, formulation, grasshoppers

Procedia PDF Downloads 258
19179 Designing a Patient Monitoring System Using Cloud and Semantic Web Technologies

Authors: Chryssa Thermolia, Ekaterini S. Bei, Stelios Sotiriadis, Kostas Stravoskoufos, Euripides G. M. Petrakis

Abstract:

Moving into a new era of healthcare, new tools and devices are developed to extend and improve health services, such as remote patient monitoring and risk prevention. In this concept, Internet of Things (IoT) and Cloud Computing present great advantages by providing remote and efficient services, as well as cooperation between patients, clinicians, researchers and other health professionals. This paper focuses on patients suffering from bipolar disorder, a brain disorder that belongs to a group of conditions called effective disorders, which is characterized by great mood swings.We exploit the advantages of Semantic Web and Cloud Technologies to develop a patient monitoring system to support clinicians. Based on intelligently filtering of evidence-knowledge and individual-specific information we aim to provide treatment notifications and recommended function tests at appropriate times or concluding into alerts for serious mood changes and patient’s non-response to treatment. We propose an architecture, as the back-end part of a cloud platform for IoT, intertwining intelligence devices with patients’ daily routine and clinicians’ support.

Keywords: bipolar disorder, intelligent systems patient monitoring, semantic web technologies, healthcare

Procedia PDF Downloads 509
19178 Assessing the Environmental Efficiency of China’s Power System: A Spatial Network Data Envelopment Analysis Approach

Authors: Jianli Jiang, Bai-Chen Xie

Abstract:

The climate issue has aroused global concern. Achieving sustainable development is a good path for countries to mitigate environmental and climatic pressures, although there are many difficulties. The first step towards sustainable development is to evaluate the environmental efficiency of the energy industry with proper methods. The power sector is a major source of CO2, SO2, and NOx emissions. Evaluating the environmental efficiency (EE) of power systems is the premise to alleviate the terrible situation of energy and the environment. Data Envelopment Analysis (DEA) has been widely used in efficiency studies. However, measuring the efficiency of a system (be it a nation, region, sector, or business) is a challenging task. The classic DEA takes the decision-making units (DMUs) as independent, which neglects the interaction between DMUs. While ignoring these inter-regional links may result in a systematic bias in the efficiency analysis; for instance, the renewable power generated in a certain region may benefit the adjacent regions while the SO2 and CO2 emissions act oppositely. This study proposes a spatial network DEA (SNDEA) with a slack measure that can capture the spatial spillover effects of inputs/outputs among DMUs to measure efficiency. This approach is used to study the EE of China's power system, which consists of generation, transmission, and distribution departments, using a panel dataset from 2014 to 2020. In the empirical example, the energy and patent inputs, the undesirable CO2 output, and the renewable energy (RE) power variables are tested for a significant spatial spillover effect. Compared with the classic network DEA, the SNDEA result shows an obvious difference tested by the global Moran' I index. From a dynamic perspective, the EE of the power system experiences a visible surge from 2015, then a sharp downtrend from 2019, which keeps the same trend with the power transmission department. This phenomenon benefits from the market-oriented reform in the Chinese power grid enacted in 2015. The rapid decline in the environmental efficiency of the transmission department in 2020 was mainly due to the Covid-19 epidemic, which hinders economic development seriously. While the EE of the power generation department witnesses a declining trend overall, this is reasonable, taking the RE power into consideration. The installed capacity of RE power in 2020 is 4.40 times that in 2014, while the power generation is 3.97 times; in other words, the power generation per installed capacity shrank. In addition, the consumption cost of renewable power increases rapidly with the increase of RE power generation. These two aspects make the EE of the power generation department show a declining trend. Incorporation of the interactions among inputs/outputs into the DEA model, this paper proposes an efficiency evaluation method on the basis of the DEA framework, which sheds some light on efficiency evaluation in regional studies. Furthermore, the SNDEA model and the spatial DEA concept can be extended to other fields, such as industry, country, and so on.

Keywords: spatial network DEA, environmental efficiency, sustainable development, power system

Procedia PDF Downloads 109
19177 Long-Term Structural Behavior of Resilient Materials for Reduction of Floor Impact Sound

Authors: Jung-Yoon Lee, Jongmun Kim, Hyo-Jun Chang, Jung-Min Kim

Abstract:

People’s tendency towards living in apartment houses is increasing in a densely populated country. However, some residents living in apartment houses are bothered by noise coming from the houses above. In order to reduce noise pollution, the communities are increasingly imposing a bylaw, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused on the specific long-time deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program consisted of testing nine floor sound insulation specimens subjected to sustained load for 45 days. Two main parameters were considered in the experimental investigation: three types of resilient materials and magnitudes of loads. The test results indicated that the structural behavior of the floor sound insulation systems under long-time load was quite different from that the systems under short-time load. The loading period increased the deflection of floor sound insulation systems and the increasing rate of the long-time deflection of the systems with ethylene vinyl acetate was smaller than that of the systems with low density ethylene polystyrene.

Keywords: resilient materials, floor sound insulation systems, long-time deflection, sustained load, noise pollution

Procedia PDF Downloads 268
19176 Kalman Filter for Bilinear Systems with Application

Authors: Abdullah E. Al-Mazrooei

Abstract:

In this paper, we present a new kind of the bilinear systems in the form of state space model. The evolution of this system depends on the product of state vector by its self. The well known Lotak Volterra and Lorenz models are special cases of this new model. We also present here a generalization of Kalman filter which is suitable to work with the new bilinear model. An application to real measurements is introduced to illustrate the efficiency of the proposed algorithm.

Keywords: bilinear systems, state space model, Kalman filter, application, models

Procedia PDF Downloads 441
19175 Molecular Motors in Smart Drug Delivery Systems

Authors: Ainoa Guinart, Maria Korpidou, Daniel Doellerer, Cornelia Palivan, Ben L. Feringa

Abstract:

Stimuli responsive systems arise from the need to meet unsolved needs of current molecular drugs. Our study presents the design of a delivery system with high spatiotemporal control and tuneable release profiles. We study the incorporation of a hydrophobic synthetic molecular motor into PDMS-b-PMOXA block copolymer vesicles to create a self-assembled system. We prove their successful incorporation and selective activation by low powered visible light (λ 430 nm, 6.9 mW). We trigger the release of a fluorescent dye with high release efficiencies over sequential cycles (up to 75%) with the ability to turn on and off the release behaviour on demand by light irradiation. Low concentrations of photo-responsive units are proven to trigger release down to 1 mol% of molecular motor. Finally, we test our system in relevant physiological conditions using a lung cancer cell line and the encapsulation of an approved drug. Similar levels of cell viability are observed compared to the free-given drugshowing the potential of our platform to deliver functional drugs on demand with the same efficiency and lower toxicity.

Keywords: molecular motor, polymer, drug delivery, light-responsive, cancer, selfassembly

Procedia PDF Downloads 135
19174 Artificial Intelligence Based Meme Generation Technology for Engaging Audience in Social Media

Authors: Andrew Kurochkin, Kostiantyn Bokhan

Abstract:

In this study, a new meme dataset of ~650K meme instances was created, a technology of meme generation based on the state of the art deep learning technique - GPT-2 model was researched, a comparative analysis of machine-generated memes and human-created was conducted. We justified that Amazon Mechanical Turk workers can be used for the approximate estimating of users' behavior in a social network, more precisely to measure engagement. It was shown that generated memes cause the same engagement as human memes that produced low engagement in the social network (historically). Thus, generated memes are less engaging than random memes created by humans.

Keywords: content generation, computational social science, memes generation, Reddit, social networks, social media interaction

Procedia PDF Downloads 138
19173 Highly Concentrated Photo Voltaic using Multi-Junction Concentrator Cell

Authors: Oriahi Love Ndidi

Abstract:

High concentration photovoltaic promises a more efficient, higher power output than traditional photovoltaic modules. One of the driving forces of this high system efficiency has been the continuous improvement of III-V multi-junction solar cell efficiencies. Multi-junction solar cells built from III-V semiconductors are being evaluated globally in concentrated photovoltaic systems designed to supplement electricity generation for utility companies. The high efficiency of this III-V multi-junction concentrator cells, with demonstrated efficiency over 40 percent since 2006, strongly reduces the cost of concentrated photovoltaic systems, and makes III-V multi-junction cells the technology of choice for most concentrator systems today.

Keywords: cost of multi-junction solar cell, efficiency, photovoltaic systems, reliability

Procedia PDF Downloads 725
19172 Efficient Video Compression Technique Using Convolutional Neural Networks and Generative Adversarial Network

Authors: P. Karthick, K. Mahesh

Abstract:

Video has become an increasingly significant component of our digital everyday contact. With the advancement of greater contents and shows of the resolution, its significant volume poses serious obstacles to the objective of receiving, distributing, compressing, and revealing video content of high quality. In this paper, we propose the primary beginning to complete a deep video compression model that jointly upgrades all video compression components. The video compression method involves splitting the video into frames, comparing the images using convolutional neural networks (CNN) to remove duplicates, repeating the single image instead of the duplicate images by recognizing and detecting minute changes using generative adversarial network (GAN) and recorded with long short-term memory (LSTM). Instead of the complete image, the small changes generated using GAN are substituted, which helps in frame level compression. Pixel wise comparison is performed using K-nearest neighbours (KNN) over the frame, clustered with K-means, and singular value decomposition (SVD) is applied for each and every frame in the video for all three color channels [Red, Green, Blue] to decrease the dimension of the utility matrix [R, G, B] by extracting its latent factors. Video frames are packed with parameters with the aid of a codec and converted to video format, and the results are compared with the original video. Repeated experiments on several videos with different sizes, duration, frames per second (FPS), and quality results demonstrate a significant resampling rate. On average, the result produced had approximately a 10% deviation in quality and more than 50% in size when compared with the original video.

Keywords: video compression, K-means clustering, convolutional neural network, generative adversarial network, singular value decomposition, pixel visualization, stochastic gradient descent, frame per second extraction, RGB channel extraction, self-detection and deciding system

Procedia PDF Downloads 187
19171 High Resolution Image Generation Algorithm for Archaeology Drawings

Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu

Abstract:

Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.

Keywords: archaeology drawings, digital heritage, image generation, deep learning

Procedia PDF Downloads 59
19170 Food Sovereignty as Local Resistance to Unequal Access to Food and Natural Resources in Latin America: A Gender Perspective

Authors: Ana Alvarenga De Castro

Abstract:

Food sovereignty has been brought by the international peasants’ movement, La Via Campesina, as a precondition to food security, speaking about the right of each nation to keep its own supply of foods respecting cultural, sustainable practices and productive diversity. The political conceptualization nowadays goes beyond saying that this term is about achieving the rights of farmers to control the food systems according to local specificities, and about equality in the access to natural resources and quality food. The current feminization of agroecosystems and of food insecurity identified by researchers and recognized by international agencies like the UN and FAO has enhanced the feminist discourse into the food sovereignty movement, considering the historical inequalities that place women farmers in subaltern positions inside the families and rural communities. The current tendency in many rural areas of more women taking responsibility for food production and still facing the lack of access to natural resources meets particular aspects in Latin America due to the global economic logic which places the Global South in the position of raw material supplier for the industrialized North, combined with regional characteristics. In this context, Latin American countries play the role of commodities exporters in the international labor division, including among exported items grains, soybean paste, and ores, to the expense of local food chains which provide domestic quality food supply under more sustainable practices. The connections between gender inequalities and global territorial inequalities related to the access and control of food and natural resources are pointed out by feminist political ecology - FPE - authors, and are linked in this article to the potentialities and limitations of women farmers to reproduce diversified agroecosystems in the tropical environments. The work brings the importance of local practices held by women farmers which are crucial to maintaining sustainable agricultural systems and their results on seeds, soil, biodiversity and water conservation. This work presents an analysis of documents, releases, videos and other publicized experiences launched by some peasants’ organizations in Latin America which evidence the different technical and political answers that meet food sovereignty from peasants’ groups that are attributed to women farmers. They are associated with articles presenting the empirical analysis of women farmers' practices in Latin America. The combination drove to discuss the benefits of peasants' conceptions about food systems and their connections with local realities and the gender issues linked to the food sovereignty conceptualization. Conclusion meets that reality on the field cannot reach food sovereignty's ideal homogeneously and that agricultural sustainable practices are dependent on rights' achievement and social inequalities' eradication.

Keywords: food sovereignty, gender, diversified agricultural systems, access to natural resources

Procedia PDF Downloads 248
19169 Growth of Nitella in Response to Cesium Exposure: Implication for Phytoremediation

Authors: Harun Rashid, Keerthi S. S. Atapaththu, Takashi Asaeda

Abstract:

Cesium (Cs) induced growth and stress response of Nitella were studied after exposure to four concentration of the metal; i.e. 0 (control), 0.001, 0.01, and 0.1 ppm Cs in growth media. Each treatment with three replicates were randomly allocated to 12 glass beakers in a complete randomize design and the experiment was continued for 30 days. At the end of the experiment, shoot length, cesium content, total chlorophyll, and plant stress response were compared. Anti-oxidant enzyme activities (peroxidase, catalase, and ascorbic peroxidase) and the concentration of H2O2 were measured to check plant stress. The longest shoot was found in control treatment (0 ppm Cs) and the shoot length of plants exposed to 0.001 ppm was statistically similar to that of control. Concentration of cesium in plants grown at 0.001, 0.01, and 0.1 ppm were significantly higher than those in control treatments. The antioxidant enzymes activities of plants exposed to cesium were significantly higher than those grown without any Cs (control). An elevated level of H2O2 concentration was also observed in former groups of plants. Further, the reduction in chlorophyll concentration and chlorophyll fluorescence in response to cesium exposure indicated the chronically damaged photosynthetic efficiency in cesium stressed Nitella.

Keywords: antioxidant enzymes, cesium, growth, Nitella, oxidative stress

Procedia PDF Downloads 427
19168 Qualitative Risk Assessment of Rift Valley Fever Vaccine Production

Authors: Mohammed E. Mansour, Tamador M. A. Elhassan, Nahid A. Ibrahim, Awatif A. Ahmed, Manal A. Abdalla

Abstract:

Rift valley fever (RVF) is mosquito-borne disease. RVF is transboundary zoonotic disease. It has socioeconomic and public health importance. This paper describes qualitative risk of the RVF vaccine production. RVF is endemic in the Sudan. It has been reported in Sudan due to abundance of Ades Eqytie. Thus, there is huge effort to control it. Vaccination practices had significant role to control and manage RVF. The risk assessment explains the likelihood of a risk as likely. Thus, insecticides and repellents synergize the effort of the vaccination.

Keywords: qualitative analysis, risk assessment, rift valley fever vaccine, quality control

Procedia PDF Downloads 512
19167 The Impact of Blended Learning on Developing the students' Writing Skills and the Perception of Instructors and Students: Hawassa University in Focus

Authors: Mulu G. Gencha, Gebremedhin Simon, Menna Olango

Abstract:

This study was conducted at Hawassa University (HwU) in the Southern Nation Nationalities Peoples Regional State (SNNPRS) of Ethiopia. The prime concern of this study was to examine the writing performances of experimental and control group students, perception of experimental group students, and subject instructors. The course was blended learning (BL). Blended learning is a hybrid of classroom and on-line learning. Participants were eighty students from the School of Computer Science. Forty students attended the BL delivery involved using Face-to-Face (FTF) and campus-based online instruction. All instructors, fifty, of School of Language and Communication Studies along with 10 FGD members participated in the study. The experimental group went to the computer lab two times a week for four months, March-June, 2012, using the local area network (LAN), and software (MOODLE) writing program. On the other hand, the control group, forty students, took the FTF writing course five times a week for four months in similar academic calendar. The three instruments, the attitude questionnaire, tests and FGD were designed to identify views of students, instructors, and FGD participants on BL. At the end of the study, students’ final course scores were evaluated. Data were analyzed using independent samples t-tests. A statistically, significant difference was found between the FTF and BL (p<0.05). The analysis showed that the BL group was more successful than the conventional group. Besides, both instructors and students had positive attitude towards BL. The final section of the thesis showed the potential benefits and challenges, considering the pedagogical implications for the BL, and recommended possible avenues for further works.

Keywords: blended learning, computer attitudes, computer usefulness, computer liking, computer confidence, computer phobia

Procedia PDF Downloads 410