Search results for: water losses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9584

Search results for: water losses

6284 Adsorption of Dyes and Iodine: Reaching Outstanding Kinetics with CuII-Based Metal–Organic Nanoballs

Authors: Eder Amayuelas, Begoña Bazán, M. Karmele Urtiaga, Gotzone Barandika, María I. Arriortua

Abstract:

Metal Organic Frameworks (MOFs) have attracted great interest in recent years, taking a lead role in the field of catalysis, drug delivery, sensors and absorption. In the past decade, promising results have been reported specifically in the field of adsorption, based on the topology and chemical features of this type of porous material. Thus, its application in industry and environment for the adsorption of pollutants is presented as a response to an increasingly important need. In this area, organic dyes are nowadays widely used in many industries including medicine, textile, leather, printing and plastics. The consequence of this fact is that dyes are present as emerging pollutants in soils and water where they remain for long periods of time due to their high stability, with a potential risk of toxicity in wildlife and in humans. On the other hand, the presence of iodine in soils, water and gas as a nuclear activity pollutant product or its extended use as a germicide is still a problem in many countries, which indicates the imperative need for its removal. In this context, this work presents the characterization as an adsorbent of the activated compound αMOP@Ei2-1 obtained from the already reported [Cu₂₄(m-BDC)₂₄(DMF)₂₀(H₂O)₄]•24DMF•40H₂O (MOP@Ei2-1), where m-BDC is the 1,3-benzenedicarboxylic ligand and DMF is N,N′-dimethylformamide. The structure of MOP@Ei2-1 consists of Cu24 clusters arranged in such a way that 12 paddle-wheels are connected through m-BDC ligands. The clusters exhibit an internal cavity where crystallization molecules of DMF and water are located. Adsorption of dyes and iodine as pollutant examples has been carried out, focusing attention on the kinetics of the rapid process.

Keywords: adsorption, organic dyes, iodine, metal organic frameworks

Procedia PDF Downloads 276
6283 Statistical Analysis and Optimization of a Process for CO2 Capture

Authors: Muftah H. El-Naas, Ameera F. Mohammad, Mabruk I. Suleiman, Mohamed Al Musharfy, Ali H. Al-Marzouqi

Abstract:

CO2 capture and storage technologies play a significant role in contributing to the control of climate change through the reduction of carbon dioxide emissions into the atmosphere. The present study evaluates and optimizes CO2 capture through a process, where carbon dioxide is passed into pH adjusted high salinity water and reacted with sodium chloride to form a precipitate of sodium bicarbonate. This process is based on a modified Solvay process with higher CO2 capture efficiency, higher sodium removal, and higher pH level without the use of ammonia. The process was tested in a bubble column semi-batch reactor and was optimized using response surface methodology (RSM). CO2 capture efficiency and sodium removal were optimized in terms of major operating parameters based on four levels and variables in Central Composite Design (CCD). The operating parameters were gas flow rate (0.5–1.5 L/min), reactor temperature (10 to 50 oC), buffer concentration (0.2-2.6%) and water salinity (25-197 g NaCl/L). The experimental data were fitted to a second-order polynomial using multiple regression and analyzed using analysis of variance (ANOVA). The optimum values of the selected variables were obtained using response optimizer. The optimum conditions were tested experimentally using desalination reject brine with salinity ranging from 65,000 to 75,000 mg/L. The CO2 capture efficiency in 180 min was 99% and the maximum sodium removal was 35%. The experimental and predicted values were within 95% confidence interval, which demonstrates that the developed model can successfully predict the capture efficiency and sodium removal using the modified Solvay method.

Keywords: CO2 capture, water desalination, Response Surface Methodology, bubble column reactor

Procedia PDF Downloads 287
6282 Evaluation of Agricultural Drought Impact in the Crop Productivity of East Gojjam Zone

Authors: Walelgn Dilnesa Cherie, Fasikaw Atanaw Zimale, Bekalu W. Asres

Abstract:

The most catastrophic condition for agricultural production is a drought event, which is also one of the most hydro-metrological-related hazards. According to the combined susceptibility of plants to meteorological and hydrological conditions, agricultural drought is defined as the magnitude, severity, and duration of a drought that affects crop production. The accurate and timely assessment of agricultural drought can lead to the development of risk management strategies, appropriate proactive mechanisms for the protection of farmers, and the improvement of food security. The evaluation of agricultural drought in the East Gojjam zone was the primary subject of this study. To identify the agricultural drought, soil moisture anomalies, soil moisture deficit indices, and Normalized Difference Vegetation Indices (NDVI) are used. The measured welting point, field capacity, and soil moisture were utilized to validate the soil water deficit indices computed from the satellite data. The soil moisture and soil water deficit indices in 2013 in all woredas were minimum; this makes vegetation stress also in all woredas. The soil moisture content decreased in 2013/2014/2019, and 2021 in Dejen, 2014, and 2019 in Awobel Woreda. The max/ min values of NDVI in 2013 are minimum; it dominantly shows vegetation stress and an observed agricultural drought that happened in all woredas. The validation process of satellite and in-situ soil moisture and soil water deficit indices shows a good agreement with a value of R²=0.87 and 0.56, respectively. The study area becomes drought detected region, so government officials, policymakers, and environmentalists pay attention to the protection of drought effects.

Keywords: NDVI, agricultural drought, SWDI, soil moisture

Procedia PDF Downloads 86
6281 Different Response of Pure Arctic Char Salvelinus alpinus and Hybrid (Salvelinus alpinus vs. Salvelinus fontinalis Mitchill) to Various Hyperoxic Regimes

Authors: V. Stejskal, K. Lundova, R. Sebesta, T. Vanina, S. Roje

Abstract:

Pure strain of Arctic char (AC) Salvelinus alpinus and hybrid (HB) Salvelinus alpinus vs. Salvelinus fontinalis Mitchill belong to fish, which with great potential for culture in recirculating aquaculture systems (RAS). Aquaculture of these fish currently use flow-through systems (FTS), especially in Nordic countries such as Iceland (biggest producer), Norway, Sweden, and Canada. Four different water saturation regimes included normoxia (NOR), permanent hyperoxia (HYP), intermittent hyperoxia (HYP ± ) and regimes where one day of normoxia was followed by one day of hyperoxia (HYP1/1) were tested during 63 days of experiment in both species in two parallel experiments. Fish were reared in two identical RAS system consisted of 24 plastic round tanks (300 L each), drum filter, biological filter with moving beads and submerged biofilter. The temperature was maintained using flow-through cooler during at level of 13.6 ± 0.8 °C. Different water saturation regimes were achieved by mixing of pure oxygen (O₂) with water in three (one for each hyperoxic regime) mixing tower equipped with flowmeter for regulation of gas inflow. The water in groups HYP, HYP1/1 and HYP± was enriched with oxygen up to saturation of 120-130%. In HYP group was this level kept during whole day. In HYP ± group was hyperoxia kept for daylight phase (08:00-20:00) only and during night time was applied normoxia in this group. The oxygen saturation of 80-90% in NOR group was created using intensive aeration in header tank. The fish were fed with commercial feed to slight excess at 2 h intervals within the light phase of the day. Water quality parameters like pH, temperature and level of oxygen was monitoring three times (7 am, 10 am and 6 pm) per day using handy multimeter. Ammonium, nitrite and nitrate were measured in two day interval using spectrophotometry. Initial body weight (BW) was 40.9 ± 8.7 g and 70.6 ± 14.8 in AC and HB group, respectively. Final survival of AC ranged from 96.3 ± 4.6 (HYP) to 100 ± 0.0% in all other groups without significant differences among these groups. Similarly very high survival was reached in trial with HB with levels from 99.2 ± 1.3 (HYP, HYP1/1 and NOR) to 100 ± 0.0% (HYP ± ). HB fish showed best growth performance in NOR group reached final body weight (BW) 180.4 ± 2.3 g. Fish growth under different hyperoxic regimes was significantly reduced and final BW was 164.4 ± 7.6, 162.1 ± 12.2 and 151.7 ± 6.8 g in groups HY1/1, HYP ± and HYP, respectively. AC showed different preference for hyperoxic regimes as there were no significant difference in BW among NOR, HY1/1 and HYP± group with final values of 72.3 ± 11.3, 68.3 ± 8.4 and 77.1 ± 6.1g. Significantly reduced growth (BW 61.8 ± 6.8 g) was observed in HYP group. It is evident from present study that there are differences between pure bred Arctic char and hybrid in relation to hyperoxic regimes. The study was supported by projects 'CENAKVA' (No. CZ.1.05/2.1.00/01.0024), 'CENAKVA II' (No. LO1205 under the NPU I program), NAZV (QJ1510077) and GAJU (No. 060/2016/Z).

Keywords: recirculating aquaculture systems, Salmonidae, hyperoxia, abiotic factors

Procedia PDF Downloads 182
6280 Quality Characteristics of Road Runoff in Coastal Zones: A Case Study in A25 Highway, Portugal

Authors: Pedro B. Antunes, Paulo J. Ramísio

Abstract:

Road runoff is a linear source of diffuse pollution that can cause significant environmental impacts. During rainfall events, pollutants from both stationary and mobile sources, which have accumulated on the road surface, are dragged through the superficial runoff. Road runoff in coastal zones may present high levels of salinity and chlorides due to the proximity of the sea and transported marine aerosols. Appearing to be correlated to this process, organic matter concentration may also be significant. This study assesses this phenomenon with the purpose of identifying the relationships between monitored water quality parameters and intrinsic site variables. To achieve this objective, an extensive monitoring program was conducted on a Portuguese coastal highway. The study included thirty rainfall events, in different weather, traffic and salt deposition conditions in a three years period. The evaluations of various water quality parameters were carried out in over 200 samples. In addition, the meteorological, hydrological and traffic parameters were continuously measured. The salt deposition rates (SDR) were determined by means of a wet candle device, which is an innovative feature of the monitoring program. The SDR, variable throughout the year, appears to show a high correlation with wind speed and direction, but mostly with wave propagation, so that it is lower in the summer, in spite of the favorable wind direction in the case study. The distance to the sea, topography, ground obstacles and the platform altitude seems to be also relevant. It was confirmed the high salinity in the runoff, increasing the concentration of the water quality parameters analyzed, with significant amounts of seawater features. In order to estimate the correlations and patterns of different water quality parameters and variables related to weather, road section and salt deposition, the study included exploratory data analysis using different techniques (e.g. Pearson correlation coefficients, Cluster Analysis and Principal Component Analysis), confirming some specific features of the investigated road runoff. Significant correlations among pollutants were observed. Organic matter was highlighted as very dependent of salinity. Indeed, data analysis showed that some important water quality parameters could be divided into two major clusters based on their correlations to salinity (including organic matter associated parameters) and total suspended solids (including some heavy metals). Furthermore, the concentrations of the most relevant pollutants seemed to be very dependent on some meteorological variables, particularly the duration of the antecedent dry period prior to each rainfall event and the average wind speed. Based on the results of a monitoring case study, in a coastal zone, it was proven that SDR, associated with the hydrological characteristics of road runoff, can contribute for a better knowledge of the runoff characteristics, and help to estimate the specific nature of the runoff and related water quality parameters.

Keywords: coastal zones, monitoring, road runoff pollution, salt deposition

Procedia PDF Downloads 239
6279 Heat and Mass Transfer in MHD Flow of Nanofluids through a Porous Media Due to a Permeable Stretching Sheet with Viscous Dissipation and Chemical Reaction Effects

Authors: Yohannes Yirga, Daniel Tesfay

Abstract:

The convective heat and mass transfer in nanofluid flow through a porous media due to a permeable stretching sheet with magnetic field, viscous dissipation, and chemical reaction and Soret effects are numerically investigated. Two types of nanofluids, namely Cu-water and Ag-water were studied. The governing boundary layer equations are formulated and reduced to a set of ordinary differential equations using similarity transformations and then solved numerically using the Keller box method. Numerical results are obtained for the skin friction coefficient, Nusselt number and Sherwood number as well as for the velocity, temperature and concentration profiles for selected values of the governing parameters. Excellent validation of the present numerical results has been achieved with the earlier linearly stretching sheet problems in the literature.

Keywords: heat and mass transfer, magnetohydrodynamics, nanofluid, fluid dynamics

Procedia PDF Downloads 291
6278 Protein and Mineral Removal from Dairy Waste-Water Using Precipitation Process

Authors: Zahra Akbari, Farzin Zokaee, Talat Ghomashchi

Abstract:

Whey is a by-product of the dairy industry whose major components are lactose (44–52 g/L), proteins (6–8 g/L) and mineral salts (4–9 g/L). Approximately 50% of 121 million tons of whey produced in the world in 1993 were disposed into rivers, lakes or other water bodies, treated in wastewater treatment plants or loaded onto land. This represents a significant loss of resources and causes serious pollution problems since whey is a heavy organic pollutant with high COD and BOD values, 40–60 g/L and 50–80 g/L, respectively. The removal of cheese whey proteins and minerals represent an important task both in environmental and in food sciences. The most important treatments which are considered in this study, have been done by using lime, Al2O3, FeCl3 and AlCl3 along with heating and also acidic-alkaline method. Results show that the best way for removal of protein is accomplished with adding HCl to decrease pH from 6 to 4, boiling for 20 min, and filtering protein aggregates. Also partial demineralization in whey solution for reducing ash is accomplished by adding NaOH to increase pH to 7.2 and heating solution for 20 min.

Keywords: whey treatment, dairy industry, precipitation, protein, mineral

Procedia PDF Downloads 415
6277 Amino Acid Responses of Wheat Cultivars under Glasshouse Drought Accurately Predict Yield-Based Drought Tolerance in the Field

Authors: Arun K. Yadav, Adam J. Carroll, Gonzalo M. Estavillo, Greg J. Rebetzke, Barry J. Pogson

Abstract:

Water limits crop productivity, so selecting for minimal yield-gap in drier environments is critical to mitigate against climate change and land-use pressures. To date, no markers measured in glasshouses have been reported to predict field-based drought tolerance. In the field, the best measure of drought tolerance is yield-gap; but this requires multisite trials that are an order of magnitude more resource intensive and can be impacted by weather variation. We investigated the responses of relative water content (RWC), stomatal conductance (gs), chlorophyll content and metabolites in flag leaves of commercial wheat (Triticum aestivum L.) cultivars to three drought treatments in the glasshouse and field environments. We observed strong genetic associations between glasshouse-based RWC, metabolites and Yield gap-based Drought Tolerance (YDT): the ratio of yield in water-limited versus well-watered conditions across 24 field environments spanning sites and seasons. Critically, RWC response to glasshouse drought was strongly associated with both YDT (r2 = 0.85, p < 8E-6) and RWC under field drought (r2 = 0.77, p < 0.05). Multiple regression analyses revealed that 98% of genetic YDT variance was explained by drought responses of four metabolites: serine, asparagine, methionine and lysine (R2 = 0.98; p < 0.01). Fitted coefficients suggested that, for given levels of serine and asparagine, stronger methionine and lysine accumulation was associated with higher YDT. Collectively, our results demonstrate that high-throughput, targeted metabolic phenotyping of glasshouse-grown plants may be an effective tool for the selection of wheat cultivars with high YDT in the field.

Keywords: drought stress, grain yield, metabolomics, stomatal conductance, wheat

Procedia PDF Downloads 266
6276 Grid-Connected Photovoltaic System: System Overview and Sizing Principles

Authors: Najiya Omar, Hamed Aly, Timothy Little

Abstract:

The optimal size of a photovoltaic (PV) array is considered a critical factor in designing an efficient PV system due to the dependence of the PV cell performance on temperature. A high temperature can lead to voltage losses of solar panels, whereas a low temperature can cause voltage overproduction. There are two possible scenarios of the inverter’s operation in which they are associated with the erroneous calculations of the number of PV panels: 1) If the number of the panels is scant and the temperature is high, the minimum voltage required to operate the inverter will not be reached. As a result, the inverter will shut down. 2) Comparably, if the number of panels is excessive and the temperature is low, the produced voltage will be more than the maximum limit of the inverter which can cause the inverter to get disconnected or even damaged. This article aims to assess theoretical and practical methodologies to calculate size and determine the topology of a PV array. The results are validated by applying an experimental evaluation for a 100 kW Grid-connected PV system for a location in Halifax, Nova Scotia and achieving a satisfactory system performance compared to the previous work done.

Keywords: sizing PV panels, theoretical and practical methodologies, topology of PV array, grid-connected PV

Procedia PDF Downloads 365
6275 Investigating the Effects of Thermal and Surface Energy on the Two-Dimensional Flow Characteristics of Oil in Water Mixture between Two Parallel Plates: A Lattice Boltzmann Method Study

Authors: W. Hasan, H. Farhat

Abstract:

A hybrid quasi-steady thermal lattice Boltzmann model was used to study the combined effects of temperature and contact angle on the movement of slugs and droplets of oil in water (O/W) system flowing between two parallel plates. The model static contact angle due to the deposition of the O/W droplet on a flat surface with simulated hydrophilic characteristic at different fluid temperatures, matched very well the proposed theoretical calculation. Furthermore, the model was used to simulate the dynamic behavior of droplets and slugs deposited on the domain’s upper and lower surfaces, while subjected to parabolic flow conditions. The model accurately simulated the contact angle hysteresis for the dynamic droplets cases. It was also shown that at elevated temperatures the required power to transport the mixture diminished remarkably.

Keywords: lattice Boltzmann method, Gunstensen model, thermal, contact angle, high viscosity ratio

Procedia PDF Downloads 370
6274 Microplastics in Different Coastal Zone Compartments at the South-Eastern Baltic Sea

Authors: Viktorija Sabaliauskaitė, Arūnas Balčiūnas, Renata Rubavičiūtė

Abstract:

Research on microplastic pollution in aquatic environments is being conducted worldwide. This presented research focused on the South-Eastern Baltic Sea, where, due to the natural conditions, algae accumulation on beaches is common. The present conditions enabled to apply and integrate of various microplastic extraction techniques: filtration, density separation, and sample aeration in order to investigate the microplastic concentrations within different beach compartments (nearshore water reference zone, nearshore algal scum zone, beach surface sand reference zone, beach wrack zone). This study demonstrates results from a total of 496 collected samples. The comparison of microplastic mean concentrations in water-based (0,016 item/cm³) and land-based (0,29 item/cm³) samples gave a clear insight into the microplastic accumulation hot spots, which pose pollution hazards to marine ecosystems and humans.

Keywords: beach wrack, marine litter, microplastics, pollution

Procedia PDF Downloads 64
6273 Implementation of a Novel Modified Multilevel Inverter Topology for Grid Connected PV System

Authors: Dhivya Balakrishnan, Dhamodharan Shanmugam

Abstract:

Multilevel converters offer high power capability, associated with lower output harmonics and lower commutation losses. Their main disadvantage is their complexity requiring a great number of power devices and passive components, and a rather complex control circuitry. This paper proposes a single-phase seven-level inverter for grid connected PV systems, With a novel pulse width-modulated (PWM) control scheme. Three reference signals that are identical to each other with an offset that is equivalent to the amplitude of the triangular carrier signal were used to generate the PWM signals. The inverter is capable of producing seven levels of output-voltage levels from the dc supply voltage. This paper proposes a new multilevel inverter topology using an H-bridge output stage with two bidirectional auxiliary switches. The new topology produces a significant reduction in the number of power devices and capacitors required to implement a multilevel output using the asymmetric cascade configuration.

Keywords: asymmetric cascade configuration, H-Bridge, multilevel inverter, Pulse Width Modulation (PWM)

Procedia PDF Downloads 357
6272 Evaluation of the Incidence of Mycobacterium Tuberculosis Complex Associated with Soil, Hayfeed and Water in Three Agricultural Facilities in Amathole District Municipality in the Eastern Cape Province

Authors: Athini Ntloko

Abstract:

Mycobacterium bovis and other species of Mycobacterium tuberculosis complex (MTBC) can result to a zoonotic infection known as Bovine tuberculosis (bTB). MTBC has members that may contaminate an extensive range of hosts, including wildlife. Diverse wild species are known to cause disease in domestic livestock and are acknowledged as TB reservoirs. It has been a main study worldwide to deliberate on bTB risk factors as a result and some studies focused on particular parts of risk factors such as wildlife and herd management. The significance of the study was to determine the incidence of Mycobacterium tuberculosis complex that is associated with soil, hayfeed and water. Questionnaires were administered to thirty (30) smallholding farm owners in the two villages (kwaMasele and Qungqwala) and three (3) three commercial farms (Fort Hare dairy farm, Middledrift dairy farm and Seven star dairy farm). Detection of M. tuberculosis complex was achieved by Polymerase Chain Reaction using primers for IS6110; whereas a genotypic drug resistance mutation was detected using Genotype MTBDRplus assays. Nine percent (9%) of respondents had more than 40 cows in their herd, while 60% reported between 10 and 20 cows in their herd. Relationship between farm size and vaccination for TB differed from forty one percent (41%) being the highest to the least five percent (5%). The highest number of respondents who knew about relationship between TB cases and cattle location was ninety one percent (91%). Approximately fifty one percent (51%) of respondents had knowledge about wild life access to the farms. Relationship between import of cattle and farm size ranged from nine percent (9%) to thirty five percent (35%). Cattle sickness in relation to farm size differed from forty three (43%) being the highest to the least three percent (3%); while thirty three percent (33%) of respondents had knowledge about health management. Respondents with knowledge about the occurrence of TB infections in farms were forty-eight percent (48%). The frequency of DNA isolation from samples ranged from the highest forty-five percent (45%) from water to the least twenty two percent (22%) from soil. Fort Hare dairy farm had the highest number of positive samples, forty four percent (44%) from water samples; whereas Middledrift dairy farm had the lowest positive from water, seventeen percent (17%). Twelve (22%) out of 55 isolates showed resistance to INH and RIF that is, multi-drug resistance (MDR) and nine percent (9%) were sensitive to either INH or RIF. The mutations at rpoB gene differed from 58% being the highest to the least (23%). Fifty seven percent (57%) of samples showed a S315T1 mutation while only 14% possessed a S531L in the katG gene. The highest inhA mutations were detected in T8A (80 %) and the least was observed in A16G (17%). The results of this study reveal that risk factors for bTB in cattle and dairy farm workers are a serious issue abound in the Eastern Cape of South Africa; with the possibility of widespread dissemination of multidrug resistant determinants in MTBC from the environment.

Keywords: hayfeed, isoniazid, multi-drug resistance, mycobacterium tuberculosis complex, polymerase chain reaction, rifampicin, soil, water

Procedia PDF Downloads 337
6271 The Hydrotrope-Mediated, Low-Temperature, Aqueous Dissolution of Maize Starch

Authors: Jeroen Vinkx, Jan A. Delcour, Bart Goderis

Abstract:

Complete aqueous dissolution of starch is notoriously difficult. A high-temperature autoclaving process is necessary, followed by cooling the solution below its boiling point. The cooled solution is inherently unstable over time. Gelation and retrogradation processes, along with aggregation-induced by undissolved starch remnants, result in starch precipitation. We recently observed the spontaneous gelatinization of native maize starch (MS) in aqueous sodium salicylate (NaSal) solutions at room temperature. A hydrotropic mode of solubilization is hypothesized. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) of starch dispersions in NaSal solution were used to demonstrate the room temperature gelatinization of MS at different concentrations of MS and NaSal. The DSC gelatinization peak shifts to lower temperatures, and the gelatinization enthalpy decreases with increasing NaSal concentration. POM images confirm the same trend through the disappearance of the ‘Maltese cross’ interference pattern of starch granules. The minimal NaSal concentration to induce complete room temperature dissolution of MS was found to be around 15-20 wt%. The MS content of the dispersion has little influence on the amount of NaSal needed to dissolve it. The effect of the NaSal solution on the MS molecular weight was checked with HPSEC. It is speculated that, because of its amphiphilic character, NaSal enhances the solubility of MS in water by association with the more hydrophobic MS moieties, much like urea, which has also been used to enhance starch dissolution in alkaline aqueous media. As such small molecules do not tend to form micelles in water, they are called hydrotropes rather than surfactants. A minimal hydrotrope concentration (MHC) is necessary for the hydrotropes to structure themselves in water, resulting in a higher solubility of MS. This is the case for the system MS/NaSal/H₂O. Further investigations into the putative hydrotropic dissolution mechanism are necessary.

Keywords: hydrotrope, dissolution, maize starch, sodium salicylate, gelatinization

Procedia PDF Downloads 188
6270 Dietary N-6/N-3 PUFA Ratios Affect the Homeostasis of CD4+ T Cells in Mice with Dextran Sulfate Sodium-Induced Colitis

Authors: Cyoung-Huei Huang, Chiu-Li Yeh, Man-Hui Pai, Sung-Ling Yeh

Abstract:

This study evaluated the effect of different dietary n-6/n-3 polyunsaturated fatty acid (PUFA) ratios on modulating helper T (Th) and regulatory T (Treg) lymphocytes in mice with dextran sulfate sodium (DSS)-induced colitis. There were 3 control and 3 colitis groups in this study. Mice were fed for 24 d with an AIN-93G diet either with soybean oil (S), a mixture of soybean oil and low fish oil content (LF) or high fish oil content (HF). The ratio of n-6/n-3 PUFA in the LF diet was 4:1, and that in the HF diet was 2:1. The control groups drank distilled water while colitis groups provided 2% DSS in drinking water during day 15-19. All mice drank distilled water from day 20-24 for recovery and sacrificed on day 25. The results showed that colitis resulted in higher Th1, Th2, and Th17 and lower Treg percentages in the blood. Also, plasma haptoglobin and proinflammatory chemokines were elevated in colon lavage fluid. Colitic groups with fish oil had lower inflammatory mediators in the plasma and colon lavage fluid. Further, the percentages of Th1, Th2, and Th17 cells in the blood were lower, whereas Treg cell percentages were higher than those in the soybean oil group. The colitis group with n-6/n-3 PUFA ratio 2:1 had more pronounce effects than ratio 4:1. These results suggest that diets with an n-6/n-3 PUFA ratio of 2:1 or 4:1 regulate the Th/Treg balance and attenuate inflammatory mediator production in colitis. Compared to the n-6/n-3 PUFA ratio 4:1, the ratio of 2:1 was more effective in reducing inflammatory reactions in DSS-induced colitis.

Keywords: inflammatory bowel disease, n-3 polyunsaturated fatty acids, helper T lymphocyte, regulatory T lymphocyte

Procedia PDF Downloads 297
6269 Valuing Cultural Ecosystem Services of Natural Treatment Systems Using Crowdsourced Data

Authors: Andrea Ghermandi

Abstract:

Natural treatment systems such as constructed wetlands and waste stabilization ponds are increasingly used to treat water and wastewater from a variety of sources, including stormwater and polluted surface water. The provision of ancillary benefits in the form of cultural ecosystem services makes these systems unique among water and wastewater treatment technologies and greatly contributes to determine their potential role in promoting sustainable water management practices. A quantitative analysis of these benefits, however, has been lacking in the literature. Here, a critical assessment of the recreational and educational benefits in natural treatment systems is provided, which combines observed public use from a survey of managers and operators with estimated public use as obtained using geotagged photos from social media as a proxy for visitation rates. Geographic Information Systems (GIS) are used to characterize the spatial boundaries of 273 natural treatment systems worldwide. Such boundaries are used as input for the Application Program Interfaces (APIs) of two popular photo-sharing websites (Flickr and Panoramio) in order to derive the number of photo-user-days, i.e., the number of yearly visits by individual photo users in each site. The adequateness and predictive power of four univariate calibration models using the crowdsourced data as a proxy for visitation are evaluated. A high correlation is found between photo-user-days and observed annual visitors (Pearson's r = 0.811; p-value < 0.001; N = 62). Standardized Major Axis (SMA) regression is found to outperform Ordinary Least Squares regression and count data models in terms of predictive power insofar as standard verification statistics – such as the root mean square error of prediction (RMSEP), the mean absolute error of prediction (MAEP), the reduction of error (RE), and the coefficient of efficiency (CE) – are concerned. The SMA regression model is used to estimate the intensity of public use in all 273 natural treatment systems. System type, influent water quality, and area are found to statistically affect public use, consistently with a priori expectations. Publicly available information regarding the home location of the sampled visitors is derived from their social media profiles and used to infer the distance they are willing to travel to visit the natural treatment systems in the database. Such information is analyzed using the travel cost method to derive monetary estimates of the recreational benefits of the investigated natural treatment systems. Overall, the findings confirm the opportunities arising from an integrated design and management of natural treatment systems, which combines the objectives of water quality enhancement and provision of cultural ecosystem services through public use in a multi-functional approach and compatibly with the need to protect public health.

Keywords: constructed wetlands, cultural ecosystem services, ecological engineering, waste stabilization ponds

Procedia PDF Downloads 180
6268 Immobilization of Horseradish Peroxidase onto Bio-Linked Magnetic Particles with Allium Cepa Peel Water Extracts

Authors: Mirjana Petronijević, Sanja Panić, Aleksandra Cvetanović, Branko Kordić, Nenad Grba

Abstract:

Enzyme peroxidases are biological catalysts and play a major role in phenolic wastewater treatments and other environmental applications. The most studied species from the peroxidases family is horseradish peroxidase (HRP). In environmental processes, HRP could be used in its free or immobilized form. Enzyme immobilization onto solid support is performed to improve the enzyme properties, prolong its lifespan and operational stability and allow its reuse in industrial applications. One of the enzyme supports of a newer generation is magnetic particles (MPs). Fe₃O₄ MPs are the most widely pursued immobilization of enzymes owing to their remarkable advantages of biocompatibility and non-toxicity. Also, MPs can be easily separated and recovered from the water by applying an external magnetic field. On the other hand, metals and metal oxides are not suitable for the covalent binding of enzymes, so it is necessary to perform their surface modification. Fe₃O₄ MPs functionalization could be performed during the process of their synthesis if it takes place in the presence of plant extracts. Extracts of plant material, such as wild plants, herbs, even waste materials of the food and agricultural industry (bark, shell, leaves, peel), are rich in various bioactive components such as polyphenols, flavonoids, sugars, etc. When the synthesis of magnetite is performed in the presence of plant extracts, bioactive components are incorporated into the surface of the magnetite, thereby affecting its functionalization. In this paper, the suitability of bio-magnetite as solid support for covalent immobilization of HRP across glutaraldehyde was examined. The activity of immobilized HRP at different pH values (4-9) and temperatures (20-80°C) and reusability were examined. Bio-MP was synthesized by co-precipitation method from Fe(II) and Fe(III) sulfate salts in the presence of water extract of the Allium cepa peel. The water extract showed 81% of antiradical potential (according to DPPH assay), which is connected with the high content of polyphenols. According to the FTIR analysis, the bio-magnetite contains oxygen functional groups (-OH, -COOH, C=O) suitable for binding to glutaraldehyde, after which the enzyme is covalently immobilized. The immobilized enzyme showed high activity at ambient temperature and pH 7 (30 U/g) and retained ≥ 80% of its activity at a wide range of pH (5-8) and temperature (20-50°C). The HRP immobilized onto bio-MPs showed remarkable stability towards temperature and pH variations compared to the free enzyme form. On the other hand, immobilized HRP showed low reusability after the first washing cycle enzyme retains 50% of its activity, while after the third washing cycle retains only 22%.

Keywords: bio-magnetite, enzyme immobilization, water extracts, environmental protection

Procedia PDF Downloads 224
6267 Optimization of Flip Bucket Dents in Order to Reduce Scour Hole Depth (Plunge Pool) Using a Comprehensive Physical Model

Authors: Majid Galoie, Khodadad Safavi, Abdolreza Karami Nejad, Reza Roshan

Abstract:

Scour downstream of a flip bucket in a plunge pool is caused by impingement of water jet force. In order to reduce this force and consequently reduce scour hole depth, flip buckets may equip by dents. The minimum scour hole depth might be occurred by optimization of dents (number, shape, placement) on flip buckets. In this study, a comprehensive physical model has been developed and various options for dents have been investigated. The experimental data for each dent option such as scour hole depth, angle of impingement jet, piezometric pressure in tail-water and jet trajectory have been measured for various discharges. Finally, the best option can be found by analysis of the experimental results which has been expressed in this paper.

Keywords: scouring process, plunge pool, scour hole depth, physical model, flip bucket

Procedia PDF Downloads 394
6266 Credit Risk and Financial Stability

Authors: Zidane Abderrezzaq

Abstract:

In contrast to recent successful developments in macro monetary policies, the modelling, measurement and management of systemic financial stability has remained problematical. Indeed, the focus of most effort has been on improving individual, rather than systemic, bank risk management; the Basel II objective has been to bring regulatory bank capital into line with the (sophisticated) banks’ assessment of their own economic capital. Even at the individual bank level there are concerns over appropriate diversification allowances, differing objectives of banks and regulators, the need for a buffer over regulatory minima, and the distinction between expected and unexpected losses (EL and UL). At the systemic level the quite complex and prescriptive content of Basel II raises dangers of ‘endogenous risk’ and procyclicality. Simulations suggest that this latter could be a serious problem. In an extension to the main analysis we study how liquidity effects interact with banking structure to produce a greater chance of systemic breakdown. We finally consider how the risk of contagion might depend on the degree of asymmetry (tiering) inherent in the structure of the banking system. A number of our results have important implications for public policy, which this paper also draws out.

Keywords: systemic stability, financial regulation, credit risk, systemic risk

Procedia PDF Downloads 382
6265 Methylene Blue Removal Using NiO nanoparticles-Sand Adsorption Packed Bed

Authors: Nedal N. Marei, Nashaat Nassar

Abstract:

Many treatment techniques have been used to remove the soluble pollutants from wastewater as; dyes and metal ions which could be found in rich amount in the used water of the textile and tanneries industry. The effluents from these industries are complex, containing a wide variety of dyes and other contaminants, such as dispersants, acids, bases, salts, detergents, humectants, oxidants, and others. These techniques can be divided into physical, chemical, and biological methods. Adsorption has been developed as an efficient method for the removal of heavy metals from contaminated water and soil. It is now recognized as an effective method for the removal of both organic and inorganic pollutants from wastewaters. Nanosize materials are new functional materials, which offer high surface area and have come up as effective adsorbents. Nano alumina is one of the most important ceramic materials widely used as an electrical insulator, presenting exceptionally high resistance to chemical agents, as well as giving excellent performance as a catalyst for many chemical reactions, in microelectronic, membrane applications, and water and wastewater treatment. In this study, methylene blue (MB) dye has been used as model dye of textile wastewater in order to synthesize a synthetic MB wastewater. NiO nanoparticles were added in small percentage in the sand packed bed adsorption columns to remove the MB from the synthetic textile wastewater. Moreover, different parameters have been evaluated; flow of the synthetic wastewater, pH, height of the bed, percentage of the NiO to the sand in the packed material. Different mathematical models where employed to find the proper model which describe the experimental data and help to analyze the mechanism of the MB adsorption. This study will provide good understanding of the dyes adsorption using metal oxide nanoparticles in the classical sand bed.

Keywords: adsorption, column, nanoparticles, methylene

Procedia PDF Downloads 269
6264 A Comparative Study of Cardio Respiratory Efficiency between Aquatic and Track and Field Performers

Authors: Sumanta Daw, Gopal Chandra Saha

Abstract:

The present study was conducted to explore the basic pulmonary functions which may generally vary according to the bio-physical characteristics including age, height, body weight, and environment etc. of the sports performers. Regular and specific training exercises also change the characteristics of an athlete’s prowess and produce a positive effect on the physiological functioning, mostly upon cardio-pulmonary efficiency and thereby improving the body mechanism. The objective of the present study was to compare the differences in cardio-respiratory functions between aquatics and track and field performers. As cardio-respiratory functions are influenced by pulse rate and blood pressure (systolic and diastolic), so both of the factors were also taken into consideration. The component selected under cardio-respiratory functions for the present study were i) FEVI/FVC ratio (forced expiratory volume divided by forced vital capacity ratio, i.e. the number represents the percentage of lung capacity to exhale in one second) ii) FVC1 (this is the amount of air which can force out of lungs in one second) and iii) FVC (forced vital capacity is the greatest total amount of air forcefully breathe out after breathing in as deeply as possible). All the three selected components of the cardio-respiratory efficiency were measured by spirometry method. Pulse rate was determined manually. The radial artery which is located on the thumb side of our wrist was used to assess the pulse rate. Blood pressure was assessed by sphygmomanometer. All the data were taken in the resting condition. 36subjects were selected for the present study out of which 18were water polo players and rest were sprinters. The age group of the subjects was considered between 18 to 23 years. In this study the obtained data inform of digital score were treated statistically to get result and draw conclusions. The Mean and Standard Deviation (SD) were used as descriptive statistics and the significant difference between the two subject groups was assessed with the help of statistical ‘t’-test. It was found from the study that all the three components i.e. FEVI/FVC ratio (p-value 0.0148 < 0.01), FVC1 (p-value 0.0010 < 0.01) and FVC (p-value 0.0067 < 0.01) differ significantly as water polo players proved to be better in terms of cardio-respiratory functions than sprinters. Thus study clearly suggests that the exercise training as well as the medium of practice arena associated with water polo players has played an important role to determine better cardio respiratory efficiency than track and field athletes. The outcome of the present study revealed that the lung function in land-based activities may not provide much impact than that of in water activities.

Keywords: cardio-respiratory efficiency, spirometry, water polo players, sprinters

Procedia PDF Downloads 134
6263 Effect of Organophilic Clay on the Stability and Rheological Behavior of Oil-Based Drilling Muds

Authors: Hammadi Larbi

Abstract:

The major problem with oil-based drilling muds (reverse emulsions) is their thermodynamic instability and their high tendency to coalescence over time, irreversibly leading to destabilization. Water/Oil reverse emulsion drilling Muds are highly recommended when significant depths are reached. This study aimed to contribute experimentally to the knowledge of the structure (stability) and rheological behavior of drilling mud systems based on water/crude oil inverse emulsions through the investigation of the effect of organophilic clay. The chemical composition of organophilic clay such as VG69 shows a strong presence of silicon oxide (SiO2), followed by aluminum oxide (Al2O3), so these two elements are considered to be the main constituents of organophilic clays. The study also shows that the SiO2/Al2O3 ratio is equal to 3.52, which can be explained by the high content of free silica contained in the organophile clay used. The particle size analysis of the organophilic clays showed that the size of the of the particles analysed is in the range of 30 to 80 μm, this result ensures the correct particle size quality of organophilic clays and allows these powders to be used in Drilling mud systems.The experimental data of steady-state flow measurements are analyzed in the classic way by the Herschel-Bulkley model. Microscopic observation shows that the addition of quantities of organophilic clay type VG69 less than or equal to 3 g leading to the stability of the water/oil inverse emulsions, on the other hand, for quantities greater than 3 g, the emulsions are destabilized. The results obtained also showed that adding 3 g of organophilic clay to the crude oil drilling mud improves their stability by 70%.

Keywords: drilling muds, inverse emulsions, rheological behavior, yield stress, stability, organophilic clay

Procedia PDF Downloads 14
6262 Conversion of Carcinogenic Liquid-Wastes of Poly Vinyl Chloride (PVC) Industry to ‎an Environmentally Safe Product: Corrosion Inhibitor and Biocide

Authors: Mohamed A. Hegazy

Abstract:

Most of Poly Vinyl Chloride (PVC) petrochemical companies produce huge amount of byproduct which characterized as carcinogenic liquid-wastes, insoluble in water, highly corrosive and highly offensive. This byproduct is partially use, a small part, in the production of hydrochloric acid and the huge part is a waste. Therefore, the aim of this work was to conversion of such PVC wastes, to an environmentally safe product that act as a corrosion Inhibitor for metals in ‎aqueous media and as a biocide for microorganisms. This conversion method was accomplished mainly to protect the environment and to produce high economic value-products. The conversion process was established and the final product was tested for the toxicity, water solubility in comparison to the crude product. Furthermore, the end product was tested as a corrosion inhibitor in 1M HCl and as a broad-spectrum biocide against standard microbial strains and against the environmentally isolated Sulfate-reducing bacteria (SRB) microbial community.

Keywords: PVC, surfactant, corrosion inhibitor, biocide, SRB

Procedia PDF Downloads 123
6261 Investigation of Unusually High Ultrasonic Signal Attenuation in Water Observed in Various Combinations of Pairs of Lead Zirconate Titanate Pb(ZrxTi1-x)O3 (PZT) Piezoelectric Ceramics Positioned Adjacent to One Another Separated by an Intermediate Gap

Authors: S. M. Mabandla, P. Loveday, C. Gomes, D. T. Maiga, T. T. Phadi

Abstract:

Lead zirconate titanate (PZT) piezoelectric ceramics are widely used in ultrasonic applications due to their ability to effectively convert electrical energy into mechanical vibrations and vice versa. This paper presents a study on the behaviour of various combinations of pairs of PZT piezoelectric ceramic materials positioned adjacent to each other with an intermediate gap submerged in water, where one piezoelectric ceramic material is excited by a cyclic electric field with constant frequency and amplitude displacement. The transmitted ultrasonic sound propagates through the medium and is received by the PZT ceramic at the other end, the ultrasonic sound signal amplitude displacement experiences attenuation during propagation due to acoustic impedance. The investigation focuses on understanding the causes of extremely high amplitude displacement attenuation that have been observed in various combinations of piezoelectric ceramic pairs that are submerged in water arranged in a manner stipulated earlier. by examining various combinations of pairs of these piezoelectric ceramics, their physical, electrical, and acoustic properties, and behaviour and attributing them to the observed significant signal attenuation. The experimental setup involves exciting one piezoelectric ceramic material at one end with a burst square cyclic electric field signal of constant frequency, which generates a burst of ultrasonic sound that propagates through the water medium to the adjacent piezoelectric ceramic at the other end. Mechanical vibrations of a PZT piezoelectric ceramic are measured using a double-beam laser Doppler vibrometer to mimic the incident ultrasonic waves generated and received ultrasonic waves on the other end due to mechanical vibrations of a PZT. The measured ultrasonic sound wave signals are continuously compared to the applied cyclic electric field at both ends. The impedance matching networks are continuously tuned at both ends to eliminate electromechanical impedance mismatch to improve ultrasonic transmission and reception. The study delves into various physical, electrical, and acoustic properties of the PZT piezoelectric ceramics, such as the electromechanical coupling factor, acoustic coupling, and elasticity, among others. These properties are analyzed to identify potential factors contributing to the unusually high acoustic impedance in the water medium between the ceramics. Additionally, impedance-matching networks are investigated at both ends to offset the high signal attenuation and improve overall system performance. The findings will be reported in this paper.

Keywords: acoustic impedance, impedance mismatch, piezoelectric ceramics, ultrasonic sound

Procedia PDF Downloads 78
6260 Factors Associated with the Acceptance and Rejection of Rural Livestock Insurance in Garmsar: Semnan Province

Authors: Ali Ashraf Hamedi Oghul Beyk

Abstract:

The main objective of the study is to determine the factors which influence the acceptance or rejection of rural livestock insurance in Garmsar. The research method is descriptive one. There are two groups of research populations: 1467 cases in acceptance group and 7000 cases in rejection group. The sample population is 320 cases among 8467 ones. Data collection instrument is questionnaire. The validity of the questionnaire was measured by faculty members and other agriculture experts and also reliability of it determined through Cronbach alpha which was %83. Correlation between acceptance and rejection of investigated population. According to the findings of the research, between educational level, basic income from farm-related communication channels, contacts of experts and acceptance and rejection of livestock insurance at %5 & the mortality rate, loan awareness of the objectives of the livestock insurance benefits %1 there is a meaningful relationship. Mann-Whitney test shows the different educational levels, different awareness and interest to livestock insurance between the two groups. Besides, the T-test shows the livestock losses rate in two groups.

Keywords: insurance, livestock, Garmsar, Semnan

Procedia PDF Downloads 351
6259 Wind Direction and Its Linkage with Vibrio cholerae Dissemination

Authors: Shlomit Paz, Meir Broza

Abstract:

Cholera is an acute intestinal infection caused by ingestion of food or water contaminated with the bacterium Vibrio cholerae. It has a short incubation period and produces an enterotoxin that causes copious, painless, watery diarrhoea that can quickly lead to severe dehydration and death if treatment is not promptly given. In an epidemic, the source of the contamination is usually the feces of an infected person. The disease can spread rapidly in areas with poor treatment of sewage and drinking water. Cholera remains a global threat and is one of the key indicators of social development. An estimated 3-5 million cases and over 100,000 deaths occur each year around the world. The relevance of climatic events as causative factors for cholera epidemics is well known. However, the examination of the involvement of winds in intra-continental disease distribution is new. The study explore the hypothesis that the spreading of cholera epidemics may be related to the dominant wind direction over land by presenting the influence of the wind direction on windborn dissemination by flying insects, which may serve as vectors. Chironomids ("non-biting midges“) exist in the majority of freshwater aquatic habitats, especially in estuarine and organic-rich water bodies typical to Vibrio cholerae. Chironomid adults emerge into the air for mating and dispersion. They are highly mobile, huge in number and found frequently in the air at various elevations. The huge number of chironomid egg masses attached to hard substrate on the water surface, serve as a reservoir for the free-living Vibrio bacteria. Both male and female, while emerging from the water, may carry the cholera bacteria. In experimental simulation, it was demonstrated that the cholera-bearing adult midges are carried by the wind, and transmit the bacteria from one body of water to another. In our previous study, the geographic diffusions of three cholera outbreaks were examined through their linkage with the wind direction: a) the progress of Vibrio cholerae O1 biotype El Tor in Africa during 1970–1971 and b) again in 2005–2006; and c) the rapid spread of Vibrio cholerae O139 over India during 1992–1993. Using data and map of cholera dissemination (WHO database) and mean monthly SLP and geopotential data (NOAA NCEP-NCAR database), analysis of air pressure data at sea level and at several altitudes over Africa, India and Bangladesh show a correspondence between the dominant wind direction and the intra-continental spread of cholera. The results support the hypothesis that aeroplankton (the tiny life forms that float in the air and that may be caught and carried upward by the wind, landing far from their origin) carry the cholera bacteria from one body of water to an adjacent one. In addition to these findings, the current follow-up study will present new results regarding the possible involvement of winds in the spreading of cholera in recent outbreaks (2010-2013). The findings may improve the understanding of how climatic factors are involved in the rapid distribution of new strains throughout a vast continental area. Awareness of the aerial transfer of Vibrio cholerae may assist health authorities by improving the prediction of the disease’s geographic dissemination.

Keywords: cholera, Vibrio cholerae, wind direction, Vibrio cholerae dissemination

Procedia PDF Downloads 367
6258 Impact of the Currency Devaluation on Contractors in Egypt

Authors: Mariam Zahwy, Waleed El Nemr, A. Samer Ezeldin

Abstract:

In 2016, the depreciation of the Egyptian pound (EGP) had a substantial impact on Egypt's construction industry. Studies assessing this influence are scarce, though. The impact of devaluation on contractors is measured in this study using empirical data. The difficulties contractors have as a result of rising import material costs, limited financing alternatives, and inflationary pressures are also determined by analyzing survey responses from contractors and industry experts. The approaches contractors utilize to lessen the impact of devaluation are also examined in the research. The survey results show how currency depreciation directly affects contractors in the Egyptian construction industry in terms of financial consequences. Inflationary pressures, fewer financing alternatives, and rising expenses have all affected contractors. To minimize losses, contractors have, nonetheless, put a number of tactics into practice. These findings highlight the importance of understanding and managing the impact of devaluation on the construction industry to ensure its resilience and development.

Keywords: construction, devaluation, contractors, material costs, inflationary pressures, empirical data, quantitative research

Procedia PDF Downloads 21
6257 Morpho-Agronomic Response to Water Stress of Some Nigerian Bambara Groundnut (Vigna Subterranea (L.) Verdc.) Germplasm and Genetic Diversity Studies of Some Selected Accessions Using Ssr Markers

Authors: Abejide Dorcas Ropo, , Falusi Olamide Ahmed, Daudu Oladipupo Abdulazeez Yusuf, Salihu Bolaji Zuluquri Neen, Muhammad Liman Muhammad, Gado Aishatu Adamu

Abstract:

Water stress is a major factor limiting the productivity of crops in the world today. This study evaluated the morpho-agronomic response of twenty-four (24) Nigerian Bambara groundnut landraces to water stress and genetic diversity of some selected accessions using SSR markers. The studies was carried out in the Botanical garden of the Department of Plant Biology, Federal University of Technology, Minna, Niger State, Nigeria in a randomized complete block design using three replicates. Molecular analysis using SSR primers was carried out at the Centre for Bio- Science, International Institute of Tropical Agriculture (IITA) Ibadan, Nigeria in order to characterize ten selected accessions comprising of the seven most drought tolerant and the three most susceptible accessions detected from the morpho-agronomic studies. Results revealed that water stress decreased morpho-agronomic traits such as plant height, leaf area, number of leaves per plant and seed yield etc. A total of 22 alleles were detected by the SSR markers used with a mean number of 4 allelles. Simple Sequence Repeat (SSR) markers MBamCO33, Primer 65 and G358B2-D15 each detected 4 allelles while Primer 3FR and 4FR detected 5 allelles each. The study revealed significantly high polymorphisms in 10 Loci. The mean value of Polymorpic information content was 0.6997 implying the usefulness of the primers used in identifying genetic similarities and differences among the Bambara groundnut genotypes. The SSR analysis revealed a comparable pattern between genetic diversity and drought tolerance of the genotypes. The Unweighted Paired Group Method with Arithmethic Mean (UPGMA) dendrogram showed that at a genetic distance of 0.1, the accessions were grouped into three groups according to their level of tolerance to drought. The two most drought tolerant accessions were grouped together and the 5th and 6th most drought tolerant accession were also grouped together. This suggests that the genotypes grouped together may be genetically close, may possess similar genes or have a common origin. The degree of genetic variants obtained could be useful in bambara groundnut breeding for drought tolerance. The identified drought tolerant bambara groundnut landraces are important genetic resources for drought stress tolerance breeding programme of bambara groundnut. The genotypes are also useful for germplasm conservation and global implications.

Keywords: bambara groundnut, genetic diversity, germplasm, SSR markers, water stress

Procedia PDF Downloads 21
6256 Hysteresis Behaviour of Mass Concrete Mixed with Plastic Fibre under Compression

Authors: A. A. Okeola, T. I. Sijuade

Abstract:

Unreinforced concrete is a comparatively brittle substance when exposed to tensile stresses, the required tensile strength is provided by the introduction of steel which is used as reinforcement. The strength of concrete may be improved tremendously by the addition of fibre. This study focused on investigating the compressive strength of mass concrete mixed with different percentage of plastic fibre. Twelve samples of concrete cubes with varied percentage of plastic fibre at 7, 14 and 28 days of water submerged curing were tested under compression loading. The result shows that the compressive strength of plastic fibre reinforced concrete increased with rise in curing age. The strength increases for all percentage dosage of fibre used for the concrete. The density of the Plastic Fibre Reinforced Concrete (PFRC) also increases with curing age, which implies that during curing, concrete absorbs water which aids its hydration. The least compressive strength obtained with the introduction of plastic fibre is more than the targeted 20 N/mm2 recommended for construction work showing that PFRC can be used where significant loading is expected.

Keywords: compressive strength, concrete, curing, density, plastic fibre

Procedia PDF Downloads 409
6255 Microbial Assessment of Fenugreek Paste during Storage and Antimicrobial Effect of Greek Clover, Trigonella foenum-graecum

Authors: Zerrin Erginkaya, Gözde Konuray

Abstract:

In this study, antimicrobial effect of Greek clover was determined with usage of MIC (minimum inhibition concentration) and agar diffusion method. Moreover, pH, water activity and microbial change were determined during storage of fenugreek paste. At first part of our study, microbial load of spices was evaluated. Two different fenugreek pastes were produced with mixing of Greek clover, spices, garlic and water. Fenugreek pastes were stored at 4 °C. At the second part, antimicrobial effect of Greek clover was determined on Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Debaryomyces hansenii, Aspergillus parasiticus, Candida rugosa, Mucor spp., when the concentrations of Greek clover were 8%, 12% and 16%. According to the results obtained, mould growth was determined at 15th and 30th days of storage in first and second fenugreek samples, respectively. Greek clover showed only antifungal effect on Aspergillus parasiticus at previously mentioned concentrations.

Keywords: antimicrobial, fenugreek, Greek clover, minimum inhibition concentration

Procedia PDF Downloads 254