Search results for: vehicle following models
4714 Ownership and Shareholder Schemes Effects on Airport Corporate Strategy in Europe
Authors: Dimitrios Dimitriou, Maria Sartzetaki
Abstract:
In the early days of the of civil aviation, airports are totally state-owned companies under the control of national authorities or regional governmental bodies. From that time the picture has totally changed and airports privatisation and airport business commercialisation are key success factors to stimulate air transport demand, generate revenues and attract investors, linked to reliable and resilience of air transport system. Nowadays, airport's corporate strategy deals with policies and actions, affecting essential the business plans, the financial targets and the economic footprint in a regional economy they serving. Therefore, exploring airport corporate strategy is essential to support the decision in business planning, management efficiency, sustainable development and investment attractiveness on one hand; and define policies towards traffic development, revenues generation, capacity expansion, cost efficiency and corporate social responsibility. This paper explores key outputs in airport corporate strategy for different ownership schemes. The airport corporations are grouped in three major schemes: (a) Public, in which the public airport operator acts as part of the government administration or as a corporised public operator; (b) Mixed scheme, in which the majority of the shares and the corporate strategy is driven by the private or the public sector; and (c) Private, in which the airport strategy is driven by the key aspects of globalisation and liberalisation of the aviation sector. By a systemic approach, the key drivers in corporate strategy for modern airport business structures are defined. Key objectives are to define the key strategic opportunities and challenges and assess the corporate goals and risks towards sustainable business development for each scheme. The analysis based on an extensive cross-sectional dataset for a sample of busy European airports providing results on corporate strategy key priorities, risks and business models. The conventional wisdom is to highlight key messages to authorities, institutes and professionals on airport corporate strategy trends and directions.Keywords: airport corporate strategy, airport ownership, airports business models, corporate risks
Procedia PDF Downloads 3044713 Exploration of Hydrocarbon Unconventional Accumulations in the Argillaceous Formation of the Autochthonous Miocene Succession in the Carpathian Foredeep
Authors: Wojciech Górecki, Anna Sowiżdżał, Grzegorz Machowski, Tomasz Maćkowski, Bartosz Papiernik, Michał Stefaniuk
Abstract:
The article shows results of the project which aims at evaluating possibilities of effective development and exploitation of natural gas from argillaceous series of the Autochthonous Miocene in the Carpathian Foredeep. To achieve the objective, the research team develop a world-trend based but unique methodology of processing and interpretation, adjusted to data, local variations and petroleum characteristics of the area. In order to determine the zones in which maximum volumes of hydrocarbons might have been generated and preserved as shale gas reservoirs, as well as to identify the most preferable well sites where largest gas accumulations are anticipated a number of task were accomplished. Evaluation of petrophysical properties and hydrocarbon saturation of the Miocene complex is based on laboratory measurements as well as interpretation of well-logs and archival data. The studies apply mercury porosimetry (MICP), micro CT and nuclear magnetic resonance imaging (using the Rock Core Analyzer). For prospective location (e.g. central part of Carpathian Foredeep – Brzesko-Wojnicz area) reprocessing and reinterpretation of detailed seismic survey data with the use of integrated geophysical investigations has been made. Construction of quantitative, structural and parametric models for selected areas of the Carpathian Foredeep is performed on the basis of integrated, detailed 3D computer models. Modeling are carried on with the Schlumberger’s Petrel software. Finally, prospective zones are spatially contoured in a form of regional 3D grid, which will be framework for generation modelling and comprehensive parametric mapping, allowing for spatial identification of the most prospective zones of unconventional gas accumulation in the Carpathian Foredeep. Preliminary results of research works indicate a potentially prospective area for occurrence of unconventional gas accumulations in the Polish part of Carpathian Foredeep.Keywords: autochthonous Miocene, Carpathian foredeep, Poland, shale gas
Procedia PDF Downloads 2284712 Bayesian Parameter Inference for Continuous Time Markov Chains with Intractable Likelihood
Authors: Randa Alharbi, Vladislav Vyshemirsky
Abstract:
Systems biology is an important field in science which focuses on studying behaviour of biological systems. Modelling is required to produce detailed description of the elements of a biological system, their function, and their interactions. A well-designed model requires selecting a suitable mechanism which can capture the main features of the system, define the essential components of the system and represent an appropriate law that can define the interactions between its components. Complex biological systems exhibit stochastic behaviour. Thus, using probabilistic models are suitable to describe and analyse biological systems. Continuous-Time Markov Chain (CTMC) is one of the probabilistic models that describe the system as a set of discrete states with continuous time transitions between them. The system is then characterised by a set of probability distributions that describe the transition from one state to another at a given time. The evolution of these probabilities through time can be obtained by chemical master equation which is analytically intractable but it can be simulated. Uncertain parameters of such a model can be inferred using methods of Bayesian inference. Yet, inference in such a complex system is challenging as it requires the evaluation of the likelihood which is intractable in most cases. There are different statistical methods that allow simulating from the model despite intractability of the likelihood. Approximate Bayesian computation is a common approach for tackling inference which relies on simulation of the model to approximate the intractable likelihood. Particle Markov chain Monte Carlo (PMCMC) is another approach which is based on using sequential Monte Carlo to estimate intractable likelihood. However, both methods are computationally expensive. In this paper we discuss the efficiency and possible practical issues for each method, taking into account the computational time for these methods. We demonstrate likelihood-free inference by performing analysing a model of the Repressilator using both methods. Detailed investigation is performed to quantify the difference between these methods in terms of efficiency and computational cost.Keywords: Approximate Bayesian computation(ABC), Continuous-Time Markov Chains, Sequential Monte Carlo, Particle Markov chain Monte Carlo (PMCMC)
Procedia PDF Downloads 2034711 The Collaboration between Resident and Non-resident Patent Applicants as a Strategy to Accelerate Technological Advance in Developing Nations
Authors: Hugo Rodríguez
Abstract:
Migrations of researchers, scientists, and inventors are a widespread phenomenon in modern times. In some cases, migrants stay linked to research groups in their countries of origin, either out of their own conviction or because of government policies. We examine different linear models of technological development (using the Ordinary Least Squares (OLS) technique) in eight selected countries and find that the collaborations between resident and nonresident patent applicants correlate with different levels of performance of the technological policies in three different scenarios. Therefore, the reinforcement of that link must be considered a powerful tool for technological development.Keywords: development, collaboration, patents, technology
Procedia PDF Downloads 1274710 Deep Reinforcement Learning Model for Autonomous Driving
Authors: Boumaraf Malak
Abstract:
The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions.Keywords: deep reinforcement learning, autonomous driving, deep deterministic policy gradient, deep Q-learning
Procedia PDF Downloads 854709 Study on the Model Predicting Post-Construction Settlement of Soft Ground
Authors: Pingshan Chen, Zhiliang Dong
Abstract:
In order to estimate the post-construction settlement more objectively, the power-polynomial model is proposed, which can reflect the trend of settlement development based on the observed settlement data. It was demonstrated by an actual case history of an embankment, and during the prediction. Compared with the other three prediction models, the power-polynomial model can estimate the post-construction settlement more accurately with more simple calculation.Keywords: prediction, model, post-construction settlement, soft ground
Procedia PDF Downloads 4254708 Conceptual Model for Logistics Information System
Authors: Ana María Rojas Chaparro, Cristian Camilo Sarmiento Chaves
Abstract:
Given the growing importance of logistics as a discipline for efficient management of materials flow and information, the adoption of tools that permit to create facilities in making decisions based on a global perspective of the system studied has been essential. The article shows how from a concepts-based model is possible to organize and represent in appropriate way the reality, showing accurate and timely information, features that make this kind of models an ideal component to support an information system, recognizing that information as relevant to establish particularities that allow get a better performance about the evaluated sector.Keywords: system, information, conceptual model, logistics
Procedia PDF Downloads 4974707 Biocompatible Chitosan Nanoparticles as an Efficient Delivery Vehicle for Mycobacterium Tuberculosis Lipids to Induce Potent Cytokines and Antibody Response through Activation of γδ T-Cells in Mice
Authors: Ishani Das, Avinash Padhi, Sitabja Mukherjee, Santosh Kar, Avinash Sonawane
Abstract:
Activation of cell mediated and humoral immune responses to Mycobacterium tuberculosis (Mtb) are critical for protection. Herein, we show that mice immunized with Mtb lipid bound chitosan nanoparticles(NPs) induce secretion of prominent Th1 and Th2 cytokines in lymph node and spleen cells, and also induced significantly higher levels of IgG, IgG1, IgG2 and IgM in comparison to control mice measured by ELISA. Furthermore, significantly enhanced γδ-T cell activation was observed in lymph node cells isolated from mice immunized with Mtb lipid coated chitosan-NPs as compared to mice immunized with chitosan-NPs alone or Mtb lipid liposomes through flow cytometric analysis. Also, it was observed that in comparison to CD8+ cells, significantly higher CD4+ cells were present in both the lymph node and spleen cells isolated from mice immunized with Mtb lipid coated chitosan NP. In conclusion, this study represents a promising new strategy for efficient delivery of Mtb lipids using chitosan NPs to trigger enhanced cell mediated and antibody response against Mtb lipids.Keywords: antibody response, chitosan nanoparticles, cytokines, mycobacterium tuberculosis lipids
Procedia PDF Downloads 2804706 Bilingual Identities of Kuwaiti Students at Universities with EMI
Authors: Marta Tryzna, Shahd Al Shammari
Abstract:
Though Modern Standard Arabic (MSA) is the only official language in GCC states, including Kuwait, and traditionally the preferred vehicle for literacy in the Arab countries, recent studies in Qatar and the UAE observe a growing role of English, particularly in literacy and knowledge transmission contexts. The present study examines the attitudes to Arabic and English and the use of both languages in literacy-related domains based on a sample of bilingual Arabic-English undergraduates (N=522) at a private university with EMI in Kuwait. The results indicate that Arabic (Kuwaiti dialect) is associated with familial interactions, Arabic-English bilingualism predominates in interactions with classmates, friends, on social media and at work, while English is prevalent in literacy-related contexts such as reading books, magazines, or online material, domains traditionally associated with MSA. Attitudes towards Arabic and English are equally positive according to the majority of the respondents, who report being comfortable expressing themselves and projecting their identity in both languages. No statistically significant differences were found comparing the importance of Arabic and English in the sample. Future trends were identified based on high agreement on the importance of speaking English with children and low agreement on speaking only Arabic at home. The study corroborates recently observed trends in the GCC favoring bilingualism across personal, academic and professional domains, with English becoming the preferred language of literacy among young bilingual Kuwaitis.Keywords: bilingual, English, Arabic, EMI, identity
Procedia PDF Downloads 1404705 Electromagnetic Tuned Mass Damper Approach for Regenerative Suspension
Authors: S. Kopylov, C. Z. Bo
Abstract:
This study is aimed at exploring the possibility of energy recovery through the suppression of vibrations. The article describes design of electromagnetic dynamic damper. The magnetic part of the device performs the function of a tuned mass damper, thereby providing both energy regeneration and damping properties to the protected mass. According to the theory of tuned mass damper, equations of mathematical models were obtained. Then, under given properties of current system, amplitude frequency response was investigated. Therefore, main ideas and methods for further research were defined.Keywords: electromagnetic damper, oscillations with two degrees of freedom, regeneration systems, tuned mass damper
Procedia PDF Downloads 2084704 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 1674703 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanismsKeywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 1594702 Revolutionizing Legal Drafting: Leveraging Artificial Intelligence for Efficient Legal Work
Authors: Shreya Poddar
Abstract:
Legal drafting and revising are recognized as highly demanding tasks for legal professionals. This paper introduces an approach to automate and refine these processes through the use of advanced Artificial Intelligence (AI). The method employs Large Language Models (LLMs), with a specific focus on 'Chain of Thoughts' (CoT) and knowledge injection via prompt engineering. This approach differs from conventional methods that depend on comprehensive training or fine-tuning of models with extensive legal knowledge bases, which are often expensive and time-consuming. The proposed method incorporates knowledge injection directly into prompts, thereby enabling the AI to generate more accurate and contextually appropriate legal texts. This approach substantially decreases the necessity for thorough model training while preserving high accuracy and relevance in drafting. Additionally, the concept of guardrails is introduced. These are predefined parameters or rules established within the AI system to ensure that the generated content adheres to legal standards and ethical guidelines. The practical implications of this method for legal work are considerable. It has the potential to markedly lessen the time lawyers allocate to document drafting and revision, freeing them to concentrate on more intricate and strategic facets of legal work. Furthermore, this method makes high-quality legal drafting more accessible, possibly reducing costs and expanding the availability of legal services. This paper will elucidate the methodology, providing specific examples and case studies to demonstrate the effectiveness of 'Chain of Thoughts' and knowledge injection in legal drafting. The potential challenges and limitations of this approach will also be discussed, along with future prospects and enhancements that could further advance legal work. The impact of this research on the legal industry is substantial. The adoption of AI-driven methods by legal professionals can lead to enhanced efficiency, precision, and consistency in legal drafting, thereby altering the landscape of legal work. This research adds to the expanding field of AI in law, introducing a method that could significantly alter the nature of legal drafting and practice.Keywords: AI-driven legal drafting, legal automation, futureoflegalwork, largelanguagemodels
Procedia PDF Downloads 654701 The Investigate Relationship between Moral Hazard and Corporate Governance with Earning Forecast Quality in the Tehran Stock Exchange
Authors: Fatemeh Rouhi, Hadi Nassiri
Abstract:
Earning forecast is a key element in economic decisions but there are some situations, such as conflicts of interest in financial reporting, complexity and lack of direct access to information has led to the phenomenon of information asymmetry among individuals within the organization and external investors and creditors that appear. The adverse selection and moral hazard in the investor's decision and allows direct assessment of the difficulties associated with data by users makes. In this regard, the role of trustees in corporate governance disclosure is crystallized that includes controls and procedures to ensure the lack of movement in the interests of the company's management and move in the direction of maximizing shareholder and company value. Therefore, the earning forecast of companies in the capital market and the need to identify factors influencing this study was an attempt to make relationship between moral hazard and corporate governance with earning forecast quality companies operating in the capital market and its impact on Earnings Forecasts quality by the company to be established. Getting inspiring from the theoretical basis of research, two main hypotheses and sub-hypotheses are presented in this study, which have been examined on the basis of available models, and with the use of Panel-Data method, and at the end, the conclusion has been made at the assurance level of 95% according to the meaningfulness of the model and each independent variable. In examining the models, firstly, Chow Test was used to specify either Panel Data method should be used or Pooled method. Following that Housman Test was applied to make use of Random Effects or Fixed Effects. Findings of the study show because most of the variables are positively associated with moral hazard with earnings forecasts quality, with increasing moral hazard, earning forecast quality companies listed on the Tehran Stock Exchange is increasing. Among the variables related to corporate governance, board independence variables have a significant relationship with earnings forecast accuracy and earnings forecast bias but the relationship between board size and earnings forecast quality is not statistically significant.Keywords: corporate governance, earning forecast quality, moral hazard, financial sciences
Procedia PDF Downloads 3224700 Performance of Reinforced Concrete Wall with Opening Using Analytical Model
Authors: Alaa Morsy, Youssef Ibrahim
Abstract:
Earthquake is one of the most catastrophic events, which makes enormous harm to properties and human lives. As a piece of a safe building configuration, reinforced concrete walls are given in structures to decrease horizontal displacements under seismic load. Shear walls are additionally used to oppose the horizontal loads that might be incited by the impact of wind. Reinforced concrete walls in residential buildings might have openings that are required for windows in outside walls or for doors in inside walls or different states of openings due to architectural purposes. The size, position, and area of openings may fluctuate from an engineering perspective. Shear walls can encounter harm around corners of entryways and windows because of advancement of stress concentration under the impact of vertical or horizontal loads. The openings cause a diminishing in shear wall capacity. It might have an unfavorable impact on the stiffness of reinforced concrete wall and on the seismic reaction of structures. Finite Element Method using software package ‘ANSYS ver. 12’ becomes an essential approach in analyzing civil engineering problems numerically. Now we can make various models with different parameters in short time by using ANSYS instead of doing it experimentally, which consumes a lot of time and money. Finite element modeling approach has been conducted to study the effect of opening shape, size and position in RC wall with different thicknesses under axial and lateral static loads. The proposed finite element approach has been verified with experimental programme conducted by the researchers and validated by their variables. A very good correlation has been observed between the model and experimental results including load capacity, failure mode, and lateral displacement. A parametric study is applied to investigate the effect of opening size, shape, position on different reinforced concrete wall thicknesses. The results may be useful for improving existing design models and to be applied in practice, as it satisfies both the architectural and the structural requirements.Keywords: Ansys, concrete walls, openings, out of plane behavior, seismic, shear wall
Procedia PDF Downloads 1694699 Capacitance Models of AlGaN/GaN High Electron Mobility Transistors
Authors: A. Douara, N. Kermas, B. Djellouli
Abstract:
In this study, we report calculations of gate capacitance of AlGaN/GaN HEMTs with nextnano device simulation software. We have used a physical gate capacitance model for III-V FETs that incorporates quantum capacitance and centroid capacitance in the channel. These simulations explore various device structures with different values of barrier thickness and channel thickness. A detailed understanding of the impact of gate capacitance in HEMTs will allow us to determine their role in future 10 nm physical gate length node.Keywords: gate capacitance, AlGaN/GaN, HEMTs, quantum capacitance, centroid capacitance
Procedia PDF Downloads 3964698 An Equitable Strategy to Amend Zero-Emission Vehicles Incentives for Travelers: A Policy Review
Authors: Marie Louis
Abstract:
Even though many stakeholders are doing their very best to promote public transportation around the world, many areas are still public transportation non-accessible. With travelers purchasing and driving their private vehicles can be considered as a threat to all three aspects of the sustainability (e.g., economical, social, environmental). However, most studies that considered simultaneously all three aspects of the sustainability concept when planning and designing public transportation for a corridor have found tradeoffs among the said three aspects.One of the tradeoffs was identified by looking at tipping points of the travel demands to question whether transit agencies/and or transportation policymakers should either operate smaller buses or provide incentives to purchase Leadership in Energy and Environmental Design (LEED)-Qualified low-emission vehicles or greener vehicles (e.g., hybrid). However, how and when do the department of environmental protection (DEP) and the department of revenue (DOR) figure out how much incentives to give to each traveler who lives in a zoning that is considered as public transportation inaccessible or accessible? To answer this policy question, this study aims to compare the greenhouse gases (GHGs) emissions when hybrid and conventional cars are used to access public transportation stops/stations. Additionally, this study also intends to review previous states that have already adopted low-emissions vehicle (LEVs) or Zero-Emissions Vehicles (ZEVs) to diminish the daily GHGs pollutants.Keywords: LEED-qualified vehicles, public transit accessibility, hybrid vehicles incentives, sustainability trade-offs
Procedia PDF Downloads 1954697 Evaluation of a Staffing to Workload Tool in a Multispecialty Clinic Setting
Authors: Kristin Thooft
Abstract:
— Increasing pressure to manage healthcare costs has resulted in shifting care towards ambulatory settings and is driving a focus on cost transparency. There are few nurse staffing to workload models developed for ambulatory settings, less for multi-specialty clinics. Of the existing models, few have been evaluated against outcomes to understand any impact. This evaluation took place after the AWARD model for nurse staffing to workload was implemented in a multi-specialty clinic at a regional healthcare system in the Midwest. The multi-specialty clinic houses 26 medical and surgical specialty practices. The AWARD model was implemented in two specialty practices in October 2020. Donabedian’s Structure-Process-Outcome (SPO) model was used to evaluate outcomes based on changes to the structure and processes of care provided. The AWARD model defined and quantified the processes, recommended changes in the structure of day-to-day nurse staffing. Cost of care per patient visit, total visits, a total nurse performed visits used as structural and process measures, influencing the outcomes of cost of care and access to care. Independent t-tests were used to compare the difference in variables pre-and post-implementation. The SPO model was useful as an evaluation tool, providing a simple framework that is understood by a diverse care team. No statistically significant changes in the cost of care, total visits, or nurse visits were observed, but there were differences. Cost of care increased and access to care decreased. Two weeks into the post-implementation period, the multi-specialty clinic paused all non-critical patient visits due to a second surge of the COVID-19 pandemic. Clinic nursing staff was re-allocated to support the inpatient areas. This negatively impacted the ability of the Nurse Manager to utilize the AWARD model to plan daily staffing fully. The SPO framework could be used for the ongoing assessment of nurse staffing performance. Additional variables could be measured, giving a complete picture of the impact of nurse staffing. Going forward, there must be a continued focus on the outcomes of care and the value of nursingKeywords: ambulatory, clinic, evaluation, outcomes, staffing, staffing model, staffing to workload
Procedia PDF Downloads 1734696 Development and Characterization of Ethiopian Bamboo Fiber Polypropylene Composite
Authors: Tigist Girma Kedane
Abstract:
The purpose of this paper is to evaluate the properties of Ethiopian bamboo fiber polymer composites for headliner materials in the automobile industry. Accurate evaluation of its mechanical properties is thus critical for predicting its behavior during a vehicle's interior impact assessment. Conventional headliner materials are higher in weight, nonbiodegradable, expensive in cost, and unecofriendly during processing compared to the current researched materials. Three representatives of bamboo plants are harvested in three regions of bamboo species, three groups of ages, and two harvesting months. The statistical analysis was performed to validate the significant difference between the mean strength of bamboo ages, harvesting seasons, and bamboo species. Two-year-old bamboo fibers have the highest mechanical properties in all ages and November has higher mechanical properties compared to February. Injibara and Kombolcha have the highest and the lowest mechanical properties of bamboo fibers, respectively. Bamboo fiber epoxy composites have higher mechanical properties compared to bamboo fiber polypropylene composites. The flexural strength of bamboo fibre polymer composites has higher properties compared to tensile strength. Ethiopian bamboo fibers and their polymer composites have the best mechanical properties for the composite industry, which is used for headliner materials in the automobile industry compared to conventional headliner materials.Keywords: bampoo species, culm age, harvesting seasons, mechanical properties, polymer composite
Procedia PDF Downloads 624695 Detecting Covid-19 Fake News Using Deep Learning Technique
Authors: AnjalI A. Prasad
Abstract:
Nowadays, social media played an important role in spreading misinformation or fake news. This study analyzes the fake news related to the COVID-19 pandemic spread in social media. This paper aims at evaluating and comparing different approaches that are used to mitigate this issue, including popular deep learning approaches, such as CNN, RNN, LSTM, and BERT algorithm for classification. To evaluate models’ performance, we used accuracy, precision, recall, and F1-score as the evaluation metrics. And finally, compare which algorithm shows better result among the four algorithms.Keywords: BERT, CNN, LSTM, RNN
Procedia PDF Downloads 2064694 Experimental Validation of a Mathematical Model for Sizing End-of-Production-Line Test Benches for Electric Motors of Electric Vehicle
Authors: Emiliano Lustrissimi, Bonifacio Bianco, Sebastiano Caravaggi, Antonio Rosato
Abstract:
A mathematical framework has been designed to enhance the configuration of an end-of-production-line (EOL) test bench. This system can be used to assess the performance of electric motors or axles intended for electric vehicles. The model has been developed to predict the behaviour of EOL test benches and electric motors/axles under various boundary conditions, eliminating the need for extensive physical testing and reducing the corresponding power consumption. The suggested model is versatile, capable of being utilized across various types of electric motors or axles, and adaptable to accommodate varying power ratings of electric motors or axles. The maximum performance to be guaranteed by the EMs according to the car maker's specifications are taken as inputs in the model. Then, the required performance of each main EOL test bench component is calculated, and the corresponding systems available on the market are selected based on manufacturers’ catalogues. In this study, an EOL test bench has been designed according to the proposed model outputs for testing a low-power (about 22 kW) electric axle. The performance of the designed EOL test bench has been measured and used to validate the proposed model and assess both the consistency of the constraints as well as the accuracy of predictions in terms of electric demands. The comparison between experimental and predicted data exhibited a reasonable agreement, allowing to demonstrate that, despite some discrepancies, the model gives an accurate representation of the EOL test benches' performance.Keywords: electric motors, electric vehicles, end-of-production-line test bench, mathematical model, field tests
Procedia PDF Downloads 514693 Impact of Ozone Produced by Vehicular Emission on Chronic Obstructive Pulmonary Disease
Authors: Mohd Kamil Vakil
Abstract:
Air Pollution is caused by the introduction of chemicals in the biosphere. Primary pollutants on reaction with the components of the earth produce Secondary Pollutants like Smog. Ozone is the main ingredient of Smog. The ground level ozone is created by the chemical reactions between Nitrogen Oxides (NOx) and Volatile Organic Compounds (VOCs) in the presence of Sunlight. This ozone can enter inside and call as indoor ozone. The automobile emissions in both moving and idling conditions contribute to the indoor ozone formation. During engine ignition and shutdown, motor vehicles emit the ozone forming pollutants like NOx and VOCs, and the phenomena are called Cold Start and Hot-Soak respectively. Subjects like Chronic Obstructive Pulmonary Disease (COPD) and asthma associated with chronic respiratory diseases are susceptible to the harmful effects of Indoor Ozone. The most common cause of COPD other than smoking is the long-term contract with harmful pollutants like ground-level ozone. It is estimated by WHO that COPD will become the third leading cause of all deaths worldwide by 2030. In this paper, the cold-start and hot-soak vehicle emissions are studied in the context of accumulation of oxides of nitrogen at the outer walls of the building which may cause COPD. The titanium oxide coated building material is further discussed as an absorber of NOx when applied to the walls and roof.Keywords: indoor air quality, cold start emission, hot-soak, ozone
Procedia PDF Downloads 2044692 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms
Authors: Selim M. Khan
Abstract:
Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America
Procedia PDF Downloads 964691 Modelling the Effect of Physical Environment Factors on Child Pedestrian Severity Collisions in Malaysia: A Multinomial Logistic Regression Analysis
Authors: Muhamad N. Borhan, Nur S. Darus, Siti Z. Ishak, Rozmi Ismail, Siti F. M. Razali
Abstract:
Children are at the greater risk to be involved in road traffic collisions due to the complex interaction of various elements in our transportation system. It encompasses interactions between the elements of children and driver behavior along with physical and social environment factors. The present study examined the effect between the collisions severity and physical environment factors on child pedestrian collisions. The severity of collisions is categorized into four injury outcomes: fatal, serious injury, slight injury, and damage. The sample size comprised of 2487 cases of child pedestrian-vehicle collisions in which children aged 7 to 12 years old was involved in Malaysia for the years 2006-2015. A multinomial logistic regression was applied to establish the effect between severity levels and physical environment factors. The results showed that eight contributing factors influence the probability of an injury road surface material, traffic system, road marking, control type, lighting condition, type of location, land use and road surface condition. Understanding the effect of physical environment factors may contribute to the improvement of physical environment design and decrease the collision involvement.Keywords: child pedestrian, collisions, primary school, road injuries
Procedia PDF Downloads 1644690 A Hybrid Traffic Model for Smoothing Traffic Near Merges
Authors: Shiri Elisheva Decktor, Sharon Hornstein
Abstract:
Highway merges and unmarked junctions are key components in any urban road network, which can act as bottlenecks and create traffic disruption. Inefficient highway merges may trigger traffic instabilities such as stop-and-go waves, pose safety conditions and lead to longer journey times. These phenomena occur spontaneously if the average vehicle density exceeds a certain critical value. This study focuses on modeling the traffic using a microscopic traffic flow model. A hybrid traffic model, which combines human-driven and controlled vehicles is assumed. The controlled vehicles obey different driving policies when approaching the merge, or in the vicinity of other vehicles. We developed a co-simulation model in SUMO (Simulation of Urban Mobility), in which the human-driven cars are modeled using the IDM model, and the controlled cars are modeled using a dedicated controller. The scenario chosen for this study is a closed track with one merge and one exit, which could be later implemented using a scaled infrastructure on our lab setup. This will enable us to benchmark the results of this study obtained in simulation, to comparable results in similar conditions in the lab. The metrics chosen for the comparison of the performance of our algorithm on the overall traffic conditions include the average speed, wait time near the merge, and throughput after the merge, measured under different travel demand conditions (low, medium, and heavy traffic).Keywords: highway merges, traffic modeling, SUMO, driving policy
Procedia PDF Downloads 1064689 Finite Element Analysis of Human Tarsals, Meta Tarsals and Phalanges for Predicting probable location of Fractures
Authors: Irfan Anjum Manarvi, Fawzi Aljassir
Abstract:
Human bones have been a keen area of research over a long time in the field of biomechanical engineering. Medical professionals, as well as engineering academics and researchers, have investigated various bones by using medical, mechanical, and materials approaches to discover the available body of knowledge. Their major focus has been to establish properties of these and ultimately develop processes and tools either to prevent fracture or recover its damage. Literature shows that mechanical professionals conducted a variety of tests for hardness, deformation, and strain field measurement to arrive at their findings. However, they considered these results accuracy to be insufficient due to various limitations of tools, test equipment, difficulties in the availability of human bones. They proposed the need for further studies to first overcome inaccuracies in measurement methods, testing machines, and experimental errors and then carry out experimental or theoretical studies. Finite Element analysis is a technique which was developed for the aerospace industry due to the complexity of design and materials. But over a period of time, it has found its applications in many other industries due to accuracy and flexibility in selection of materials and types of loading that could be theoretically applied to an object under study. In the past few decades, the field of biomechanical engineering has also started to see its applicability. However, the work done in the area of Tarsals, metatarsals and phalanges using this technique is very limited. Therefore, present research has been focused on using this technique for analysis of these critical bones of the human body. This technique requires a 3-dimensional geometric computer model of the object to be analyzed. In the present research, a 3d laser scanner was used for accurate geometric scans of individual tarsals, metatarsals, and phalanges from a typical human foot to make these computer geometric models. These were then imported into a Finite Element Analysis software and a length refining process was carried out prior to analysis to ensure the computer models were true representatives of actual bone. This was followed by analysis of each bone individually. A number of constraints and load conditions were applied to observe the stress and strain distributions in these bones under the conditions of compression and tensile loads or their combination. Results were collected for deformations in various axis, and stress and strain distributions were observed to identify critical locations where fracture could occur. A comparative analysis of failure properties of all the three types of bones was carried out to establish which of these could fail earlier which is presented in this research. Results of this investigation could be used for further experimental studies by the academics and researchers, as well as industrial engineers, for development of various foot protection devices or tools for surgical operations and recovery treatment of these bones. Researchers could build up on these models to carryout analysis of a complete human foot through Finite Element analysis under various loading conditions such as walking, marching, running, and landing after a jump etc.Keywords: tarsals, metatarsals, phalanges, 3D scanning, finite element analysis
Procedia PDF Downloads 3294688 Traumatic Brachiocephalic Artery Pseudoaneurysm
Authors: Sally Shepherd, Jessica Wong, David Read
Abstract:
Traumatic brachiocephalic artery aneurysm is a rare injury that typically occurs as a result of a blunt chest injury. A 19-year-old female sustained a head-on, high speed motor vehicle crash into a tree. Upon release after 45 minutes of entrapment, she was tachycardic but normotensive, with a significant seatbelt sign across her chest and open deformed right thigh with weak pulses in bilateral lower limbs. A chest XR showed mild upper mediastinal widening. A CT trauma series plus gated CT chest revealed a grade 3a aortic arch transection with brachiocephalic pseudoaneurysm. Endovascular repair of the brachiocephalic artery was attempted post-presentation but was unsuccessful as the first stent migrated to the infrarenal abdominal aorta and the second stent across the brachiocephalic artery origin had a persistent leak at the base. She was transferred to Intensive Care for strict blood pressure control. She returned to theatre 5 hours later for a median sternotomy, aortic arch repair with an 8mm graft extraction, and excision of the innominate artery pseudoaneurysm. She had an uncomplicated post-operative recovery. This case highlights that brachiocephalic artery injury is a rare but potentially lethal injury as a result of blunt chest trauma. Safe management requires a combined Vascular and Cardiothoracic team approach, as stenting alone may be insufficient.Keywords: blunt chest injury, Brachiocephalic aneurysm, innominate artery, trauma
Procedia PDF Downloads 2304687 Design of a Cooperative Neural Network, Particle Swarm Optimization (PSO) and Fuzzy Based Tracking Control for a Tilt Rotor Unmanned Aerial Vehicle
Authors: Mostafa Mjahed
Abstract:
Tilt Rotor UAVs (Unmanned Aerial Vehicles) are naturally unstable and difficult to maneuver. The purpose of this paper is to design controllers for the stabilization and trajectory tracking of this type of UAV. To this end, artificial intelligence methods have been exploited. First, the dynamics of this UAV was modeled using the Lagrange-Euler method. The conventional method based on Proportional, Integral and Derivative (PID) control was applied by decoupling the different flight modes. To improve stability and trajectory tracking of the Tilt Rotor, the fuzzy approach and the technique of multilayer neural networks (NN) has been used. Thus, Fuzzy Proportional Integral and Derivative (FPID) and Neural Network-based Proportional Integral and Derivative controllers (NNPID) have been developed. The meta-heuristic approach based on Particle Swarm Optimization (PSO) method allowed adjusting the setting parameters of NNPID controller, giving us an improved NNPID-PSO controller. Simulation results under the Matlab environment show the efficiency of the approaches adopted. Besides, the Tilt Rotor UAV has become stable and follows different types of trajectories with acceptable precision. The Fuzzy, NN and NN-PSO-based approaches demonstrated their robustness because the presence of the disturbances did not alter the stability or the trajectory tracking of the Tilt Rotor UAV.Keywords: neural network, fuzzy logic, PSO, PID, trajectory tracking, tilt-rotor UAV
Procedia PDF Downloads 1204686 The EU Omnipotence Paradox: Inclusive Cultural Policies and Effects of Exclusion
Authors: Emmanuel Pedler, Elena Raevskikh, Maxime Jaffré
Abstract:
Can the cultural geography of European cities be durably managed by European policies? To answer this question, two hypotheses can be proposed. (1) Either European cultural policies are able to erase cultural inequalities between the territories through the creation of new areas of cultural attractiveness in each beneficiary neighborhood, city or country. Or, (2) each European region historically rooted in a number of endogenous socio-historical, political or demographic factors is not receptive to exogenous political influences. Thus, the cultural attractiveness of a territory is difficult to measure and to impact by top-down policies in the long term. How do these two logics - European and local - interact and contribute to the emergence of a valued, popular sense of a common European cultural identity? Does this constant interaction between historical backgrounds and new political concepts encourage a positive identification with the European project? The European cultural policy programs, such as ECC (European Capital of Culture), seek to develop new forms of civic cohesion through inclusive and participative cultural events. The cultural assets of a city elected ‘ECC’ are mobilized to attract a wide range of new audiences, including populations poorly integrated into local cultural life – and consequently distant from pre-existing cultural offers. In the current context of increasingly heterogeneous individual perceptions of Europe, the ECC program aims to promote cultural forms and institutions that should accelerate both territorial and cross-border European cohesion. The new cultural consumption pattern is conceived to stimulate integration and mobility, but also to create a legitimate and transnational ideal European citizen type. Our comparative research confronts contrasting cases of ‘European Capitals of Culture’ from the south and from the north of Europe, cities recently concerned by the ECC political mechanism and cities that were elected ECC in the past, multi-centered cultural models vs. highly centralized cultural models. We aim to explore the impacts of European policies on the urban cultural geography, but also to understand the current obstacles for its efficient implementation.Keywords: urbanism, cultural policies, cultural institutions, european cultural capitals, heritage industries, exclusion effects
Procedia PDF Downloads 2614685 An Approach to Control Electric Automotive Water Pumps Deploying Artificial Neural Networks
Authors: Gabriel S. Adesina, Ruixue Cheng, Geetika Aggarwal, Michael Short
Abstract:
With the global shift towards sustainability and technological advancements, electric Hybrid vehicles (EHVs) are increasingly being seen as viable alternatives to traditional internal combustion (IC) engine vehicles, which also require efficient cooling systems. The electric Automotive Water Pump (AWP) has been introduced as an alternative to IC engine belt-driven pump systems. However, current control methods for AWPs typically employ fixed gain settings, which are not ideal for the varying conditions of dynamic vehicle environments, potentially leading to overheating issues. To overcome the limitations of fixed gain control, this paper proposes implementing an artificial neural network (ANN) for managing the AWP in EHVs. The proposed ANN provides an intelligent, adaptive control strategy that enhances the AWP's performance, supported through MATLAB simulation work illustrated in this paper. Comparative analysis demonstrates that the ANN-based controller surpasses conventional PID and fuzzy logic-based controllers (FLC), exhibiting no overshoot, 0.1secs rapid response, and 0.0696 IAE performance. Consequently, the findings suggest that ANNs can be effectively utilized in EHVs.Keywords: automotive water pump, cooling system, electric hybrid vehicles, artificial neural networks, PID control, fuzzy logic control, IAE, MATLAB
Procedia PDF Downloads 35