Search results for: smooth flow of vehicles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6168

Search results for: smooth flow of vehicles

2868 Public Bus Transport Passenger Safety Evaluations in Ghana: A Phenomenological Constructivist Exploration

Authors: Enoch F. Sam, Kris Brijs, Stijn Daniels, Tom Brijs, Geert Wets

Abstract:

Notwithstanding the growing body of literature that recognises the importance of personal safety to public transport (PT) users, it remains unclear what PT users consider regarding their safety. In this study, we explore the criteria PT users in Ghana use to assess bus safety. This knowledge will afford a better understanding of PT users’ risk perceptions and assessments which may contribute to theoretical models of PT risk perceptions. We utilised phenomenological research methodology, with data drawn from 61 purposively sampled participants. Data collection (through focus group discussions and in-depth interviews) and analyses were done concurrently to the point of saturation. Our inductive data coding and analyses through the constant comparison and content analytic techniques resulted in 4 code categories (conceptual dimensions), 27 codes (safety items/criteria), and 100 quotations (data segments). Of the number of safety criteria participants use to assess bus safety, vehicle condition, driver’s marital status, and transport operator’s safety records were the most considered. With each criterion, participants rightly demonstrated its respective relevance to bus safety. These findings imply that investment in and maintenance of safer vehicles, and responsible and safety-conscious drivers, and prioritization of passengers’ safety are key-targets for public bus/minibus operators in Ghana.

Keywords: safety evaluations, public bus/minibus, passengers, phenomenology, Ghana

Procedia PDF Downloads 330
2867 Investigation of Riprap Stability on Roughness Bridge Pier in River Bend

Authors: A. Alireza Masjedi, B. Amir Taeedi

Abstract:

In this research, by placing the two cylindrical piers without roughness and with roughness with riprap around its, they proceeded to a series of tests. Experiments were done by three relative diameters of riprap with density 2.1 and one rate of discharge 27 lit/s under pure water condition. In each experiment, flow depth measured in terms of failure threshold then stability number calculated by using data obtained. The results of the research showed that the riprap stability in pier with roughness is more pier without roughness because of the pier with roughness is sharp-pointed and reduced horseshoe vortex.

Keywords: riprap stability, roughness, river bend, froude number

Procedia PDF Downloads 338
2866 Effect of Riprap Stability on Roughness Bridge Pier in River Bend

Authors: Alireza Masjedi, Amir Taeedi

Abstract:

In this research, by placing the two cylindrical piers without roughness and with roughness with riprap around its, they proceeded to a series of tests. Experiments were done by three relative diameters of riprap with density 2.1 and one rate of discharge 27 lit/s under pure water condition. In each experiment, flow depth measured in terms of failure threshold then stability number calculated by using data obtained. The results of the research showed that the riprap stability in pier with roughness is more pier without roughness because of the pier with roughness is sharp-pointed and reduced horseshoe vortex.

Keywords: riprap stability, roughness, river bend, froude number

Procedia PDF Downloads 343
2865 Energy Reclamation in Micro Cavitating Flow

Authors: Morteza Ghorbani, Reza Ghorbani

Abstract:

Cavitation phenomenon has attracted much attention in the mechanical and biomedical technologies. Despite the simplicity and mostly low cost of the devices generating cavitation bubbles, the physics behind the generation and collapse of these bubbles particularly in micro/nano scale has still not well understood. In the chemical industry, micro/nano bubble generation is expected to be applicable to the development of porous materials such as microcellular plastic foams. Moreover, it was demonstrated that the presence of micro/nano bubbles on a surface reduced the adsorption of proteins. Thus, the micro/nano bubbles could act as antifouling agents. Micro and nano bubbles were also employed in water purification, froth floatation, even in sonofusion, which was not completely validated. Small bubbles could also be generated using micro scale hydrodynamic cavitation. In this study, compared to the studies available in the literature, we are proposing a novel approach in micro scale utilizing the energy produced during the interaction of the spray affected by the hydrodynamic cavitating flow and a thin aluminum plate. With a decrease in the size, cavitation effects become significant. It is clearly shown that with the aid of hydrodynamic cavitation generated inside the micro/mini-channels in addition to the optimization of the distance between the tip of the microchannel configuration and the solid surface, surface temperatures can be increased up to 50C under the conditions of this study. The temperature rise on the surfaces near the collapsing small bubbles was exploited for energy harvesting in small scale, in such a way that miniature, cost-effective, and environmentally friendly energy-harvesting devices can be developed. Such devices will not require any external power and moving parts in contrast to common energy-harvesting devices, such as those involving piezoelectric materials and micro engine. Energy harvesting from thermal energy has been widely exploited to achieve energy savings and clean technologies. We are proposing a cost effective and environmentally friendly solution for the growing individual energy needs thanks to the energy application of cavitating flows. The necessary power for consumer devices, such as cell phones and laptops, can be provided using this approach. Thus, this approach has the potential for solving personal energy needs in an inexpensive and environmentally friendly manner and can trigger a shift of paradigm in energy harvesting.

Keywords: cavitation, energy, harvesting, micro scale

Procedia PDF Downloads 186
2864 Intensification of Heat Transfer Using AL₂O₃-Cu/Water Hybrid Nanofluid in a Circular Duct Using Inserts

Authors: Muluken Biadgelegn Wollele, Mebratu Assaye Mengistu

Abstract:

Nanotechnology has created new opportunities for improving industrial efficiency and performance. One of the proposed approaches to improving the effectiveness of temperature exchangers is the use of nanofluids to improve heat transfer performance. The thermal conductivity of nanoparticles, as well as their size, diameter, and volume concentration, all played a role in influencing the rate of heat transfer. Nanofluids are commonly used in automobiles, energy storage, electronic component cooling, solar absorbers, and nuclear reactors. Convective heat transfer must be improved when designing thermal systems in order to reduce heat exchanger size, weight, and cost. Using roughened surfaces to promote heat transfer has been tried several times. Thus, both active and passive heat transfer methods show potential in terms of heat transfer improvement. There will be an added advantage of enhanced heat transfer due to the two methods adopted; however, pressure drop must be considered during flow. Thus, the current research aims to increase heat transfer by adding a twisted tap insert in a plain tube using a working fluid hybrid nanofluid (Al₂O₃-Cu) with a base fluid of water. A circular duct with inserts, a tube length of 3 meters, a hydraulic diameter of 0.01 meters, and tube walls with a constant heat flux of 20 kW/m² and a twist ratio of 125 was used to investigate Al₂O₃-Cu/H₂O hybrid nanofluid with inserts. The temperature distribution is better than with conventional tube designs due to stronger tangential contact and swirls in the twisted tape. The Nusselt number values of plain twisted tape tubes are 1.5–2.0 percent higher than those of plain tubes. When twisted tape is used instead of plain tube, performance evaluation criteria improve by 1.01 times. A heat exchanger that is useful for a number of heat exchanger applications can be built utilizing a mixed flow of analysis that incorporates passive and active methodologies.

Keywords: nanofluids, active method, passive method, Nusselt number, performance evaluation criteria

Procedia PDF Downloads 69
2863 Determination of Foaming Behavior in thermoplastic Composite Nonwoven Structures for Automotive Applications

Authors: Zulfiye Ahan, Mustafa Dogu, Elcin Yilmaz

Abstract:

The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world, with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of material is gradually growing, especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent, and a thermal process was applied to obtain a porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams.

Keywords: composite nonwoven, thermoplastic foams, foaming agent, foaming behavior

Procedia PDF Downloads 233
2862 Conceptual Model of a Residential Waste Collection System Using ARENA Software

Authors: Bruce G. Wilson

Abstract:

The collection of municipal solid waste at the curbside is a complex operation that is repeated daily under varying circumstances around the world. There have been several attempts to develop Monte Carlo simulation models of the waste collection process dating back almost 50 years. Despite this long history, the use of simulation modeling as a planning or optimization tool for waste collection is still extremely limited in practice. Historically, simulation modeling of waste collection systems has been hampered by the limitations of computer hardware and software and by the availability of representative input data. This paper outlines the development of a Monte Carlo simulation model that overcomes many of the limitations contained in previous models. The model uses a general purpose simulation software program that is easily capable of modeling an entire waste collection network. The model treats the stops on a waste collection route as a queue of work to be processed by a collection vehicle (or server). Input data can be collected from a variety of sources including municipal geographic information systems, global positioning system recorders on collection vehicles, and weigh scales at transfer stations or treatment facilities. The result is a flexible model that is sufficiently robust that it can model the collection activities in a large municipality, while providing the flexibility to adapt to changing conditions on the collection route.

Keywords: modeling, queues, residential waste collection, Monte Carlo simulation

Procedia PDF Downloads 396
2861 Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain

Authors: Suhadiyana Hanapi, Alhassan Salami Tijani, W. A. N Wan Mohamed

Abstract:

In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption.

Keywords: prototype fuel cell electric vehicles, energy efficient, control/driving technique, fuel economy

Procedia PDF Downloads 434
2860 Suitability of Satellite-Based Data for Groundwater Modelling in Southwest Nigeria

Authors: O. O. Aiyelokun, O. A. Agbede

Abstract:

Numerical modelling of groundwater flow can be susceptible to calibration errors due to lack of adequate ground-based hydro-metrological stations in river basins. Groundwater resources management in Southwest Nigeria is currently challenged by overexploitation, lack of planning and monitoring, urbanization and climate change; hence to adopt models as decision support tools for sustainable management of groundwater; they must be adequately calibrated. Since river basins in Southwest Nigeria are characterized by missing data, and lack of adequate ground-based hydro-meteorological stations; the need for adopting satellite-based data for constructing distributed models is crucial. This study seeks to evaluate the suitability of satellite-based data as substitute for ground-based, for computing boundary conditions; by determining if ground and satellite based meteorological data fit well in Ogun and Oshun River basins. The Climate Forecast System Reanalysis (CFSR) global meteorological dataset was firstly obtained in daily form and converted to monthly form for the period of 432 months (January 1979 to June, 2014). Afterwards, ground-based meteorological data for Ikeja (1981-2010), Abeokuta (1983-2010), and Oshogbo (1981-2010) were compared with CFSR data using Goodness of Fit (GOF) statistics. The study revealed that based on mean absolute error (MEA), coefficient of correlation, (r) and coefficient of determination (R²); all meteorological variables except wind speed fit well. It was further revealed that maximum and minimum temperature, relative humidity and rainfall had high range of index of agreement (d) and ratio of standard deviation (rSD), implying that CFSR dataset could be used to compute boundary conditions such as groundwater recharge and potential evapotranspiration. The study concluded that satellite-based data such as the CFSR should be used as input when constructing groundwater flow models in river basins in Southwest Nigeria, where majority of the river basins are partially gaged and characterized with long missing hydro-metrological data.

Keywords: boundary condition, goodness of fit, groundwater, satellite-based data

Procedia PDF Downloads 122
2859 PNIPAAm-MAA Nanoparticles as Delivery Vehicles for Curcumin Against MCF-7 Breast Cancer Cells

Authors: H. Tayefih, F. farajzade ahari, F. Zarghami, V. Zeighamian, N. Zarghami, Y. Pilehvar-soltanahmadi

Abstract:

Breast cancer is the most frequently occurring cancer among women throughout the world. Natural compounds such as curcumin hold promise to treat a variety of cancers including breast cancer. However, curcumin's therapeutic application is limited, due to its rapid degradation and poor aqueous solubility. On the other hand, previous studies have stated that drug delivery using nanoparticles might improve the therapeutic response to anticancer drugs. Poly (N-isopropylacrylamide-co-methacrylic acid) (PNIPAAm–MAA) is one of the hydrogel copolymers utilized in the drug delivery system for cancer therapy. The aim of this study was to examine the cytotoxic potential of curcumin encapsulated within the NIPAAm-MAA nanoparticle, on the MCF-7 breast cancer cell line. In this work, polymeric nanoparticles were synthesized through the free radical mechanism, and curcumin was encapsulated into NIPAAm-MAA nanoparticles. Then, the cytotoxic effect of curcumin-loaded NIPAAm-MAA on the MCF-7 breast cancer cell line was measured by MTT assays. The evaluation of the results showed that curcumin-loaded NIPAAm-MAA has more cytotoxic effect on the MCF-7 cell line and efficiently inhibited the growth of the breast cancer cell population, compared with free curcumin. In conclusion, this study indicates that curcumin-loaded NIPAAm-MAA suppresses the growth of the MCF-7 cell line. Overall, it is concluded that encapsulating curcumin into the NIPAAm-MAA copolymer could open up new avenues for breast cancer treatment.

Keywords: PNIPAAm-MAA, breast cancer, curcumin, drug delivery

Procedia PDF Downloads 370
2858 Simulation: A Tool for Stabilization of Welding Processes in Lean Production Concepts

Authors: Ola Jon Mork, Lars Andre Giske, Emil Bjørlykhaug

Abstract:

Stabilization of critical processes in order to have the right quality of the products, more efficient production and smoother flow is a key issue in lean production. This paper presents how simulation of key welding processes can stabilize complicated welding processes in small scale production, and how simulation can impact the entire production concept seen from the perspective of lean production. First, a field study was made to learn the production processes in the factory, and subsequently the field study was transformed into a value stream map to get insight into each operation, the quality issues, operation times, lead times and flow of materials. Valuable practical knowledge of how the welding operations were done by operators, appropriate tools and jigs, and type of robots that could be used, was collected. All available information was then implemented into a simulation environment for further elaboration and development. Three researchers, the management of the company and skilled operators at the work floor where working on the project over a period of eight months, and a detailed description of the process was made by the researchers. The simulation showed that simulation could solve a number of technical challenges, the robot program can be tuned in off line mode, and the design and testing of the robot cell could be made in the simulator. Further on the design of the product could be optimized for robot welding and the jigs could be designed and tested in simulation environment. This means that a key issue of lean production can be solved; the welding operation will work with almost 100% performance when it is put into real production. Stabilizing of one key process is critical to gain control of the entire value chain, then a Takt Time can be established and the focus can be directed towards the next process in the production which should be stabilized. Results show that industrial parameters like welding time, welding cost and welding quality can be defined on the simulation stage. Further on, this gives valuable information for calculation of the factories business performance, like manufacturing volume and manufacturing efficiency. Industrial impact from simulation is more efficient implementation of lean manufacturing, since the welding process can be stabilized. More research should be done to gain more knowledge about simulation as a tool for implementation of lean, especially where there complex processes.

Keywords: simulation, lean, stabilization, welding process

Procedia PDF Downloads 316
2857 The Conditionality of Financial Risk: A Comparative Analysis of High-Tech and Utility Companies Listed on the Shenzhen Stock Exchange (SSE)

Authors: Joseph Paul Chunga

Abstract:

The investment universe is awash with a myriad of financial choices that investors have to opt for, which principally culminates into a duality between aggressive or conservative approaches. Howbeit, it is pertinent to emphasize that the investment vehicles with an aggressive approach tend to take on more risk than the latter group in an effort to generate higher future returns for their respective investors. This study examines the conditionality effect that such partiality in financing has on the High-Tech and Public Utility companies listed on the Shenzhen Stock Exchange (SSE). Specifically, it examines the significance of the relationship between capitalization ratios of Total Debt Ratio (TDR), Degree of Financial Leverage (DFL) and profitability ratios of Earnings per Share (EPS) and Returns on Equity (ROE) on the Financial Risk of the two industries. We employ a modified version of the Panel Regression Model used by Rahman (2017) to estimate the relationship. The study finds that there is a significant positive relationship between the capitalization ratios on the financial risk of Public Utility companies more than High-Tech companies and a substantial negative relationship between the profitability ratios and the financial risk of the former than the latter companies. This then spells an important insight for prospective investors with regards to the volatility of earnings of such companies.

Keywords: financial leverage, debt financing, conservative firms, aggressive firms

Procedia PDF Downloads 171
2856 Automated End-to-End Pipeline Processing Solution for Autonomous Driving

Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi

Abstract:

Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.

Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing

Procedia PDF Downloads 111
2855 Analyzing Spatio-Structural Impediments in the Urban Trafficscape of Kolkata, India

Authors: Teesta Dey

Abstract:

Integrated Transport development with proper traffic management leads to sustainable growth of any urban sphere. Appropriate mass transport planning is essential for the populous cities in third world countries like India. The exponential growth of motor vehicles with unplanned road network is now the common feature of major urban centres in India. Kolkata, the third largest mega city in India, is not an exception of it. The imbalance between demand and supply of unplanned transport services in this city is manifested in the high economic and environmental costs borne by the associated society. With the passage of time, the growth and extent of passenger demand for rapid urban transport has outstripped proper infrastructural planning and causes severe transport problems in the overall urban realm. Hence Kolkata stands out in the world as one of the most crisis-ridden metropolises. The urban transport crisis of this city involves severe traffic congestion, the disparity in mass transport services on changing peripheral land uses, route overlapping, lowering of travel speed and faulty implementation of governmental plans as mostly induced by rapid growth of private vehicles on limited road space with huge carbon footprint. Therefore the paper will critically analyze the extant road network pattern for improving regional connectivity and accessibility, assess the degree of congestion, identify the deviation from demand and supply balance and finally evaluate the emerging alternate transport options as promoted by the government. For this purpose, linear, nodal and spatial transport network have been assessed based on certain selected indices viz. Road Degree, Traffic Volume, Shimbel Index, Direct Bus Connectivity, Average Travel and Waiting Tine Indices, Route Variety, Service Frequency, Bus Intensity, Concentration Analysis, Delay Rate, Quality of Traffic Transmission, Lane Length Duration Index and Modal Mix. Total 20 Traffic Intersection Points (TIPs) have been selected for the measurement of nodal accessibility. Critical Congestion Zones (CCZs) are delineated based on one km buffer zones of each TIP for congestion pattern analysis. A total of 480 bus routes are assessed for identifying the deficiency in network planning. Apart from bus services, the combined effects of other mass and para transit modes, containing metro rail, auto, cab and ferry services, are also analyzed. Based on systematic random sampling method, a total of 1500 daily urban passengers’ perceptions were studied for checking the ground realities. The outcome of this research identifies the spatial disparity among the 15 boroughs of the city with severe route overlapping and congestion problem. North and Central Kolkata-based mass transport services exceed the transport strength of south and peripheral Kolkata. Faulty infrastructural condition, service inadequacy, economic loss and workers’ inefficiency are the most dominant reasons behind the defective mass transport network plan. Hence there is an urgent need to revive the extant road based mass transport system of this city by implementing a holistic management approach by upgrading traffic infrastructure, designing new roads, better cooperation among different mass transport agencies, better coordination of transport and changing land use policies, large increase in funding and finally general passengers’ awareness.

Keywords: carbon footprint, critical congestion zones, direct bus connectivity, integrated transport development

Procedia PDF Downloads 266
2854 Politics of Violence and Terrorism in the Nigeria Democracy and Its Implications on National Peace and Security

Authors: Felix O. Akinboyewa

Abstract:

To say that Nigeria is faced with the problem of domestic terrorism is to say the obvious. The spate of political assassination during the fourth republic (1999-2010) is representative of what has become a growing trend. In this research, an attempt was made to examine the problems of political assassination within the context of significant categories of domestic-related terrorism in Nigeria Democracy. The central questions are: What exactly are the nature of political violence and terrorist act in the Nigeria nascent democracy? Was there any factor responsible for the politics of violence and terrorist act in the Nigeria democracy? What implications can the political violence and terrorist act have on democratic consolidation, national peace, and security? What solutions can be proffered to eradicate terrorist act and political violence in the Nigeria democracy? The study adopted a descriptive survey design which falls within the empirical research methodology. The sample size of the study consisted of 220 subjects randomly selected. The main instruments used were questionnaire and interview schedule. Data generated from the study were analyzed using descriptive statistics such as percentage and tables. The research findings showed that unemployed youths and the members of Nigeria Union of Road Transport Workers (NURTW) were the major actors in political violence in Nigeria. They have access to weapons and ammunitions which they use to terrorize the populace. The research showed that factors responsible for the political violence and terrorism in Nigeria are: poor electoral administration; election rigging; poor security system; religious and ethnic sentiment; problems of poverty and unemployment; over-exuberance and low level of education. The study also showed that electoral violence affects smooth running democracy in Nigeria. On the measures to be taken to eradicate political violence and terrorism in Nigeria, the research showed that provision of employment opportunities would go a long way to solving the problem. Civil society as an important institution can help to reduce incidence of political violence in Nigeria. Also, government has greater role to play. The study concludes that adherence to the proffered suggestions would reduce the level of political violence and terrorist act in Nigeria.

Keywords: consolidation, democracy, peace, security, terrorism, violence

Procedia PDF Downloads 117
2853 Vehicular Emission Estimation of Islamabad by Using Copert-5 Model

Authors: Muhammad Jahanzaib, Muhammad Z. A. Khan, Junaid Khayyam

Abstract:

Islamabad is the capital of Pakistan with the population of 1.365 million people and with a vehicular fleet size of 0.75 million. The vehicular fleet size is growing annually by the rate of 11%. Vehicular emissions are major source of Black carbon (BC). In developing countries like Pakistan, most of the vehicles consume conventional fuels like Petrol, Diesel, and CNG. These fuels are the major emitters of pollutants like CO, CO2, NOx, CH4, VOCs, and particulate matter (PM10). Carbon dioxide and methane are the leading contributor to the global warming with a global share of 9-26% and 4-9% respectively. NOx is the precursor of nitrates which ultimately form aerosols that are noxious to human health. In this study, COPERT (Computer program to Calculate Emissions from Road Transport) was used for vehicular emission estimation in Islamabad. COPERT is a windows based program which is developed for the calculation of emissions from the road transport sector. The emissions were calculated for the year of 2016 include pollutants like CO, NOx, VOC, and PM and energy consumption. The different variable was input to the model for emission estimation including meteorological parameters, average vehicular trip length and respective time duration, fleet configuration, activity data, degradation factor, and fuel effect. The estimated emissions for CO, CH4, CO2, NOx, and PM10 were found to be 9814.2, 44.9, 279196.7, 3744.2 and 304.5 tons respectively.

Keywords: COPERT Model, emission estimation, PM10, vehicular emission

Procedia PDF Downloads 255
2852 Hybrid Hunger Games Search Optimization Based on the Neural Networks Approach Applied to UAVs

Authors: Nadia Samantha Zuñiga-Peña, Norberto Hernández-Romero, Omar Aguilar-Mejia, Salatiel García-Nava

Abstract:

Using unmanned aerial vehicles (UAVs) for load transport has gained significant importance in various sectors due to their ability to improve efficiency, reduce costs, and access hard-to-reach areas. Although UAVs offer numerous advantages for load transport, several complications and challenges must be addressed to exploit their potential fully. Complexity relays on UAVs are underactuated, non-linear systems with a high degree of coupling between their variables and are subject to forces with uncertainty. One of the biggest challenges is modeling and controlling the system formed by UAVs carrying a load. In order to solve the controller problem, in this work, a hybridization of Neural Network and Hunger Games Search (HGS) metaheuristic algorithm is developed and implemented to find the parameters of the Super Twisting Sliding Mode Controller for the 8 degrees of freedom model of UAV with payload. The optimized controller successfully tracks the UAV through the three-dimensional desired path, demonstrating the effectiveness of the proposed solution. A comparison of performance shows the superiority of the neural network HGS (NNHGS) over the HGS algorithm, minimizing the tracking error by 57.5 %.

Keywords: neural networks, hunger games search, super twisting sliding mode controller, UAVs.

Procedia PDF Downloads 22
2851 3D Multimedia Model for Educational Design Engineering

Authors: Mohanaad Talal Shakir

Abstract:

This paper tries to propose educational design by using multimedia technology for Engineering of computer Technology, Alma'ref University College in Iraq. This paper evaluates the acceptance, cognition, and interactiveness of the proposed model by students by using the statistical relationship to determine the stage of the model. Objectives of proposed education design are to develop a user-friendly software for education purposes using multimedia technology and to develop animation for 3D model to simulate assembling and disassembling process of high-speed flow.

Keywords: CAL, multimedia, shock tunnel, interactivity, engineering education

Procedia PDF Downloads 615
2850 Computational Fluid Dynamics Simulation of Turbulent Convective Heat Transfer in Rectangular Mini-Channels for Rocket Cooling Applications

Authors: O. Anwar Beg, Armghan Zubair, Sireetorn Kuharat, Meisam Babaie

Abstract:

In this work, motivated by rocket channel cooling applications, we describe recent CFD simulations of turbulent convective heat transfer in mini-channels at different aspect ratios. ANSYS FLUENT software has been employed with a mean average error of 5.97% relative to Forrest’s MIT cooling channel study (2014) at a Reynolds number of 50,443 with a Prandtl number of 3.01. This suggests that the simulation model created for turbulent flow was suitable to set as a foundation for the study of different aspect ratios in the channel. Multiple aspect ratios were also considered to understand the influence of high aspect ratios to analyse the best performing cooling channel, which was determined to be the highest aspect ratio channels. Hence, the approximate 28:1 aspect ratio provided the best characteristics to ensure effective cooling. A mesh convergence study was performed to assess the optimum mesh density to collect accurate results. Hence, for this study an element size of 0.05mm was used to generate 579,120 for proper turbulent flow simulation. Deploying a greater bias factor would increase the mesh density to the furthest edges of the channel which would prove to be useful if the focus of the study was just on a single side of the wall. Since a bulk temperature is involved with the calculations, it is essential to ensure a suitable bias factor is used to ensure the reliability of the results. Hence, in this study we have opted to use a bias factor of 5 to allow greater mesh density at both edges of the channel. However, the limitations on mesh density and hardware have curtailed the sophistication achievable for the turbulence characteristics. Also only linear rectangular channels were considered, i.e. curvature was ignored. Furthermore, we only considered conventional water coolant. From this CFD study the variation of aspect ratio provided a deeper appreciation of the effect of small to high aspect ratios with regard to cooling channels. Hence, when considering an application for the channel, the geometry of the aspect ratio must play a crucial role in optimizing cooling performance.

Keywords: rocket channel cooling, ANSYS FLUENT CFD, turbulence, convection heat transfer

Procedia PDF Downloads 143
2849 Sponge Urbanism as a Resilient City Design to Overcome Urban Flood Risk, for the Case of Aluva, Kerala, India

Authors: Gayathri Pramod, Sheeja K. P.

Abstract:

Urban flooding has been seen rising in cities for the past few years. This rise in urban flooding is the result of increasing urbanization and increasing climate change. A resilient city design focuses on 'living with water'. This means that the city is capable of accommodating the floodwaters without having to risk any loss of lives or properties. The resilient city design incorporates green infrastructure, river edge treatment, open space design, etc. to form a city that functions as a whole for resilience. Sponge urbanism is a recent method for building resilient cities and is founded by China in 2014. Sponge urbanism is the apt method for resilience building for a tropical town like Aluva of Kerala. Aluva is a tropical town that experiences rainfall of about 783 mm per month during the rainy season. Aluva is an urbanized town which faces the risk of urban flooding and riverine every year due to the presence of Periyar River in the town. Impervious surfaces and hard construction and developments contribute towards flood risk by posing as interference for a natural flow and natural filtration of water into the ground. This type of development is seen in Aluva also. Aluva is designed in this research as a town that have resilient strategies of sponge city and which focusses on natural methods of construction. The flood susceptibility of Aluva is taken into account to design the spaces for sponge urbanism and in turn, reduce the flood susceptibility for the town. Aluva is analyzed, and high-risk zones for development are identified through studies. These zones are designed to withstand the risk of flooding. Various catchment areas are identified according to the natural flow of water, and then these catchment areas are designed to act as a public open space and as detention ponds in case of heavy rainfall. Various development guidelines, according to land use, is also prescribed, which help in increasing the green cover of the town. Aluva is then designed to be a completely flood-adapted city or sponge city according to the guidelines and interventions.

Keywords: climate change, flooding, resilient city, sponge city, sponge urbanism, urbanization

Procedia PDF Downloads 146
2848 Centrality and Patent Impact: Coupled Network Analysis of Artificial Intelligence Patents Based on Co-Cited Scientific Papers

Authors: Xingyu Gao, Qiang Wu, Yuanyuan Liu, Yue Yang

Abstract:

In the era of the knowledge economy, the relationship between scientific knowledge and patents has garnered significant attention. Understanding the intricate interplay between the foundations of science and technological innovation has emerged as a pivotal challenge for both researchers and policymakers. This study establishes a coupled network of artificial intelligence patents based on co-cited scientific papers. Leveraging centrality metrics from network analysis offers a fresh perspective on understanding the influence of information flow and knowledge sharing within the network on patent impact. The study initially obtained patent numbers for 446,890 granted US AI patents from the United States Patent and Trademark Office’s artificial intelligence patent database for the years 2002-2020. Subsequently, specific information regarding these patents was acquired using the Lens patent retrieval platform. Additionally, a search and deduplication process was performed on scientific non-patent references (SNPRs) using the Web of Science database, resulting in the selection of 184,603 patents that cited 37,467 unique SNPRs. Finally, this study constructs a coupled network comprising 59,379 artificial intelligence patents by utilizing scientific papers co-cited in patent backward citations. In this network, nodes represent patents, and if patents reference the same scientific papers, connections are established between them, serving as edges within the network. Nodes and edges collectively constitute the patent coupling network. Structural characteristics such as node degree centrality, betweenness centrality, and closeness centrality are employed to assess the scientific connections between patents, while citation count is utilized as a quantitative metric for patent influence. Finally, a negative binomial model is employed to test the nonlinear relationship between these network structural features and patent influence. The research findings indicate that network structural features such as node degree centrality, betweenness centrality, and closeness centrality exhibit inverted U-shaped relationships with patent influence. Specifically, as these centrality metrics increase, patent influence initially shows an upward trend, but once these features reach a certain threshold, patent influence starts to decline. This discovery suggests that moderate network centrality is beneficial for enhancing patent influence, while excessively high centrality may have a detrimental effect on patent influence. This finding offers crucial insights for policymakers, emphasizing the importance of encouraging moderate knowledge flow and sharing to promote innovation when formulating technology policies. It suggests that in certain situations, data sharing and integration can contribute to innovation. Consequently, policymakers can take measures to promote data-sharing policies, such as open data initiatives, to facilitate the flow of knowledge and the generation of innovation. Additionally, governments and relevant agencies can achieve broader knowledge dissemination by supporting collaborative research projects, adjusting intellectual property policies to enhance flexibility, or nurturing technology entrepreneurship ecosystems.

Keywords: centrality, patent coupling network, patent influence, social network analysis

Procedia PDF Downloads 48
2847 Investigation of Turbulent Flow in a Bubble Column Photobioreactor and Consequent Effects on Microalgae Cultivation Using Computational Fluid Dynamic Simulation

Authors: Geetanjali Yadav, Arpit Mishra, Parthsarathi Ghosh, Ramkrishna Sen

Abstract:

The world is facing problems of increasing global CO2 emissions, climate change and fuel crisis. Therefore, several renewable and sustainable energy alternatives should be investigated to replace non-renewable fuels in future. Algae presents itself a versatile feedstock for the production of variety of fuels (biodiesel, bioethanol, bio-hydrogen etc.) and high value compounds for food, fodder, cosmetics and pharmaceuticals. Microalgae are simple microorganisms that require water, light, CO2 and nutrients for growth by the process of photosynthesis and can grow in extreme environments, utilize waste gas (flue gas) and waste waters. Mixing, however, is a crucial parameter within the culture system for the uniform distribution of light, nutrients and gaseous exchange in addition to preventing settling/sedimentation, creation of dark zones etc. The overarching goal of the present study is to improve photobioreactor (PBR) design for enhancing dissolution of CO2 from ambient air (0.039%, v/v), pure CO2 and coal-fired flue gas (10 ± 2%) into microalgal PBRs. Computational fluid dynamics (CFD), a state-of-the-art technique has been used to solve partial differential equations with turbulence closure which represents the dynamics of fluid in a photobioreactor. In this paper, the hydrodynamic performance of the PBR has been characterized and compared with that of the conventional bubble column PBR using CFD. Parameters such as flow rate (Q), mean velocity (u), mean turbulent kinetic energy (TKE) were characterized for each experiment that was tested across different aeration schemes. The results showed that the modified PBR design had superior liquid circulation properties and gas-liquid transfer that resulted in creation of uniform environment inside PBR as compared to conventional bubble column PBR. The CFD technique has shown to be promising to successfully design and paves path for a future research in order to develop PBRs which can be commercially available for scale-up microalgal production.

Keywords: computational fluid dynamics, microalgae, bubble column photbioreactor, flue gas, simulation

Procedia PDF Downloads 229
2846 Non–Geometric Sensitivities Using the Adjoint Method

Authors: Marcelo Hayashi, João Lima, Bruno Chieregatti, Ernani Volpe

Abstract:

The adjoint method has been used as a successful tool to obtain sensitivity gradients in aerodynamic design and optimisation for many years. This work presents an alternative approach to the continuous adjoint formulation that enables one to compute gradients of a given measure of merit with respect to control parameters other than those pertaining to geometry. The procedure is then applied to the steady 2–D compressible Euler and incompressible Navier–Stokes flow equations. Finally, the results are compared with sensitivities obtained by finite differences and theoretical values for validation.

Keywords: adjoint method, aerodynamics, sensitivity theory, non-geometric sensitivities

Procedia PDF Downloads 541
2845 Sustainable Manufacturing of Concentrated Latex and Ribbed Smoked Sheets in Sri Lanka

Authors: Pasan Dunuwila, V. H. L. Rodrigo, Naohiro Goto

Abstract:

Sri Lanka is one the largest natural rubber (NR) producers of the world, where the NR industry is a major foreign exchange earner. Among the locally manufactured NR products, concentrated latex (CL) and ribbed smoked sheets (RSS) hold a significant position. Furthermore, these products become the foundation for many products utilized by the people all over the world (e.g. gloves, condoms, tires, etc.). Processing of CL and RSS costs a significant amount of material, energy, and workforce. With this background, both manufacturing lines have immensely challenged by waste, low productivity, lack of cost efficiency, rising cost of production, and many environmental issues. To face the above challenges, the adaptation of sustainable manufacturing measures that use less energy, water, materials, and produce less waste is imperative. However, these sectors lack comprehensive studies that shed light on such measures and thoroughly discuss their improvement potentials from both environmental and economic points of view. Therefore, based on a study of three CL and three RSS mills in Sri Lanka, this study deploys sustainable manufacturing techniques and tools to uncover the underlying potentials to improve performances in CL and RSS processing sectors. This study is comprised of three steps: 1. quantification of average material waste, economic losses, and greenhouse gas (GHG) emissions via material flow analysis (MFA), material flow cost accounting (MFCA), and life cycle assessment (LCA) in each manufacturing process, 2. identification of improvement options with the help of Pareto and What-if analyses, field interviews, and the existing literature; and 3. validation of the identified improvement options via the re-execution of MFA, MFCA, and LCA. With the help of this methodology, the economic and environmental hotspots, and the degrees of improvement in both systems could be identified. Results highlighted that each process could be improved to have less waste, monetary losses, manufacturing costs, and GHG emissions. Conclusively, study`s methodology and findings are believed to be beneficial for assuring the sustainable growth not only in Sri Lankan NR processing sector itself but also in NR or any other industry rooted in other developing countries.

Keywords: concentrated latex, natural rubber, ribbed smoked sheets, Sri Lanka

Procedia PDF Downloads 256
2844 Rethinking Africa's 'Great Runner': Authoritarianism and Development in Post-Cold War Ethiopia

Authors: Frew Yirgalem Mane

Abstract:

This study has examined Africa’s experiment with authoritarian model of development drawing from the experience of Ethiopia. With the tectonic crisis of neoliberal ideology, the dominant policy agenda in Africa pertains to bringing the state back to development. More concretely, countries epitomized by Ethiopia, Rwanda and Uganda have been constructing a highly interventionist state with authoritarian character. The central motive appears to facilitate development and salvage people out of appalling and grinding poverty. Each country warrants closer inspection. However, this study focuses on Ethiopia- a country often applauded as ‘Africa’s Great Run’ for delivering socio-economic success over the past two decades. In fact, inspired by East Asia’s including Chinese model of authoritarian development, Ethiopia orchestrated a vanguard party, centralized rent control system with politicized bureaucracy and militaristic mobilization resources for development. This arrangement may explain Ethiopia economic success story as one the fastest growing countries in the world. However, this paper detected, Ethiopia’s attempt to bring the state back in development has precipitated institutionalization of a new breed of authoritarianism and informalization of public institutions. Ethiopia’s model of state-led development may constitute a noticeable shift away from the vengeful adherence to neoliberal policies. However, the manner the model has been practiced proved to be neither smooth nor appears to address Ethiopia’s aspiration for political and economic transformation. Partly, this can be illustrated by recent widespread grievances that fed into the popular uprising and animated opposition against the state. Sources of the grievance are complex, but they are highly ingrained with the way the authoritarian model of development is functioning and also the model’s dis-functioning in terms of benefiting people. In light of these findings, the study has arrived at the following conclusion. Africa’s attempt to emulate development models from other countries is not such a ‘bad’ thing. However, emulation makes sense if it is contextualized and sensitive to complex local socio-economic interests.

Keywords: Africa, authoritarianism, development, Ethiopia, neoliberalism

Procedia PDF Downloads 187
2843 Numerical Modeling of the Depth-Averaged Flow over a Hill

Authors: Anna Avramenko, Heikki Haario

Abstract:

This paper reports the development and application of a 2D depth-averaged model. The main goal of this contribution is to apply the depth averaged equations to a wind park model in which the treatment of the geometry, introduced on the mathematical model by the mass and momentum source terms. The depth-averaged model will be used in future to find the optimal position of wind turbines in the wind park. K-E and 2D LES turbulence models were consider in this article. 2D CFD simulations for one hill was done to check the depth-averaged model in practise.

Keywords: depth-averaged equations, numerical modeling, CFD, wind park model

Procedia PDF Downloads 597
2842 Investigation on the Bogie Pseudo-Hunting Motion of a Reduced-Scale Model Railway Vehicle Running on Double-Curved Rails

Authors: Barenten Suciu, Ryoichi Kinoshita

Abstract:

In this paper, an experimental and theoretical study on the bogie pseudo-hunting motion of a reduced-scale model railway vehicle, running on double-curved rails, is presented. Since the actual bogie hunting motion, occurring for real railway vehicles running on straight rails at high travelling speeds, cannot be obtained in laboratory conditions, due to the speed and wavelength limitations, a pseudo- hunting motion was induced by employing double-curved rails. Firstly, the test rig and the experimental procedure are described. Then, a geometrical model of the double-curved rails is presented. Based on such model, the variation of the carriage rotation angle relative to the bogies and the working conditions of the yaw damper are clarified. Vibration spectra recorded during vehicle travelling, on straight and double-curved rails, are presented and interpreted based on a simple vibration model of the railway vehicle. Ride comfort of the vehicle is evaluated according to the ISO 2631 standard, and also by using some particular frequency weightings, which account for the discomfort perceived during the reading and writing activities. Results obtained in this work are useful for the adequate design of the yaw dampers, which are used to attenuate the lateral vibration of the train car bodies.

Keywords: double-curved rail, octave analysis, vibration model, ride comfort, railway vehicle

Procedia PDF Downloads 307
2841 Velocity Distribution in Open Channels with Sand: An Experimental Study

Authors: E. Keramaris

Abstract:

In this study, laboratory experiments in open channel flows over a sand bed were conducted. A porous bed (sand bed) with porosity of ε=0.70 and porous thickness of s΄=3 cm was tested. Vertical distributions of velocity were evaluated by using a two-dimensional (2D) Particle Image Velocimetry (PIV). Velocity profiles are measured above the impermeable bed and above the sand bed for the same different total water heights (h= 6, 8, 10 and 12 cm) and for the same slope S=1.5. Measurements of mean velocity indicate the effects of the bed material used (sand bed) on the flow characteristics (Velocity distribution and Reynolds number) in comparison with those above the impermeable bed.

Keywords: particle image velocimetry, sand bed, velocity distribution, Reynolds number

Procedia PDF Downloads 369
2840 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery

Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene

Abstract:

Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.

Keywords: multi-objective, analysis, data flow, freight delivery, methodology

Procedia PDF Downloads 174
2839 Real-Time Multi-Vehicle Tracking Application at Intersections Based on Feature Selection in Combination with Color Attribution

Authors: Qiang Zhang, Xiaojian Hu

Abstract:

In multi-vehicle tracking, based on feature selection, the tracking system efficiently tracks vehicles in a video with minimal error in combination with color attribution, which focuses on presenting a simple and fast, yet accurate and robust solution to the problem such as inaccurately and untimely responses of statistics-based adaptive traffic control system in the intersection scenario. In this study, a real-time tracking system is proposed for multi-vehicle tracking in the intersection scene. Considering the complexity and application feasibility of the algorithm, in the object detection step, the detection result provided by virtual loops were post-processed and then used as the input for the tracker. For the tracker, lightweight methods were designed to extract and select features and incorporate them into the adaptive color tracking (ACT) framework. And the approbatory online feature selection algorithms are integrated on the mature ACT system with good compatibility. The proposed feature selection methods and multi-vehicle tracking method are evaluated on KITTI datasets and show efficient vehicle tracking performance when compared to the other state-of-the-art approaches in the same category. And the system performs excellently on the video sequences recorded at the intersection. Furthermore, the presented vehicle tracking system is suitable for surveillance applications.

Keywords: real-time, multi-vehicle tracking, feature selection, color attribution

Procedia PDF Downloads 158