Search results for: computer modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4082

Search results for: computer modelling

782 Effect of Nanoscale Bismuth Oxide on Radiation Shielding and Interaction Characteristics of Polyvinyl Alcohol-Based Polymer for Medical Apron Design

Authors: E. O. Echeweozo

Abstract:

This study evaluated radiation shielding and interaction characteristics of polyvinyl alcohol (PVA) polymer separately doped with 10% and 20% nanoscale Bi₂O₃, respectively, for medical apron design and shielding special electronic installations. Prepared samples were characterized by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The EDS results showed that Carbon (C), Oxygen (O), and bismuth (Bi) elements were the predominant elements present in the prepared samples. The SEM result displaced surface irregularities due to a special bonding matrix between PVA and Bi₂O₃. Mass attenuation coefficient (MAC), effective atomic number (Zeff), Half value layer (HVL), Mean free path (MFP), Fast neutron removal cross-section (R), Total Mass Stopping Power (TSP), and photon Range (R) of the prepared polymer composites (PV-1Bi and PV-2Bi) were evaluated with XCOM and PHITS computer programs. Results showed that the MAC of the prepared polymer samples was significantly higher than some recently developed composites at 0.662MeV and 1.25MeV gamma energy. Therefore, polyvinyl alcohol (PVA) polymer doped with Bi₂O₃ should be deployed in medical apron design and shielding special electronic installations where flexibility and high adhesion ability are crucial.

Keywords: polyvinyl alcohol (PVA);, polymer composite, gamma-rays, charged particles

Procedia PDF Downloads 20
781 Numerical Investigation of Nanofluid Based Thermosyphon System

Authors: Kiran Kumar K., Ramesh Babu Bejjam, Atul Najan

Abstract:

A thermosyphon system is a heat transfer loop which operates on the basis of gravity and buoyancy forces. It guarantees a good reliability and low maintenance cost as it does not involve any mechanical pump. Therefore it can be used in many industrial applications such as refrigeration and air conditioning, electronic cooling, nuclear reactors, geothermal heat extraction, etc. But flow instabilities and loop configuration are the major problems in this system. Several previous researchers studied that stabilities can be suppressed by using nanofluids as loop fluid. In the present study a rectangular thermosyphon loop with end heat exchangers are considered for the study. This configuration is more appropriate for many practical applications such as solar water heater, geothermal heat extraction, etc. In the present work, steady-state analysis is carried out on thermosyphon loop with parallel flow coaxial heat exchangers at heat source and heat sink. In this loop nano fluid is considered as the loop fluid and water is considered as the external fluid in both hot and cold heat exchangers. For this analysis one-dimensional homogeneous model is developed. In this model, conservation equations like conservation of mass, momentum, energy are discretized using finite difference method. A computer code is written in MATLAB to simulate the flow in thermosyphon loop. A comparison in terms of heat transfer is made between water and nano fluid as working fluids in the loop.

Keywords: heat exchanger, heat transfer, nanofluid, thermosyphon loop

Procedia PDF Downloads 477
780 A Dynamic Solution Approach for Heart Disease Prediction

Authors: Walid Moudani

Abstract:

The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the coronary heart disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts’ knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.

Keywords: multi-classifier decisions tree, features reduction, dynamic programming, rough sets

Procedia PDF Downloads 410
779 Advanced Combinatorial Method for Solving Complex Fault Trees

Authors: José de Jesús Rivero Oliva, Jesús Salomón Llanes, Manuel Perdomo Ojeda, Antonio Torres Valle

Abstract:

Combinatorial explosion is a common problem to both predominant methods for solving fault trees: Minimal Cut Set (MCS) approach and Binary Decision Diagram (BDD). High memory consumption impedes the complete solution of very complex fault trees. Only approximated non-conservative solutions are possible in these cases using truncation or other simplification techniques. The paper proposes a method (CSolv+) for solving complex fault trees, without any possibility of combinatorial explosion. Each individual MCS is immediately discarded after its contribution to the basic events importance measures and the Top gate Upper Bound Probability (TUBP) has been accounted. An estimation of the Top gate Exact Probability (TEP) is also provided. Therefore, running in a computer cluster, CSolv+ will guarantee the complete solution of complex fault trees. It was successfully applied to 40 fault trees from the Aralia fault trees database, performing the evaluation of the top gate probability, the 1000 Significant MCSs (SMCS), and the Fussell-Vesely, RRW and RAW importance measures for all basic events. The high complexity fault tree nus9601 was solved with truncation probabilities from 10-²¹ to 10-²⁷ just to limit the execution time. The solution corresponding to 10-²⁷ evaluated 3.530.592.796 MCSs in 3 hours and 15 minutes.

Keywords: system reliability analysis, probabilistic risk assessment, fault tree analysis, basic events importance measures

Procedia PDF Downloads 45
778 Autism Disease Detection Using Transfer Learning Techniques: Performance Comparison between Central Processing Unit vs. Graphics Processing Unit Functions for Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

Neural network approaches are machine learning methods used in many domains, such as healthcare and cyber security. Neural networks are mostly known for dealing with image datasets. While training with the images, several fundamental mathematical operations are carried out in the Neural Network. The operation includes a number of algebraic and mathematical functions, including derivative, convolution, and matrix inversion and transposition. Such operations require higher processing power than is typically needed for computer usage. Central Processing Unit (CPU) is not appropriate for a large image size of the dataset as it is built with serial processing. While Graphics Processing Unit (GPU) has parallel processing capabilities and, therefore, has higher speed. This paper uses advanced Neural Network techniques such as VGG16, Resnet50, Densenet, Inceptionv3, Xception, Mobilenet, XGBOOST-VGG16, and our proposed models to compare CPU and GPU resources. A system for classifying autism disease using face images of an autistic and non-autistic child was used to compare performance during testing. We used evaluation matrices such as Accuracy, F1 score, Precision, Recall, and Execution time. It has been observed that GPU runs faster than the CPU in all tests performed. Moreover, the performance of the Neural Network models in terms of accuracy increases on GPU compared to CPU.

Keywords: autism disease, neural network, CPU, GPU, transfer learning

Procedia PDF Downloads 118
777 Analysis of Nonlinear Dynamic Systems Excited by Combined Colored and White Noise Excitations

Authors: Siu-Siu Guo, Qingxuan Shi

Abstract:

In this paper, single-degree-of-freedom (SDOF) systems to white noise and colored noise excitations are investigated. By expressing colored noise excitation as a second-order filtered white noise process and introducing colored noise as an additional state variable, the equation of motion for SDOF system under colored noise is then transferred artificially to multi-degree-of-freedom (MDOF) system under white noise excitations. As a consequence, corresponding Fokker-Planck-Kolmogorov (FPK) equation governing the joint probabilistic density function (PDF) of state variables increases to 4-dimension (4-D). Solution procedure and computer programme become much more sophisticated. The exponential-polynomial closure (EPC) method, widely applied for cases of SDOF systems under white noise excitations, is developed and improved for cases of systems under colored noise excitations and for solving the complex 4-D FPK equation. On the other hand, Monte Carlo simulation (MCS) method is performed to test the approximate EPC solutions. Two examples associated with Gaussian and non-Gaussian colored noise excitations are considered. Corresponding band-limited power spectral densities (PSDs) for colored noise excitations are separately given. Numerical studies show that the developed EPC method provides relatively accurate estimates of the stationary probabilistic solutions. Moreover, statistical parameter of mean-up crossing rate (MCR) is taken into account, which is important for reliability and failure analysis.

Keywords: filtered noise, narrow-banded noise, nonlinear dynamic, random vibration

Procedia PDF Downloads 225
776 A Method for Reconfigurable Manufacturing Systems Customization Measurement

Authors: Jesus Kombaya, Nadia Hamani, Lyes Kermad

Abstract:

The preservation of a company’s place on the market in such aggressive competition is becoming a survival challenge for manufacturers. In this context, survivors are only those who succeed to satisfy their customers’ needs as quickly as possible. The production system should be endowed with a certain level of flexibility to eliminate or reduce the rigidity of the production systems in order to facilitate the conversion and/or the change of system’s features to produce different products. Therefore, it is essential to guarantee the quality, the speed and the flexibility to survive in this competition. According to literature, this adaptability is referred to as the notion of "change". Indeed, companies are trying to establish a more flexible and agile manufacturing system through several reconfiguration actions. Reconfiguration contributes to the extension of the manufacturing system life cycle by modifying its physical, organizational and computer characteristics according to the changing market conditions. Reconfigurability is characterized by six key elements that are: modularity, integrability, diagnosability, convertibility, scalability and customization. In order to control the production systems, it is essential for manufacturers to make good use of this capability in order to be sure that the system has an optimal and adapted level of reconfigurability that allows it to produce in accordance with the set requirements. This document develops a measure of customization of reconfigurable production systems. These measures do not only impact the production system but also impact the product design and the process design, which can therefore serve as a guide for the customization of manufactured product. A case study is presented to show the use of the proposed approach.

Keywords: reconfigurable manufacturing systems, customization, measure, flexibility

Procedia PDF Downloads 128
775 Opacity Synthesis with Orwellian Observers

Authors: Moez Yeddes

Abstract:

The property of opacity is widely used in the formal verification of security in computer systems and protocols. Opacity is a general language-theoretic scheme of many security properties of systems. Opacity is parametrized with framework in which several security properties of a system can be expressed. A secret behaviour of a system is opaque if a passive attacker can never deduce its occurrence from the system observation. Instead of considering the case of static observability where the set of observable events is fixed off-line or dynamic observability where the set of observable events changes over time depending on the history of the trace, we introduce Orwellian partial observability where unobservable events are not revealed provided that downgrading events never occurs in the future of the trace. Orwellian partial observability is needed to model intransitive information flow. This Orwellian observability is knwon as ipurge function. We show in previous work how to verify opacity for regular secret is opaque for a regular language L w.r.t. an Orwellian projection is PSPACE-complete while it has been proved undecidable even for a regular language L w.r.t. a general Orwellian observation function. In this paper, we address two problems of opacification of a regular secret ϕ for a regular language L w.r.t. an Orwellian projection: Given L and a secret ϕ ∈ L, the first problem consist to compute some minimal regular super-language M of L, if it exists, such that ϕ is opaque for M and the second consists to compute the supremal sub-language M′ of L such that ϕ is opaque for M′. We derive both language-theoretic characterizations and algorithms to solve these two dual problems.

Keywords: security policies, opacity, formal verification, orwellian observation

Procedia PDF Downloads 225
774 Prime Graphs of Polynomials and Power Series Over Non-Commutative Rings

Authors: Walaa Obaidallah Alqarafi, Wafaa Mohammed Fakieh, Alaa Abdallah Altassan

Abstract:

Algebraic graph theory is defined as a bridge between algebraic structures and graphs. It has several uses in many fields, including chemistry, physics, and computer science. The prime graph is a type of graph associated with a ring R, where the vertex set is the whole ring R, and two vertices x and y are adjacent if either xRy=0 or yRx=0. However, the investigation of the prime graph over rings remains relatively limited. The behavior of this graph in extended rings, like R[x] and R[[x]], where R is a non-commutative ring, deserves more attention because of the wider applicability in algebra and other mathematical fields. To study the prime graphs over polynomials and power series rings, we used a combination of ring-theoretic and graph-theoretic techniques. This paper focuses on two invariants: the diameter and the girth of these graphs. Furthermore, the work discusses how the graph structures change when passing from R to R[x] and R[[x]]. In our study, we found that the set of strong zero-divisors of ring R represents the set of vertices in prime graphs. Based on this discovery, we redefined the vertices of prime graphs using the definition of strong zero divisors. Additionally, our results show that although the prime graphs of R[x] and R[[x]] are comparable to the graph of R, they have different combinatorial characteristics since these extensions contain new strong zero-divisors. In particular, we find conditions in which the diameter and girth of the graphs, as they expand from R to R[x] and R[[x]], do not change or do change. In conclusion, this study shows how extending a non-commutative ring R to R[x] and R[[x]] affects the structure of their prime graphs, particularly in terms of diameter and girth. These findings enhance the understanding of the relationship between ring extensions and graph properties.

Keywords: prime graph, diameter, girth, polynomial ring, power series ring

Procedia PDF Downloads 18
773 Gis Database Creation for Impacts of Domestic Wastewater Disposal on BIDA Town, Niger State Nigeria

Authors: Ejiobih Hyginus Chidozie

Abstract:

Geographic Information System (GIS) is a configuration of computer hardware and software specifically designed to effectively capture, store, update, manipulate, analyse and display and display all forms of spatially referenced information. GIS database is referred to as the heart of GIS. It has location data, attribute data and spatial relationship between the objects and their attributes. Sewage and wastewater management have assumed increased importance lately as a result of general concern expressed worldwide about the problems of pollution of the environment contamination of the atmosphere, rivers, lakes, oceans and ground water. In this research GIS database was created to study the impacts of domestic wastewater disposal methods on Bida town, Niger State as a model for investigating similar impacts on other cities in Nigeria. Results from GIS database are very useful to decision makers and researchers. Bida Town was subdivided into four regions, eight zones, and 24 sectors based on the prevailing natural morphology of the town. GIS receiver and structured questionnaire were used to collect information and attribute data from 240 households of the study area. Domestic wastewater samples were collected from twenty four sectors of the study area for laboratory analysis. ArcView 3.2a GIS software, was used to create the GIS databases for ecological, health and socioeconomic impacts of domestic wastewater disposal methods in Bida town.

Keywords: environment, GIS, pollution, software, wastewater

Procedia PDF Downloads 421
772 3D Object Detection for Autonomous Driving: A Comprehensive Review

Authors: Ahmed Soliman Nagiub, Mahmoud Fayez, Heba Khaled, Said Ghoniemy

Abstract:

Accurate perception is a critical component in enabling autonomous vehicles to understand their driving environment. The acquisition of 3D information about objects, including their location and pose, is essential for achieving this understanding. This survey paper presents a comprehensive review of 3D object detection techniques specifically tailored for autonomous vehicles. The survey begins with an introduction to 3D object detection, elucidating the significance of the third dimension in perceiving the driving environment. It explores the types of sensors utilized in this context and the corresponding data extracted from these sensors. Additionally, the survey investigates the different types of datasets employed, including their formats, sizes, and provides a comparative analysis. Furthermore, the paper categorizes and thoroughly examines the perception methods employed for 3D object detection based on the diverse range of sensors utilized. Each method is evaluated based on its effectiveness in accurately detecting objects in a three-dimensional space. Additionally, the evaluation metrics used to assess the performance of these methods are discussed. By offering a comprehensive overview of 3D object detection techniques for autonomous vehicles, this survey aims to advance the field of perception systems. It serves as a valuable resource for researchers and practitioners, providing insights into the techniques, sensors, and evaluation metrics employed in 3D object detection for autonomous vehicles.

Keywords: computer vision, 3D object detection, autonomous vehicles, deep learning

Procedia PDF Downloads 62
771 Can 3D Virtual Prototyping Conquers the Apparel Industry?

Authors: Evridiki Papachristou, Nikolaos Bilalis

Abstract:

Imagine an apparel industry where fashion design does not begin with a paper-and-pen drawing which is then translated into pattern and later to a 3D model where the designer tries out different fabrics, colours and contrasts. Instead, imagine a fashion designer in the future who produces that initial fashion drawing in a three-dimensional space and won’t leave that environment until the product is done, communicating his/her ideas with the entire development team in true to life 3D. Three-dimensional (3D) technology - while well established in many other industrial sectors like automotive, aerospace, architecture and industrial design, has only just started to open up a whole range of new opportunities for apparel designers. The paper will discuss the process of 3D simulation technology enhanced by high quality visualization of data and its capability to ensure a massive competitiveness in the market. Secondly, it will underline the most frequent problems & challenges that occur in the process chain when various partners in the production of textiles and apparel are working together. Finally, it will offer a perspective of how the Virtual Prototyping Technology will make the global textile and apparel industry change to a level where designs will be visualized on a computer and various scenarios modeled without even having to produce a physical prototype. This state-of-the-art 3D technology has been described as transformative and“disruptive”comparing to the process of the way apparel companies develop their fashion products today. It provides the benefit of virtual sampling not only for quick testing of design ideas, but also reducing process steps and having more visibility.A so called“digital asset” that can be used for other purposes such as merchandising or marketing.

Keywords: 3D visualization, apparel, virtual prototyping, prototyping technology

Procedia PDF Downloads 591
770 Pedagogical Practices of a Teacher in Students' Experience Tellings: A Conversation Analytic Study

Authors: Derya Duran, Christine Jacknick

Abstract:

This study explores post-task reflections in an English as a Medium of Instruction (EMI) setting, and it specifically focuses on how a teacher performs pedagogical practices such as reformulating, extending and evaluating following students’ spontaneous experience tellings in EMI classrooms. The data consist of 30 hours of video recordings from two EMI content classes, which were recorded for an academic term at a university in Turkey. The course, Guidance, is offered to fourth year undergraduate students as a compulsory course in the Department of Educational Sciences. The participants (n=78) study at the Faculty of Education, majoring in different educational departments (i.e., Computer Education and Instructional Technology, Elementary Education, Foreign Language Education). Using conversation analysis, we demonstrate that the teacher employs a variety of interactional resources to elicit (i.e., asking specific questions) and also provides (i.e., giving scientific information) as much content as possible, which also sheds light on the institutional fingerprints of the current research context. The study contributes to the existing research by unpacking articulation of personal experiences and cultivation of collaborativeness in classroom interaction. Moreover, describing the dialogic nature of these specific occasions, the study demonstrates how teacher and students address learning tasks together (collectivity), how they orient to each other turns interactionally (reciprocity), and how they keep the pedagogical focus in mind (purposefulness).

Keywords: conversation analysis, English as a medium of instruction, higher education, post-task reflections

Procedia PDF Downloads 151
769 Investigating Online Literacy among Undergraduates in Malaysia

Authors: Vivien Chee Pei Wei

Abstract:

Today we live in a scenario in which letters share space with images on screens that vary in size, shape, and style. The popularization of television, then the computer and now the e-readers, tablets, and smartphones made the electronic assume the role that previously was restricted to printed materials. Since the extensive use of new technologies to produce, disseminate, collect and access electronic publications began, the changes to reading has been intensified. To be able to read online, it involves more than just utilizing specific skills, strategies, and practices, but also in negotiating multiple information sources. In this study, different perspectives of digital reading are being explored in order to define the key aspects of the term. The focus is to explore how new technologies affect how undergraduates’ reading behavior, which in turn, gives readers different reading levels and engagement with the text and other support materials in the same media. There is also the importance of the relationship between reading platforms, reading levels and formats of electronic publications. The study looks at the online reading practices of about 100 undergraduates from a local university. The data collected using the survey and interviews with the respondents are analyzed thematically. Findings from this study found that both digital and traditional reading are interrelated, and should not be viewed as separate, but complementary to each other. However, reading online complicates some of the skills required by traditional reading. Consequently, in order to successfully read and comprehend multiple sources of information online, undergraduates need regular opportunities to practice and develop their skills as part of their natural reading practices.

Keywords: concepts, digital reading, literacy, traditional reading

Procedia PDF Downloads 311
768 Magneto-Thermo-Mechanical Analysis of Electromagnetic Devices Using the Finite Element Method

Authors: Michael G. Pantelyat

Abstract:

Fundamental basics of pure and applied research in the area of magneto-thermo-mechanical numerical analysis and design of innovative electromagnetic devices (modern induction heaters, novel thermoelastic actuators, rotating electrical machines, induction cookers, electrophysical devices) are elaborated. Thus, mathematical models of magneto-thermo-mechanical processes in electromagnetic devices taking into account main interactions of interrelated phenomena are developed. In addition, graphical representation of coupled (multiphysics) phenomena under consideration is proposed. Besides, numerical techniques for nonlinear problems solution are developed. On this base, effective numerical algorithms for solution of actual problems of practical interest are proposed, validated and implemented in applied 2D and 3D computer codes developed. Many applied problems of practical interest regarding modern electrical engineering devices are numerically solved. Investigations of the influences of various interrelated physical phenomena (temperature dependences of material properties, thermal radiation, conditions of convective heat transfer, contact phenomena, etc.) on the accuracy of the electromagnetic, thermal and structural analyses are conducted. Important practical recommendations on the choice of rational structures, materials and operation modes of electromagnetic devices under consideration are proposed and implemented in industry.

Keywords: electromagnetic devices, multiphysics, numerical analysis, simulation and design

Procedia PDF Downloads 386
767 An Integrated Architecture of E-Learning System to Digitize the Learning Method

Authors: M. Touhidul Islam Sarker, Mohammod Abul Kashem

Abstract:

The purpose of this paper is to improve the e-learning system and digitize the learning method in the educational sector. The learner will login into e-learning platform and easily access the digital content, the content can be downloaded and take an assessment for evaluation. Learner can get access to these digital resources by using tablet, computer, and smart phone also. E-learning system can be defined as teaching and learning with the help of multimedia technologies and the internet by access to digital content. E-learning replacing the traditional education system through information and communication technology-based learning. This paper has designed and implemented integrated e-learning system architecture with University Management System. Moodle (Modular Object-Oriented Dynamic Learning Environment) is the best e-learning system, but the problem of Moodle has no school or university management system. In this research, we have not considered the school’s student because they are out of internet facilities. That’s why we considered the university students because they have the internet access and used technologies. The University Management System has different types of activities such as student registration, account management, teacher information, semester registration, staff information, etc. If we integrated these types of activity or module with Moodle, then we can overcome the problem of Moodle, and it will enhance the e-learning system architecture which makes effective use of technology. This architecture will give the learner to easily access the resources of e-learning platform anytime or anywhere which digitizes the learning method.

Keywords: database, e-learning, LMS, Moodle

Procedia PDF Downloads 188
766 Burnout Recognition for Call Center Agents by Using Skin Color Detection with Hand Poses

Authors: El Sayed A. Sharara, A. Tsuji, K. Terada

Abstract:

Call centers have been expanding and they have influence on activation in various markets increasingly. A call center’s work is known as one of the most demanding and stressful jobs. In this paper, we propose the fatigue detection system in order to detect burnout of call center agents in the case of a neck pain and upper back pain. Our proposed system is based on the computer vision technique combined skin color detection with the Viola-Jones object detector. To recognize the gesture of hand poses caused by stress sign, the YCbCr color space is used to detect the skin color region including face and hand poses around the area related to neck ache and upper back pain. A cascade of clarifiers by Viola-Jones is used for face recognition to extract from the skin color region. The detection of hand poses is given by the evaluation of neck pain and upper back pain by using skin color detection and face recognition method. The system performance is evaluated using two groups of dataset created in the laboratory to simulate call center environment. Our call center agent burnout detection system has been implemented by using a web camera and has been processed by MATLAB. From the experimental results, our system achieved 96.3% for upper back pain detection and 94.2% for neck pain detection.

Keywords: call center agents, fatigue, skin color detection, face recognition

Procedia PDF Downloads 294
765 Cross Section Measurement for Formation of Metastable State of ¹¹¹ᵐCd through ¹¹¹Cd (γ, γ`) ¹¹¹ᵐCd Reaction Induced by Bremsstrahlung Generated through 6 MeV Electrons

Authors: Vishal D. Bharud, B. J. Patil, S. S. Dahiwale, V. N. Bhoraskar, S. D. Dhole

Abstract:

Photon induced average reaction cross section of ¹¹¹Cd (γ, γ`) ¹¹¹ᵐCd reaction was experimentally determined for the bremsstrahlung energy spectrum of 6 MeV by utilizing the activation and offline γ-ray spectrometric techniques. The 6 MeV electron accelerator Racetrack Microtron of Savitribai Phule Pune University, Pune was used for the experimental work. The bremsstrahlung spectrum generated by bombarding 6 MeV electrons on lead target was theoretically estimated by FLUKA code. Bremsstrahlung radiation can have energies exceeding the threshold of the particle emission, which is normally above 6 MeV. Photons of energies below the particle emission threshold undergo absorption into discrete energy levels, with possibility of exciting nuclei to excited state including metastable state. The ¹¹¹Cd (γ, γ`) ¹¹¹ᵐCd reaction cross sections were calculated at different energies of bombarding Photon by using the TALYS 1.8 computer code with a default parameter. The focus of the present work was to study the (γ,γ’) reaction for exciting ¹¹¹Cd nuclei to metastable states which have threshold energy below 3 MeV. The flux weighted average cross section was obtained from the theoretical values of TALYS 1.8 and TENDL 2017 and is found to be in good agreement with the present experimental cross section.

Keywords: bremsstrahlung, cross section, FLUKA, TALYS-1.8

Procedia PDF Downloads 173
764 Applying Artificial Neural Networks to Predict Speed Skater Impact Concussion Risk

Authors: Yilin Liao, Hewen Li, Paula McConvey

Abstract:

Speed skaters often face a risk of concussion when they fall on the ice floor and impact crash mats during practices and competitive races. Several variables, including those related to the skater, the crash mat, and the impact position (body side/head/feet impact), are believed to influence the severity of the skater's concussion. While computer simulation modeling can be employed to analyze these accidents, the simulation process is time-consuming and does not provide rapid information for coaches and teams to assess the skater's injury risk in competitive events. This research paper promotes the exploration of the feasibility of using AI techniques for evaluating skater’s potential concussion severity, and to develop a fast concussion prediction tool using artificial neural networks to reduce the risk of treatment delays for injured skaters. The primary data is collected through virtual tests and physical experiments designed to simulate skater-mat impact. It is then analyzed to identify patterns and correlations; finally, it is used to train and fine-tune the artificial neural networks for accurate prediction. The development of the prediction tool by employing machine learning strategies contributes to the application of AI methods in sports science and has theoretical involvements for using AI techniques in predicting and preventing sports-related injuries.

Keywords: artificial neural networks, concussion, machine learning, impact, speed skater

Procedia PDF Downloads 109
763 Finite Element Analysis and Design Optimization of Stent and Balloon System

Authors: V. Hashim, P. N. Dileep

Abstract:

Stent implantation is being seen as the most successful method to treat coronary artery diseases. Different types of stents are available in the market these days and the success of a stent implantation greatly depends on the proper selection of a suitable stent for a patient. Computer numerical simulation is the cost effective way to choose the compatible stent. Studies confirm that the design characteristics of stent do have great importance with regards to the pressure it can sustain, the maximum displacement it can produce, the developed stress concentration and so on. In this paper different designs of stent were analyzed together with balloon to optimize the stent and balloon system. Commercially available stent Palmaz-Schatz has been selected for analysis. Abaqus software is used to simulate the system. This work is the finite element analysis of the artery stent implant to find out the design factors affecting the stress and strain. The work consists of two phases. In the first phase, stress distribution of three models were compared - stent without balloon, stent with balloon of equal length and stent with balloon of extra length than stent. In second phase, three different design models of Palmaz-Schatz stent were compared by keeping the balloon length constant. The results obtained from analysis shows that, the design of the strut have strong effect on the stress distribution. A design with chamfered slots found better results. The length of the balloon also has influence on stress concentration of the stent. Increase in length of the balloon will reduce stress, but will increase dog boning effect.

Keywords: coronary stent, finite element analysis, restenosis, stress concentration

Procedia PDF Downloads 623
762 Melanoma and Non-Melanoma, Skin Lesion Classification, Using a Deep Learning Model

Authors: Shaira L. Kee, Michael Aaron G. Sy, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar AlDahoul

Abstract:

Skin diseases are considered the fourth most common disease, with melanoma and non-melanoma skin cancer as the most common type of cancer in Caucasians. The alarming increase in Skin Cancer cases shows an urgent need for further research to improve diagnostic methods, as early diagnosis can significantly improve the 5-year survival rate. Machine Learning algorithms for image pattern analysis in diagnosing skin lesions can dramatically increase the accuracy rate of detection and decrease possible human errors. Several studies have shown the diagnostic performance of computer algorithms outperformed dermatologists. However, existing methods still need improvements to reduce diagnostic errors and generate efficient and accurate results. Our paper proposes an ensemble method to classify dermoscopic images into benign and malignant skin lesions. The experiments were conducted using the International Skin Imaging Collaboration (ISIC) image samples. The dataset contains 3,297 dermoscopic images with benign and malignant categories. The results show improvement in performance with an accuracy of 88% and an F1 score of 87%, outperforming other existing models such as support vector machine (SVM), Residual network (ResNet50), EfficientNetB0, EfficientNetB4, and VGG16.

Keywords: deep learning - VGG16 - efficientNet - CNN – ensemble – dermoscopic images - melanoma

Procedia PDF Downloads 81
761 Hybrid Wind Solar Gas Reliability Optimization Using Harmony Search under Performance and Budget Constraints

Authors: Meziane Rachid, Boufala Seddik, Hamzi Amar, Amara Mohamed

Abstract:

Today’s energy industry seeks maximum benefit with maximum reliability. In order to achieve this goal, design engineers depend on reliability optimization techniques. This work uses a harmony search algorithm (HS) meta-heuristic optimization method to solve the problem of wind-Solar-Gas power systems design optimization. We consider the case where redundant electrical components are chosen to achieve a desirable level of reliability. The electrical power components of the system are characterized by their cost, capacity and reliability. The reliability is considered in this work as the ability to satisfy the consumer demand which is represented as a piecewise cumulative load curve. This definition of the reliability index is widely used for power systems. The proposed meta-heuristic seeks for the optimal design of series-parallel power systems in which a multiple choice of wind generators, transformers and lines are allowed from a list of product available in the market. Our approach has the advantage to allow electrical power components with different parameters to be allocated in electrical power systems. To allow fast reliability estimation, a universal moment generating function (UMGF) method is applied. A computer program has been developed to implement the UMGF and the HS algorithm. An illustrative example is presented.

Keywords: reliability optimization, harmony search optimization (HSA), universal generating function (UMGF)

Procedia PDF Downloads 576
760 A Highly Efficient Broadcast Algorithm for Computer Networks

Authors: Ganesh Nandakumaran, Mehmet Karaata

Abstract:

A wave is a distributed execution, often made up of a broadcast phase followed by a feedback phase, requiring the participation of all the system processes before a particular event called decision is taken. Wave algorithms with one initiator such as the 1-wave algorithm have been shown to be very efficient for broadcasting messages in tree networks. Extensions of this algorithm broadcasting a sequence of waves using a single initiator have been implemented in algorithms such as the m-wave algorithm. However as the network size increases, having a single initiator adversely affects the message delivery times to nodes further away from the initiator. As a remedy, broadcast waves can be allowed to be initiated by multiple initiator nodes distributed across the network to reduce the completion time of broadcasts. These waves initiated by one or more initiator processes form a collection of waves covering the entire network. Solutions to global-snapshots, distributed broadcast and various synchronization problems can be solved efficiently using waves with multiple concurrent initiators. In this paper, we propose the first stabilizing multi-wave sequence algorithm implementing waves started by multiple initiator processes such that every process in the network receives at least one sequence of broadcasts. Due to being stabilizing, the proposed algorithm can withstand transient faults and do not require initialization. We view a fault as a transient fault if it perturbs the configuration of the system but not its program.

Keywords: distributed computing, multi-node broadcast, propagation of information with feedback and cleaning (PFC), stabilization, wave algorithms

Procedia PDF Downloads 504
759 A Learning Effects Research Applied a Mobile Guide System with Augmented Reality for Education Center

Authors: Y. L. Chang, Y. H. Huang

Abstract:

This study designed a mobile guide system that integrates the design principles of guidance and interpretation with augmented reality (AR) as an auxiliary tool for National Taiwan Science Education Center guidance and explored the learning performance of participants who were divided into two visiting groups: AR-guided mode and non-guided mode (without carrying any auxiliary devices). The study included 96 college students as participants and employed a quasi-experimental research design. This study evaluated the learning performance of education center students aided with different guided modes, including their flow experience, activity involvement, learning effects, as well as their attitude and acceptance of using the guide systems. The results showed that (a) the AR guide promoted visitors’ flow experience; (b) the AR-guidance activity involvement and flow experience having a significant positive effect; (c) most of the visitors of mobile guide system with AR elicited a positive response and acceptance attitude. These results confirm the necessity of human–computer–context interaction. Future research can continue exploring the advantages of enhanced learning effectiveness, activity involvement, and flow experience through application of the results of this study.

Keywords: augmented reality, mobile guide system, informal learning, flow experience, activity involvement

Procedia PDF Downloads 231
758 Influence of Information and Communication Technology on Dress Culture among Senior Secondary School Students in Ife East Local Government, Osun State, Nigeria

Authors: Idowu J. Diyaolu, Ebenezer O. Obayomi, Taiwo A. Bamidele

Abstract:

Information and Communication Technology (ICT) has been observed to have influence on the lifestyle of youths in general. Dressing styles, fashion consciousness and choice of role model are some of the areas of influence. The study was carried out to examine the perception and influence of ICT on the clothing culture of selected Senior Secondary School Students in Ife-East Local government area of Osun State, Nigeria. Two hundred Senior Secondary School Students from public and private schools were randomly selected. Data was collected using structured questionnaire. The result showed that 79.0% were computer literate, 64.5% have facebook account and 93.5% browse with phones. Based on their perception on the influence of ICT, 74.5% of the respondents agreed that frequent use of ICT has increased their level of fashion consciousness while 60.5% were motivated by the images and dressing pattern in magazines, on TV and the internet. Also, large proportions (60.5%) were influenced by the dressing styles of their friends on social media. Male students were significantly more engaged in ICT related activities than females (t = 1.29, P < 0.05), whereas there is no significant difference in the involvement in ICT activities between private and public school students (t = 0.325, P > 0.05). Since ICT has influence on dressing, appropriate dressing pattern should be encouraged on mass media.

Keywords: dress culture, information and communication technology, fashion trend, role model

Procedia PDF Downloads 463
757 Best Practices to Enhance Patient Security and Confidentiality When Using E-Health in South Africa

Authors: Lethola Tshikose, Munyaradzi Katurura

Abstract:

Information and Communication Technology (ICT) plays a critical role in improving daily healthcare processes. The South African healthcare organizations have adopted Information Systems to integrate their patient records. This has made it much easier for healthcare organizations because patient information can now be accessible at any time. The primary purpose of this research study was to investigate the best practices that can be applied to enhance patient security and confidentiality when using e-health systems in South Africa. Security and confidentiality are critical in healthcare organizations as they ensure safety in EHRs. The research study used an inductive research approach that included a thorough literature review; therefore, no data was collected. The research paper’s scope included patient data and possible security threats associated with healthcare systems. According to the study, South African healthcare organizations discovered various patient data security and confidentiality issues. The study also revealed that when it comes to handling patient data, health professionals sometimes make mistakes. Some may not be computer literate, which posed issues and caused data to be tempered with. The research paper recommends that healthcare organizations ensure that security measures are adequately supported and promoted by their IT department. This will ensure that adequate resources are distributed to keep patient data secure and confidential. Healthcare organizations must correctly use standards set up by IT specialists to solve patient data security and confidentiality issues. Healthcare organizations must make sure that their organizational structures are adaptable to improve security and confidentiality.

Keywords: E-health, EHR, security, confidentiality, healthcare

Procedia PDF Downloads 58
756 Approaches to Ethical Hacking: A Conceptual Framework for Research

Authors: Lauren Provost

Abstract:

The digital world remains increasingly vulnerable, making the development of effective cybersecurity approaches even more critical in supporting the success of the digital economy and national security. Although approaches to cybersecurity have shifted and improved in the last decade with new models, especially with cloud computing and mobility, a record number of high severity vulnerabilities were recorded in the National Institute of Standards and Technology (NIST), and its National Vulnerability Database (NVD) in 2020. This is due, in part, to the increasing complexity of cyber ecosystems. Security must be approached with a more comprehensive, multi-tool strategy that addresses the complexity of cyber ecosystems, including the human factor. Ethical hacking has emerged as such an approach: a more effective, multi-strategy, comprehensive approach to cyber security's most pressing needs, especially understanding the human factor. Research on ethical hacking, however, is limited in scope. The two main objectives of this work are to (1) provide highlights of case studies in ethical hacking, (2) provide a conceptual framework for research in ethical hacking that embraces and addresses both technical and nontechnical security measures. Recommendations include an improved conceptual framework for research centered on ethical hacking that addresses many factors and attributes of significant attacks that threaten computer security; a more robust, integrative multi-layered framework embracing the complexity of cybersecurity ecosystems.

Keywords: ethical hacking, literature review, penetration testing, social engineering

Procedia PDF Downloads 218
755 Virtual Prototyping of LED Chip Scale Packaging Using Computational Fluid Dynamic and Finite Element Method

Authors: R. C. Law, Shirley Kang, T. Y. Hin, M. Z. Abdullah

Abstract:

LED technology has been evolving aggressively in recent years from incandescent bulb during older days to as small as chip scale package. It will continue to stay bright in future. As such, there is tremendous pressure to stay competitive in the market by optimizing products to next level of performance and reliability with the shortest time to market. This changes the conventional way of product design and development to virtual prototyping by means of Computer Aided Engineering (CAE). It comprises of the deployment of Finite Element Method (FEM) and Computational Fluid Dynamic (CFD). FEM accelerates the investigation for early detection of failures such as crack, improve the thermal performance of system and enhance solder joint reliability. CFD helps to simulate the flow pattern of molding material as a function of different temperature, molding parameters settings to evaluate failures like voids and displacement. This paper will briefly discuss the procedures and applications of FEM in thermal stress, solder joint reliability and CFD of compression molding in LED CSP. Integration of virtual prototyping in product development had greatly reduced the time to market. Many successful achievements with minimized number of evaluation iterations required in the scope of material, process setting, and package architecture variant have been materialized with this approach.

Keywords: LED, chip scale packaging (CSP), computational fluid dynamic (CFD), virtual prototyping

Procedia PDF Downloads 287
754 Educational Leadership and Artificial Intelligence

Authors: Sultan Ghaleb Aldaihani

Abstract:

- The environment in which educational leadership takes place is becoming increasingly complex due to factors like globalization and rapid technological change. - This is creating a "leadership gap" where the complexity of the environment outpaces the ability of leaders to effectively respond. - Educational leadership involves guiding teachers and the broader school system towards improved student learning and achievement. 2. Implications of Artificial Intelligence (AI) in Educational Leadership: - AI has great potential to enhance education, such as through intelligent tutoring systems and automating routine tasks to free up teachers. - AI can also have significant implications for educational leadership by providing better information and data-driven decision-making capabilities. - Computer-adaptive testing can provide detailed, individualized data on student learning that leaders can use for instructional decisions and accountability. 3. Enhancing Decision-Making Processes: - Statistical models and data mining techniques can help identify at-risk students earlier, allowing for targeted interventions. - Probability-based models can diagnose students likely to drop out, enabling proactive support. - These data-driven approaches can make resource allocation and decision-making more effective. 4. Improving Efficiency and Productivity: - AI systems can automate tasks and change processes to improve the efficiency of educational leadership and administration. - Integrating AI can free up leaders to focus more on their role's human, interactive elements.

Keywords: Education, Leadership, Technology, Artificial Intelligence

Procedia PDF Downloads 43
753 Analysys of Some Solutions to Protect the Tombolo of Giens

Authors: Yves Lacroix, Van Van Than, Didier Léandri, Pierre Liardet

Abstract:

The western Tombolo of the Giens peninsula in southern France, known as Almanarre beach, is subject to coastal erosion. We are trying to use computer simulation in order to propose solutions to stop this erosion. Our aim was first to determine the main factors for this erosion and successfully apply a coupled hydro-sedimentological numerical model based on observations and measurements that have been performed on the site for decades. We have gathered all available information and data about waves, winds, currents, tides, bathymetry, coastal line, and sediments concerning the site. These have been divided into two sets: one devoted to calibrating a numerical model using Mike 21 software, the other to serve as a reference in order to numerically compare the present situation to what it could be if we implemented different types of underwater constructions. This paper presents the first part of the study: selecting and melting different sources into a coherent data basis, identifying the main erosion factors, and calibrating the coupled software model against the selected reference period. Our results bring calibration of the numerical model with good fitting coefficients. They also show that the winter South-Western storm events conjugated to depressive weather conditions constitute a major factor of erosion, mainly due to wave impact in the northern part of the Almanarre beach. Together, current and wind impact is shown negligible.

Keywords: Almanarre beach, coastal erosion, hydro-sedimentological, numerical model

Procedia PDF Downloads 319