Search results for: single subject design
15034 Earthquake Retrofitting Methods of Steel and Concrete Structures and Investigating Strategies to Deal With Destructive Earthquakes
Authors: Ehsan Sadie
Abstract:
Today, after devastating earthquakes and many deaths due to the destruction of residential buildings, the scientific community has attracted the attention of the existing structures to strengthen and standardize construction. Due to the fact that the existing buildings are sometimes constructed without sufficient knowledge of the correct design, and even the buildings built according to the old standards today need to be reinforced due to changes in some provisions of the regulations. The location of some countries in the seismic zone has always caused a lot of human and economic damage throughout history, and attention to the strengthening of buildings, important facilities, and vital arteries is the result of this situation. Engineers' efforts to design earthquake-resistant buildings began when decades had passed since the development of design criteria and ensuring the safety of buildings against loads. New methods, mass reduction, reducing the weight of the building, use of moving structures to deal with earthquakes, as well as the use of new technologies in this field, including the use of dampers, composites in the reinforcement of structures are discussed, and appropriate solutions have been provided in each of the fields.Keywords: brace, concrete structure, damper, earthquake, FRP reinforcement, lightweight material, retrofitting, seismic isolator, shear wall, steel structure
Procedia PDF Downloads 7315033 A Generalized Space-Efficient Algorithm for Quantum Bit String Comparators
Authors: Khuram Shahzad, Omar Usman Khan
Abstract:
Quantum bit string comparators (QBSC) operate on two sequences of n-qubits, enabling the determination of their relationships, such as equality, greater than, or less than. This is analogous to the way conditional statements are used in programming languages. Consequently, QBSCs play a crucial role in various algorithms that can be executed or adapted for quantum computers. The development of efficient and generalized comparators for any n-qubit length has long posed a challenge, as they have a high-cost footprint and lead to quantum delays. Comparators that are efficient are associated with inputs of fixed length. As a result, comparators without a generalized circuit cannot be employed at a higher level, though they are well-suited for problems with limited size requirements. In this paper, we introduce a generalized design for the comparison of two n-qubit logic states using just two ancillary bits. The design is examined on the basis of qubit requirements, ancillary bit usage, quantum cost, quantum delay, gate operations, and circuit complexity and is tested comprehensively on various input lengths. The work allows for sufficient flexibility in the design of quantum algorithms, which can accelerate quantum algorithm development.Keywords: quantum comparator, quantum algorithm, space-efficient comparator, comparator
Procedia PDF Downloads 1615032 Direct Strength Method Approach for Indian Cold Formed Steel Sections with and Without Perforation for Compression Member
Authors: K. Raghu, Altafhusen P. Pinjar
Abstract:
Cold-formed steel section are extensively used in industry and many other non-industry constructions worldwide, it is relatively a new concept in India. Cold-formed steel sections have been developed as more economical building solutions to the alternative heavier hot-rolled sections in the commercial and residential markets. Cold‐formed steel (CFS) structural members are commonly manufactured with perforations to accommodate plumbing, electrical, and heating conduits in the walls and ceilings of buildings. Current design methods available to engineers for predicting the strength of CFS members with perforations are prescriptive and limited to specific perforation locations, spacing, and sizes. The Direct Strength Method (DSM), a relatively new design method for CFS members validated for members with and without perforations, predicts the ultimate strength of general CFS members with the elastic buckling properties of the member cross section. The design compression strength and flexural strength of Indian (IS 811-1987) standard sections is calculated as per North American Specification (AISI-S100 2007) and software CUFSM 4.05.Keywords: direct strength, cold formed, perforations, CUFSM
Procedia PDF Downloads 37915031 Optimum Design of Helical Gear System on Basis of Maximum Power Transmission Capability
Authors: Yasaman Esfandiari
Abstract:
Mechanical engineering has always dealt with amplification of the input power in power trains. One of the ways to achieve this goal is to use gears to change the amplitude and direction of the torque and the speed. However, the gears should be optimally designed to best achieve these objectives. In this study, helical gear systems are optimized to achieve maximum power. Material selection, space restriction, available facilities for manufacturing, the probability of tooth breakage, and tooth wear are taken into account and governing equations are derived. Finally, a Matlab code was generated to solve the optimization problem and the results are verified.Keywords: design, gears, Matlab, optimization
Procedia PDF Downloads 24015030 Brief Review of the Self-Tightening, Left-Handed Thread
Authors: Robert S. Giachetti, Emanuele Grossi
Abstract:
Loosening of bolted joints in rotating machines can adversely affect their performance, cause mechanical damage, and lead to injuries. In this paper, two potential loosening phenomena in rotating applications are discussed. First, ‘precession,’ is governed by thread/nut contact forces, while the second is based on inertial effects of the fastened assembly. These mechanisms are reviewed within the context of historical usage of left-handed fasteners in rotating machines which appears absent in the literature and common machine design texts. Historically, to prevent loosening of wheel nuts, vehicle manufacturers have used right-handed and left-handed threads on different sides of the vehicle, but most modern vehicles have abandoned this custom and only use right-handed, tapered lug nuts on all sides of the vehicle. Other classical machines such as the bicycle continue to use different handed threads on each side while other machines such as, bench grinders, circular saws and brush cutters still use left-handed threads to fasten rotating components. Despite the continued use of left-handed fasteners, the rationale and analysis of left-handed threads to mitigate self-loosening of fasteners in rotating applications is not commonly, if at all, discussed in the literature or design textbooks. Without scientific literature to support these design selections, these implementations may be the result of experimental findings or aged institutional knowledge. Based on a review of rotating applications, historical documents and mechanical design references, a formal study of the paradoxical nature of left-handed threads in various applications is merited.Keywords: rotating machinery, self-loosening fasteners, wheel fastening, vibration loosening
Procedia PDF Downloads 13615029 Role of Cellulose Fibers in Tuning the Microstructure and Crystallographic Phase of α-Fe₂O₃ and α-FeOOH Nanoparticles
Authors: Indu Chauhan, Bhupendra S. Butola, Paritosh Mohanty
Abstract:
It is very well known that properties of material changes as their size approach to nanoscale level due to the high surface area to volume ratio. However, in last few decades, a tenet ‘structure dictates function’ is quickly being adopted by researchers working with nanomaterials. The design and exploitation of nanoparticles with tailored shape and size has become one of the primary goals of materials science researchers to expose the properties of nanostructures. To date, various methods, including soft/hard template/surfactant assisted route hydrothermal reaction, seed mediated growth method, capping molecule-assisted synthesis, polyol process, etc. have been adopted to synthesize the nanostructures with controlled size and shape and monodispersity. However controlling the shape and size of nanoparticles is an ultimate challenge of modern material research. In particular, many efforts have been devoted to rational and skillful control of hierarchical and complex nanostructures. Thus in our research work, role of cellulose in manipulating the nanostructures has been discussed. Nanoparticles of α-Fe₂O₃ (diameter ca. 15 to 130 nm) were immobilized on the cellulose fiber surface by a single step in situ hydrothermal method. However, nanoflakes of α-FeOOH having thickness ca. ~25 nm and length ca. ~250 nm were obtained by the same method in absence of cellulose fibers. A possible nucleation and growth mechanism of the formation of nanostructures on cellulose fibers have been proposed. The covalent bond formation between the cellulose fibers and nanostructures has been discussed with supporting evidence from the spectroscopic and other analytical studies such as Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The role of cellulose in manipulating the nanostructures has been discussed.Keywords: cellulose fibers, α-Fe₂O₃, α-FeOOH, hydrothermal, nanoflakes, nanoparticles
Procedia PDF Downloads 15015028 Higher Education Leadership and Creating Sites of Institutional Belonging: A Global Case Study
Authors: Lisa M. Coleman
Abstract:
The focus on disability, LGBTQ+, and internationalization has certainly been the subject of much research and programmatic across higher education. Many universities have entered into global partnerships with varying success and challenges across the various areas, including laws and policies. Attentiveness to the specific nuances of global inclusion, diversity, equity, belonging, and access (GIDBEA) and the leadership to support these efforts is crucial to the development of longstanding success across the programs. There have been a number of shifts related to diversification across student and alumni bodies. These shifts include but are not limited to how people identify gender, race, and sexuality (and the intersections across such identities), as well as trends across emerging and diverse disability communities. NYU is the most international campus in the United States, with the most campuses and sites outside of its county of origin and the most international students and exchange programs than any other university. As a result, the ongoing work related to GIDEBA is at the center of much of the leadership, administrative, and research efforts. Climate assessment work across NYU’s diverse global campus landscape will serve as the foundation to exemplify best practices related to data collection and dissemination, community and stakeholder engagement, and effective implementation of innovative strategies to close gap areas as identified. The data (quantitative and qualitative) and related research findings represent data collected from close to 22,000 stakeholders across the NYU campuses. The case study centers on specific methodological considerations, data integrity, stakeholder engagement from across student-faculty, staff, and alumni constituencies, and tactics to advance specific GIDBEA initiatives related to navigating shifting landscapes. Design thinking, incubation, and co-creation strategies have been employed to expand, leverage, actualize, and implement GIDBEA strategies that are – concrete, measurable, differentiated, and specific to global sites and regions and emerging trends.Keywords: disability, LGBTQ+, DEI, research, case studies
Procedia PDF Downloads 10515027 2D Convolutional Networks for Automatic Segmentation of Knee Cartilage in 3D MRI
Authors: Ananya Ananya, Karthik Rao
Abstract:
Accurate segmentation of knee cartilage in 3-D magnetic resonance (MR) images for quantitative assessment of volume is crucial for studying and diagnosing osteoarthritis (OA) of the knee, one of the major causes of disability in elderly people. Radiologists generally perform this task in slice-by-slice manner taking 15-20 minutes per 3D image, and lead to high inter and intra observer variability. Hence automatic methods for knee cartilage segmentation are desirable and are an active field of research. This paper presents design and experimental evaluation of 2D convolutional neural networks based fully automated methods for knee cartilage segmentation in 3D MRI. The architectures are validated based on 40 test images and 60 training images from SKI10 dataset. The proposed methods segment 2D slices one by one, which are then combined to give segmentation for whole 3D images. Proposed methods are modified versions of U-net and dilated convolutions, consisting of a single step that segments the given image to 5 labels: background, femoral cartilage, tibia cartilage, femoral bone and tibia bone; cartilages being the primary components of interest. U-net consists of a contracting path and an expanding path, to capture context and localization respectively. Dilated convolutions lead to an exponential expansion of receptive field with only a linear increase in a number of parameters. A combination of modified U-net and dilated convolutions has also been explored. These architectures segment one 3D image in 8 – 10 seconds giving average volumetric Dice Score Coefficients (DSC) of 0.950 - 0.962 for femoral cartilage and 0.951 - 0.966 for tibia cartilage, reference being the manual segmentation.Keywords: convolutional neural networks, dilated convolutions, 3 dimensional, fully automated, knee cartilage, MRI, segmentation, U-net
Procedia PDF Downloads 26115026 Development of Web Application for Warehouse Management System: A Case Study of Ceramics Factory
Authors: Thanaphat Suwanaklang, Supaporn Suwannarongsri
Abstract:
Presently, there are many industries in Thailand producing various products for both domestic distribution and export to foreign countries. Warehouse is one of the most important areas of business needing to store their products. Such businesses need to have a suitable warehouse management system for reducing the storage time and using the space as much as possible. This paper proposes the development of a web application for a warehouse management system. One of the ceramics factories in Thailand is conducted as a case study. By applying the ABC analysis, fixed location, commodity system, ECRS, and 7-waste theories and principles, the web application for the warehouse management system of the selected ceramics factory is developed to design the optimal storage area for groups of products and design the optimal routes of forklifts. From experimental results, it was found that the warehouse management system developed via the web application can reduce the travel distance of forklifts and the time of searching for storage area by 100% once compared with the conventional method. In addition, the entire storage area can be on-line and real-time monitored.Keywords: warehouse management system, warehouse design method, logistics system, web application
Procedia PDF Downloads 13615025 Liquid Crystal Elastomers as Light-Driven Star-Shaped Microgripper
Authors: Indraj Singh, Xuan Lee, Yu-Chieh Cheng
Abstract:
Scientists are very keen on biomimetic research that mimics biological species to micro-robotic devices with the novel functionalities and accessibility. The source of inspiration is the complexity, sophistication, and intelligence of the biological systems. In this work, we design a light-driven star-shaped microgripper, an autonomous soft device which can change the shape under the external stimulus such as light. The design is based on light-responsive Liquid Crystal Elastomers which fabricated onto the polymer coated aligned substrate. The change in shape, controlled by the anisotropicity and the molecular orientation of the Liquid Crystal Elastomer, based on the external stimulus. This artificial star-shaped microgripper is capable of autonomous closure and capable to grab the objects in response to an external stimulus. This external stimulus-responsive materials design, based on soft active smart materials, provides a new approach to autonomous, self-regulating optical systems.Keywords: liquid crystal elastomers, microgripper, smart materials, robotics
Procedia PDF Downloads 14015024 Implications of Humanizing Pedagogy on Learning Design in a Technology-Enhanced Language Learning Environment: Critical Reflections on Student Identity and Agency
Authors: Mukhtar Raban
Abstract:
Nelson Mandela University subscribes to a humanizing pedagogy (HP), as housed under broader critical pedagogy, that underpins and informs learning and teaching activities at the institution. The investigation sought to explore the implications of humanizing and critical pedagogical considerations for a technology-enhanced language learning (TELL) environment in a university course. The paper inquires into the design of a learning resource in an online learning environment of an English communication module, that applied HP principles. With an objective of creating agentive spaces for foregrounding identity, student voice, critical self-reflection, and recognition of others’ humanity; a flexible and open 'My Presence' feature was added to the TELL environment that allowed students and lecturers to share elements of their backgrounds in a ‘mutually vulnerable’ manner as a way of establishing digital identity and a more ‘human’ presence in the online language learning encounter, serving as a catalyst for the recognition of the ‘other’. Following a qualitative research design, the study adopted an auto-ethnographic approach, complementing the critical inquiry nature embedded into the activity’s practices. The study’s findings provide critical reflections and deductions on the possibilities of leveraging digital human expression within a humanizing pedagogical framework to advance the realization of HP-adoption in language learning and teaching encounters. It was found that the consideration of humanizing pedagogical principles in the design of online learning was more effective when the critical outcomes were explicated to students and lecturers prior to the completion of the activities. The integration of humanizing pedagogy also led to a contextual advancement of ‘affective’ language learning. Upon critical reflection and analysis, student identity and agency can flourish in a technology-enhanced learning environment when humanizing, and critical pedagogy influences the learning design.Keywords: critical reflection, humanizing pedagogy, student identity, technology-enhanced language learning
Procedia PDF Downloads 13515023 Effects of Different Fungicide In-Crop Treatments on Plant Health Status of Sunflower (Helianthus annuus L.)
Authors: F. Pal-Fam, S. Keszthelyi
Abstract:
Phytosanitary condition of sunflower (Helianthus annuus L.) was endangered by several phytopathogenic agents, mainly microfungi, such as Sclerotinia sclerotiorum, Diaporthe helianthi, Plasmopara halstedtii, Macrophomina phaseolina and so on. There are more agrotechnical and chemical technologies against them, for instance, tolerant hybrids, crop rotations and eventually several in-crop chemical treatments. There are different fungicide treatment methods in sunflower in Hungarian agricultural practice in the quest of obtaining healthy and economic plant products. Besides, there are many choices of useable active ingredients in Hungarian sunflower protection. This study carried out into the examination of the effect of five different fungicide active substances (found on the market) and three different application modes (early; late; and early and late treatments) in a total number of 9 sample plots, 0.1 ha each other. Five successive vegetation periods have been investigated in long term, between 2013 and 2017. The treatments were: 1)untreated control; 2) boscalid and dimoxystrobin late treatment (July); 3) boscalid and dimoxystrobin early treatment (June); 4) picoxystrobin and cyproconazole early treatment; 5) picoxystrobin and cymoxanil and famoxadone early treatment; 6) picoxystrobin and cyproconazole early; cymoxanil and famoxadone late treatments; 7) picoxystrobin and cyproconazole early; picoxystrobin and cymoxanil and famoxadone late treatments; 8) trifloxystrobin and cyproconazole early treatment; and 9) trifloxystrobin and cyproconazole both early and late treatments. Due to the very different yearly weather conditions different phytopathogenic fungi were dominant in the particular years: Diaporthe and Alternaria in 2013; Alternaria and Sclerotinia in 2014 and 2015; Alternaria, Sclerotinia and Diaporthe in 2016; and Alternaria in 2017. As a result of treatments ‘infection frequency’ and ‘infestation rate’ showed a significant decrease compared to the control plot. There were no significant differences between the efficacies of the different fungicide mixes; all were almost the same effective against the phytopathogenic fungi. The most dangerous Sclerotinia infection was practically eliminated in all of the treatments. Among the single treatments, the late treatment realised in July was the less efficient, followed by the early treatments effectuated in June. The most efficient was the double treatments realised in both June and July, resulting 70-80% decrease of the infection frequency, respectively 75-90% decrease of the infestation rate, comparing with the control plot in the particular years. The lowest yield quantity was observed in the control plot, followed by the late single treatment. The yield of the early single treatments was higher, while the double treatments showed the highest yield quantities (18.3-22.5% higher than the control plot in particular years). In total, according to our five years investigation, the most effective application mode is the double in-crop treatment per vegetation time, which is reflected by the yield surplus.Keywords: fungicides, treatments, phytopathogens, sunflower
Procedia PDF Downloads 14115022 Analysis of Grid Connected High Concentrated Photovoltaic Systems for Peak Load Shaving in Kuwait
Authors: Adel A. Ghoneim
Abstract:
Air conditioning devices are substantially utilized in the summer months, as a result maximum loads in Kuwait take place in these intervals. Peak energy consumption are usually more expensive to satisfy compared to other standard power sources. The primary objective of the current work is to enhance the performance of high concentrated photovoltaic (HCPV) systems in an attempt to minimize peak power usage in Kuwait using HCPV modules. High concentrated PV multi-junction solar cells provide a promising method towards accomplishing lowest pricing per kilowatt-hour. Nevertheless, these cells have various features that should be resolved to be feasible for extensive power production. A single diode equivalent circuit model is formulated to analyze multi-junction solar cells efficiency in Kuwait weather circumstances taking into account the effects of both the temperature and the concentration ratio. The diode shunt resistance that is commonly ignored in the established models is considered in the present numerical model. The current model results are successfully validated versus measurements from published data to within 1.8% accuracy. Present calculations reveal that the single diode model considering the shunt resistance provides accurate and dependable results. The electrical efficiency (η) is observed to increase with concentration to a specific concentration level after which it reduces. Implementing grid systems is noticed to increase with concentration to a certain concentration degree after which it decreases. Employing grid connected HCPV systems results in significant peak load reduction.Keywords: grid connected, high concentrated photovoltaic systems, peak load, solar cells
Procedia PDF Downloads 15515021 A Project-Based Learning Approach in the Course of 'Engineering Skills' for Undergraduate Engineering Students
Authors: Armin Eilaghi, Ahmad Sedaghat, Hayder Abdurazzak, Fadi Alkhatib, Shiva Sadeghi, Martin Jaeger
Abstract:
A summary of experiences, recommendations, and lessons learnt in the application of PBL in the course of “Engineering Skills” in the School of Engineering at Australian College of Kuwait in Kuwait is presented. Four projects were introduced as part of the PBL course “Engineering Skills” to 24 students in School of Engineering. These students were grouped in 6 teams to develop their skills in 10 learning outcomes. The learning outcomes targeted skills such as drawing, design, modeling, manufacturing and analysis at a preliminary level; and also some life line learning and teamwork skills as these students were exposed for the first time to the PBL (project based learning). The students were assessed for 10 learning outcomes of the course and students’ feedback was collected using an anonymous survey at the end of the course. Analyzing the students’ feedbacks, it is observed that 67% of students preferred multiple smaller projects than a single big project because it provided them with more time and attention focus to improve their “soft skills” including project management, risk assessment, and failure analysis. Moreover, it is found that 63% of students preferred to work with different team members during the course to improve their professional communication skills. Among all, 62% of students believed that working with team members from other departments helped them to increase the innovative aspect of projects and improved their overall performance. However, 70% of students counted extra time needed to regenerate momentum with the new teams as the major challenge. Project based learning provided a suitable platform for introducing students to professional engineering practice and meeting the needs of students, employers and educators. It was found that students achieved their 10 learning outcomes and gained new skills developed in this PBL unit. This was reflected in their portfolios and assessment survey.Keywords: project-based learning, engineering skills, undergraduate engineering, problem-based learning
Procedia PDF Downloads 16615020 Women Perception of Spatial Safety Relating to Working in Historic Cairo’s Retail Street Markets
Authors: Toka M. Abufarag
Abstract:
This research primarily studies the correlation between the existence of different spatial factors in relation to the perception of females towards safely participating in the labor force within selected areas of economic bustle in Historic Cairo. This research measures the following independent variables: (1) perception regarding spatial safety on the street as controlled by street network, (2) vegetation as a facilitator and inhibitor of feeling safe in public places, and (3) outdoor lighting; in relation to the following dependent variable: the perception of females towards safely participating in the labor force in Historic Cairo. The objective of this research lies within adding to the design guidelines of urban design and planning in terms of design recommendations, making them more inclusive, especially those dealing with conserving and enhancing the built environment of old and historic cities. It is hypothesized that a balanced male-to-female ratio in terms of street activity, increased visibility of street in terms of its volume, a decrease in street obstacles, creation of open sighted vegetation, and increased visibility due to proper lighting will show up as positive response relating to the female perception of safety. The site chosen as an area to host this exercise of data collection is Al-Ataba. The site is within the borders of Historic Cairo and was chosen for two reasons: firstly, it provides a major source of economic bustle in Historic Cairo; and secondly, it hosts retail economic activities. This is a cross-sectional study. The data collected will consist of three parts: (1) observations by the researcher regarding the percentage of female participation, as well as perception of females on site, (2) interviews with women working on-site regarding the percentage of female participation, as well as their perception on participating, and (3) an anonymous online survey that studies the perception of a random sample of women towards the site as a place to exist in. The survey will aid in producing design recommendations on how to design an open 'souk' that suits women’s perception of a safe space.Keywords: urban design, women empowerment, safety perception, street markets, historic Cairo
Procedia PDF Downloads 12515019 A Study of Seismic Design Approaches for Steel Sheet Piles: Hydrodynamic Pressures and Reduction Factors Using CFD and Dynamic Calculations
Authors: Helena Pera, Arcadi Sanmartin, Albert Falques, Rafael Rebolo, Xavier Ametller, Heiko Zillgen, Cecile Prum, Boris Even, Eric Kapornyai
Abstract:
Sheet piles system can be an interesting solution when dealing with harbors or quays designs. However, current design methods lead to conservative approaches due to the lack of specific basis of design. For instance, some design features still deal with pseudo-static approaches, although being a dynamic problem. Under this concern, the study particularly focuses on hydrodynamic water pressure definition and stability analysis of sheet pile system under seismic loads. During a seismic event, seawater produces hydrodynamic pressures on structures. Currently, design methods introduce hydrodynamic forces by means of Westergaard formulation and Eurocodes recommendations. They apply constant hydrodynamic pressure on the front sheet pile during the entire earthquake. As a result, the hydrodynamic load may represent 20% of the total forces produced on the sheet pile. Nonetheless, some studies question that approach. Hence, this study assesses the soil-structure-fluid interaction of sheet piles under seismic action in order to evaluate if current design strategies overestimate hydrodynamic pressures. For that purpose, this study performs various simulations by Plaxis 2D, a well-known geotechnical software, and CFD models, which treat fluid dynamic behaviours. Knowing that neither Plaxis nor CFD can resolve a soil-fluid coupled problem, the investigation imposes sheet pile displacements from Plaxis as input data for the CFD model. Then, it provides hydrodynamic pressures under seismic action, which fit theoretical Westergaard pressures if calculated using the acceleration at each moment of the earthquake. Thus, hydrodynamic pressures fluctuate during seismic action instead of remaining constant, as design recommendations propose. Additionally, these findings detect that hydrodynamic pressure contributes a 5% to the total load applied on sheet pile due to its instantaneous nature. These results are in line with other studies that use added masses methods for hydrodynamic pressures. Another important feature in sheet pile design is the assessment of the geotechnical overall stability. It uses pseudo-static analysis since the dynamic analysis cannot provide a safety calculation. Consequently, it estimates the seismic action. One of its relevant factors is the selection of the seismic reduction factor. A huge amount of studies discusses the importance of it but also about all its uncertainties. Moreover, current European standards do not propose a clear statement on that, and they recommend using a reduction factor equal to 1. This leads to conservative requirements when compared with more advanced methods. Under this situation, the study calibrates seismic reduction factor by fitting results from pseudo-static to dynamic analysis. The investigation concludes that pseudo-static analyses could reduce seismic action by 40-50%. These results are in line with some studies from Japanese and European working groups. In addition, it seems suitable to account for the flexibility of the sheet pile-soil system. Nevertheless, the calibrated reduction factor is subjected to particular conditions of each design case. Further research would contribute to specifying recommendations for selecting reduction factor values in the early stages of the design. In conclusion, sheet pile design still has chances for improving its design methodologies and approaches. Consequently, design could propose better seismic solutions thanks to advanced methods such as findings of this study.Keywords: computational fluid dynamics, hydrodynamic pressures, pseudo-static analysis, quays, seismic design, steel sheet pile
Procedia PDF Downloads 14215018 Enhancing Teaching of Engineering Mathematics
Authors: Tajinder Pal Singh
Abstract:
Teaching of mathematics to engineering students is an open ended problem in education. The main goal of mathematics learning for engineering students is the ability of applying a wide range of mathematical techniques and skills in their engineering classes and later in their professional work. Most of the undergraduate engineering students and faculties feels that no efforts and attempts are made to demonstrate the applicability of various topics of mathematics that are taught thus making mathematics unavoidable for some engineering faculty and their students. The lack of understanding of concepts in engineering mathematics may hinder the understanding of other concepts or even subjects. However, for most undergraduate engineering students, mathematics is one of the most difficult courses in their field of study. Most of the engineering students never understood mathematics or they never liked it because it was too abstract for them and they could never relate to it. A right balance of application and concept based teaching can only fulfill the objectives of teaching mathematics to engineering students. It will surely improve and enhance their problem solving and creative thinking skills. In this paper, some practical (informal) ways of making mathematics-teaching application based for the engineering students is discussed. An attempt is made to understand the present state of teaching mathematics in engineering colleges. The weaknesses and strengths of the current teaching approach are elaborated. Some of the causes of unpopularity of mathematics subject are analyzed and a few pragmatic suggestions have been made. Faculty in mathematics courses should spend more time discussing the applications as well as the conceptual underpinnings rather than focus solely on strategies and techniques to solve problems. They should also introduce more ‘word’ problems as these problems are commonly encountered in engineering courses. Overspecialization in engineering education should not occur at the expense of (or by diluting) mathematics and basic sciences. The role of engineering education is to provide the fundamental (basic) knowledge and to teach the students simple methodology of self-learning and self-development. All these issues would be better addressed if mathematics and engineering faculty join hands together to plan and design the learning experiences for the students who take their classes. When faculties stop competing against each other and start competing against the situation, they will perform better. Without creating any administrative hassles these suggestions can be used by any young inexperienced faculty of mathematics to inspire engineering students to learn engineering mathematics effectively.Keywords: application based learning, conceptual learning, engineering mathematics, word problem
Procedia PDF Downloads 23215017 Effective Slab Width for Beam-End Flexural Strength of Composite Frames with Circular-Section Columns
Authors: Jizhi Zhao, Qiliang Zhou, Muxuan Tao
Abstract:
The calculation of the ultimate loading capacity of composite frame beams is an important step in the design of composite frame structural systems. Currently, the plastic limit theory is mainly used for this calculation in the codes adopted by many countries; however, the effective slab width recommended in most codes is based on the elastic theory, which does not accurately reflect the complex stress mechanism at the beam-column joints in the ultimate loading state. Therefore, the authors’ research group put forward the Compression-on-Column-Face mechanism and Tension-on-Transverse-Beam mechanism to explain the mechanism in the ultimate loading state. Formulae are derived for calculating the effective slab width in composite frames with rectangular/square-section columns under ultimate lateral loading. Moreover, this paper discusses the calculation method of the effective slab width for the beam-end flexural strength of composite frames with circular-section columns. The proposed design formula is suitable for exterior and interior joints. Finally, this paper compares the proposed formulae with available formulae in other literature, current design codes, and experimental results, providing the most accurate results to predict the effective slab width and ultimate loading capacity.Keywords: composite frame structure, effective slab width, circular-section column, design formulae, ultimate loading capacity
Procedia PDF Downloads 12815016 Performance of Bored Pile on Alluvial Deposit
Authors: K. Raja Rajan, D. Nagarajan
Abstract:
Bored cast in-situ pile is a popular choice amongst consultant and contractor due to the ability to adjust the pile length suitably in case if any variation found in the actual geological strata. Bangladesh geological strata are dominated by silt content. Design is normally based on field test such as Standard Penetration test N-values. Initially, pile capacity estimated through static formula with co-relation of N-value and angle of internal friction. Initial pile load test was conducted in order to validate the geotechnical parameters assumed in design. Initial pile load test was conducted on 1.5m diameter bored cast in-situ pile. Kentledge method is used to load the pile for 2.5 times of its working load. Initially, safe working load of pile has been estimated as 570T, so test load is fixed to 1425T. Max load applied is 777T for which the settlement reached around 155mm which is more than 10% of diameter of piles. Pile load test results was not satisfactory and compelled to increase the pile length approximately 20% of its total length. Due to unpredictable geotechnical parameters, length of each pile has been increased which is having a major impact on the project cost and as well as in project schedule. Extra bore holes have been planned along with lab test results in order to redefine the assumed geotechnical parameters. This article presents detailed design assumptions of geotechnical parameters in the design stage and the results of pile load test which made to redefine the assumed geotechnical properties.Keywords: end bearing, pile load test, settlement, shaft friction
Procedia PDF Downloads 26515015 Model-Free Distributed Control of Dynamical Systems
Authors: Javad Khazaei, Rick Blum
Abstract:
Distributed control is an efficient and flexible approach for coordination of multi-agent systems. One of the main challenges in designing a distributed controller is identifying the governing dynamics of the dynamical systems. Data-driven system identification is currently undergoing a revolution. With the availability of high-fidelity measurements and historical data, model-free identification of dynamical systems can facilitate the control design without tedious modeling of high-dimensional and/or nonlinear systems. This paper develops a distributed control design using consensus theory for linear and nonlinear dynamical systems using sparse identification of system dynamics. Compared with existing consensus designs that heavily rely on knowing the detailed system dynamics, the proposed model-free design can accurately capture the dynamics of the system with available measurements and input data and provide guaranteed performance in consensus and tracking problems. Heterogeneous damped oscillators are chosen as examples of dynamical system for validation purposes.Keywords: consensus tracking, distributed control, model-free control, sparse identification of dynamical systems
Procedia PDF Downloads 26615014 Ubiquitous Collaborative Learning Activities with Virtual Teams Using CPS Processes to Develop Creative Thinking and Collaboration Skills
Authors: Sitthichai Laisema, Panita Wannapiroon
Abstract:
This study is a research and development which is intended to: 1) design ubiquitous collaborative learning activities with virtual teams using CPS processes to develop creative thinking and collaboration skills, and 2) assess the suitability of the ubiquitous collaborative learning activities. Its methods are divided into 2 phases. Phase 1 is the design of ubiquitous collaborative learning activities with virtual teams using CPS processes, phase 2 is the assessment of the suitability of the learning activities. The samples used in this study are 5 professionals in the field of learning activity design, ubiquitous learning, information technology, creative thinking, and collaboration skills. The results showed that ubiquitous collaborative learning activities with virtual teams using CPS processes to develop creative thinking and collaboration skills consist of 3 main steps which are: 1) preparation before learning, 2) learning activities processing and 3) performance appraisal. The result of the learning activities suitability assessment from the professionals is in the highest level.Keywords: ubiquitous learning, collaborative learning, virtual team, creative problem solving
Procedia PDF Downloads 51515013 Optimization of Solar Chimney Power Production
Authors: Olusola Bamisile, Oluwaseun Ayodele, Mustafa Dagbasi
Abstract:
The main objective of this research is to optimize the power produced by a solar chimney wind turbine. The cut out speed and the maximum possible production are considered while performing the optimization. Solar chimney is one of the solar technologies that can be used in rural areas at cheap cost. With over 50% of rural areas still yet to have access to electricity. The OptimTool in MATLAB is used to maximize power produced by the turbine subject to certain constraints. The results show that an optimized turbine produces about ten times the power of the normal turbine which is 111 W/h. The rest of the research discuss in detail solar chimney power plant and the optimization simulation used in this study.Keywords: solar chimney, optimization, wind turbine, renewable energy systems
Procedia PDF Downloads 58715012 The Performance Evaluation of the Modular Design of Hybrid Wall with Surface Heating and Cooling System
Authors: Selcen Nur Eri̇kci̇ Çeli̇k, Burcu İbaş Parlakyildiz, Gülay Zorer Gedi̇k
Abstract:
Reducing the use of mechanical heating and cooling systems in buildings, which accounts for approximately 30-40% of total energy consumption in the world has a major impact in terms of energy conservation. Formations of buildings that have sustainable and low energy utilization, structural elements with mechanical systems should be evaluated with a holistic approach. In point of reduction of building energy consumption ratio, wall elements that are vertical building elements and have an area broadly (m2) have proposed as a regulation with a different system. In the study, designing surface heating and cooling energy with a hybrid type of modular wall system and the integration of building elements will be evaluated. The design of wall element; - Identification of certain standards in terms of architectural design and size, -Elaboration according to the area where the wall elements (interior walls, exterior walls) -Solution of the joints, -Obtaining the surface in terms of building compatible with both conceptual structural put emphasis on upper stages, these elements will be formed. The durability of the product to the various forces, stability and resistance are so much substantial that are used the establishment of ready-wall element section and the planning of structural design. All created ready-wall alternatives will be paid attention at some parameters; such as adapting to performance-cost by optimum level and size that can be easily processed and reached. The restrictions such as the size of the zoning regulations, building function, structural system, wheelbase that are imposed by building laws, should be evaluated. The building aims to intend to function according to a certain standardization system and construction of wall elements will be used. The scope of performance criteria determined on the wall elements, utilization (operation, maintenance) and renovation phase, alternative material options will be evaluated with interim materials located in the contents. Design, implementation and technical combination of modular wall elements in the use phase and installation details together with the integration of energy saving, heat-saving and useful effects on the environmental aspects will be discussed in detail. As a result, the ready-wall product with surface heating and cooling modules will be created and defined as hybrid wall and will be compared with the conventional system in terms of thermal comfort. After preliminary architectural evaluations, certain decisions for all architectural design processes (pre and post design) such as the implementation and performance in use, maintenance, renewal will be evaluated in the results.Keywords: modular ready-wall element, hybrid, architectural design, thermal comfort, energy saving
Procedia PDF Downloads 25415011 Using Bamboo Structures for Protecting Mangrove Ecosystems: A Nature-Based Approach
Authors: Sourabh Harihar, Henk Jan Verhagen
Abstract:
The nurturing of a mangrove ecosystem requires a protected coastal environment with adequate drainage of the soil substratum. In a conceptual design undertaken for a mangrove rejuvenation project along the eastern coast of Mumbai (India), various engineering alternatives have been thought of as a protective coastal structure and drainage system. One such design uses bamboo-pile walls in creating shielded compartments in the form of various layouts, coupled with bamboo drains. The bamboo-based design is found to be environmentally and economically advantageous over other designs like sand-dikes which are multiple times more expensive. Moreover, employing a natural material such as bamboo helps the structure naturally blend with the developing mangrove habitat, allaying concerns about dismantling the structure post mangrove growth. A cost-minimising and eco-friendly bamboo structure, therefore, promises to pave the way for large rehabilitation projects in future. As mangrove ecosystems in many parts of the world increasingly face the threat of destruction due to urban development and climate change, protective nature-based designs that can be built in a short duration are the need of the hour.Keywords: bamboo, environment, mangrove, rehabilitation
Procedia PDF Downloads 28215010 Unlocking the Puzzle of Borrowing Adult Data for Designing Hybrid Pediatric Clinical Trials
Authors: Rajesh Kumar G
Abstract:
A challenging aspect of any clinical trial is to carefully plan the study design to meet the study objective in optimum way and to validate the assumptions made during protocol designing. And when it is a pediatric study, there is the added challenge of stringent guidelines and difficulty in recruiting the necessary subjects. Unlike adult trials, there is not much historical data available for pediatrics, which is required to validate assumptions for planning pediatric trials. Typically, pediatric studies are initiated as soon as approval is obtained for a drug to be marketed for adults, so with the adult study historical information and with the available pediatric pilot study data or simulated pediatric data, the pediatric study can be well planned. Generalizing the historical adult study for new pediatric study is a tedious task; however, it is possible by integrating various statistical techniques and utilizing the advantage of hybrid study design, which will help to achieve the study objective in a smoother way even with the presence of many constraints. This research paper will explain how well the hybrid study design can be planned along with integrated technique (SEV) to plan the pediatric study; In brief the SEV technique (Simulation, Estimation (using borrowed adult data and applying Bayesian methods)) incorporates the use of simulating the planned study data and getting the desired estimates to Validate the assumptions.This method of validation can be used to improve the accuracy of data analysis, ensuring that results are as valid and reliable as possible, which allow us to make informed decisions well ahead of study initiation. With professional precision, this technique based on the collected data allows to gain insight into best practices when using data from historical study and simulated data alike.Keywords: adaptive design, simulation, borrowing data, bayesian model
Procedia PDF Downloads 7715009 Modeling and Optimization of Algae Oil Extraction Using Response Surface Methodology
Authors: I. F. Ejim, F. L. Kamen
Abstract:
Aims: In this experiment, algae oil extraction with a combination of n-hexane and ethanol was investigated. The effects of extraction solvent concentration, extraction time and temperature on the yield and quality of oil were studied using Response Surface Methodology (RSM). Experimental Design: Optimization of algae oil extraction using Box-Behnken design was used to generate 17 experimental runs in a three-factor-three-level design where oil yield, specific gravity, acid value and saponification value were evaluated as the response. Result: In this result, a minimum oil yield of 17% and maximum of 44% was realized. The optimum values for yield, specific gravity, acid value and saponification value from the overlay plot were 40.79%, 0.8788, 0.5056 mg KOH/g and 180.78 mg KOH/g respectively with desirability of 0.801. The maximum point prediction was yield 40.79% at solvent concentration 66.68 n-hexane, temperature of 40.0°C and extraction time of 4 hrs. Analysis of Variance (ANOVA) results showed that the linear and quadratic coefficient were all significant at p<0.05. The experiment was validated and results obtained were with the predicted values. Conclusion: Algae oil extraction was successfully optimized using RSM and its quality indicated it is suitable for many industrial uses.Keywords: algae oil, response surface methodology, optimization, Box-Bohnken, extraction
Procedia PDF Downloads 33815008 The Systems Theoretic Accident Model and Process (Stamp) as the New Trend to Promote Safety Culture in Construction
Authors: Natalia Ortega
Abstract:
Safety Culture (SCU) involves various perceptual, psychological, behavioral, and managerial factors. It has been shown that creating and maintaining an SCU is one way to reduce and prevent accidents and fatalities. In the construction sector, safety attitude, knowledge, and a supportive environment are predictors of safety behavior. The highest possible proportion of safety behavior among employees can be achieved by improving their safety attitude and knowledge. Accordingly, top management's commitment to safety is vital in shaping employees' safety attitude; therefore, the first step to improving employees' safety attitude is the genuine commitment of top management to safety. One of the factors affecting the successful implementation of health and safety promotion programs is the construction industry's subcontracting model. The contractual model's complexity, combined with the need for coordination among diverse stakeholders, makes it challenging to implement, manage, and follow up on health and well-being initiatives. The Systems theoretic accident model and process (STAMP) concept has expanded global consideration in recent years, increasing research attention. STAMP focuses attention on the role of constraints in safety management. The findings discover a growth of the research field from the definition in 2004 by Leveson and is being used across multiple domains. A systematic literature review of this novel model aims to meet the safety goals for human space exploration with a powerful and different approach to safety management, safety-driven design, and decision-making. Around two hundred studies have been published about applying the model. However, every single model for safety requires time to transform into research and practice, be tested and debated, and grow further and mature.Keywords: stamp, risk management, accident prevention, safety culture, systems thinking, construction industry, safety
Procedia PDF Downloads 8015007 Design of the Intelligent Virtual Learning Coach. A Contextual Learning Approach to Digital Literacy of Senior Learners in the Context of Electronic Health Record (EHR)
Authors: Ilona Buchem, Carolin Gellner
Abstract:
The call for the support of senior learners in the development of digital literacy has become prevalent in recent years, especially in view of the aging societies paired with advances in digitalization in all spheres of life, including e-health. The goal has been to create opportunities for learning that incorporate the use of context in a reflective and dialogical way. Contextual learning has focused on developing skills through the application of authentic problems. While major research efforts in supporting senior learners in developing digital literacy have been invested so far in e-learning, focusing on knowledge acquisition and cognitive tasks, little research exists in reflective mentoring and coaching with the help of pedagogical agents and addressing the contextual dimensions of learning. This paper describes an approach to creating opportunities for senior learners to improve their digital literacy in the authentic context of the electronic health record (EHR) with the support of an intelligent virtual learning coach. The paper focuses on the design of the virtual coach as part of an e-learning system, which was developed in the EPA-Coach project founded by the German Ministry of Education and Research. The paper starts with the theoretical underpinnings of contextual learning and the related design considerations for a virtual learning coach based on previous studies. Since previous research in the area was mostly designed to cater to the needs of younger audiences, the results had to be adapted to the specific needs of senior learners. Next, the paper outlines the stages in the design of the virtual coach, which included the adaptation of the design requirements, the iterative development of the prototypes, the results of the two evaluation studies and how these results were used to improve the design of the virtual coach. The paper then presents the four prototypes of a senior-friendly virtual learning coach, which were designed to represent different preferences related to the visual appearance, the communication and social interaction styles, and the pedagogical roles. The first evaluation of the virtual coach design was an exploratory, qualitative study, which was carried out in October 2020 with eight seniors aged 64 to 78 and included a range of questions about the preferences of senior learners related to the visual design, gender, age, communication and role. Based on the results of the first evaluation, the design was adapted to the preferences of the senior learners and the new versions of prototypes were created to represent two male and two female options of the virtual coach. The second evaluation followed a quantitative approach with an online questionnaire and was conducted in May 2021 with 41 seniors aged 66 to 93 years. Following three research questions, the survey asked about (1) the intention to use, (2) the perceived characteristics, and (3) the preferred communication/interaction style of the virtual coach, i. e. task-oriented, relationship-oriented, or a mix. This paper follows with the discussion of the results of the design process and ends with conclusions and next steps in the development of the virtual coach including recommendations for further research.Keywords: virtual learning coach, virtual mentor, pedagogical agent, senior learners, digital literacy, electronic health records
Procedia PDF Downloads 18015006 Catalytic Soot Gasification in Single and Mixed Atmospheres of CO2 and H2O in the Presence of CO and H2
Authors: Yeidy Sorani Montenegro Camacho, Samir Bensaid, Nunzio Russo, Debora Fino
Abstract:
LiFeO2 nano-powders were prepared via solution combustion synthesis (SCS) method and were used as carbon gasification catalyst in a reduced atmosphere. The gasification of soot with CO2 and H2O in the presence of CO and H2 (syngas atmosphere) were also investigated under atmospheric conditions using a fixed-bed micro-reactor placed in an electric, PID-regulated oven. The catalytic bed was composed of 150 mg of inert silica, 45 mg of carbon (Printex-U) and 5 mg of catalyst. The bed was prepared by ball milling the mixture at 240 rpm for 15 min to get an intimate contact between the catalyst and soot. A Gas Hourly Space Velocity (GHSV) of 38.000 h-1 was used for the tests campaign. The furnace was heated up to the desired temperature, a flow of 120 mL/min was sent into the system and at the same time the concentrations of CO, CO2 and H2 were recorded at the reactor outlet using an EMERSON X-STREAM XEGP analyzer. Catalytic and non-catalytic soot gasification reactions were studied in a temperature range of 120°C – 850°C with a heating rate of 5 °C/min (non-isothermal case) and at 650°C for 40 minutes (isothermal case). Experimental results show that the gasification of soot with H2O and CO2 are inhibited by the H2 and CO, respectively. The soot conversion at 650°C decreases from 70.2% to 31.6% when the CO is present in the feed. Besides, the soot conversion was 73.1% and 48.6% for H2O-soot and H2O-H2-soot gasification reactions, respectively. Also, it was observed that the carbon gasification in mixed atmosphere, i.e., when simultaneous carbon gasification with CO2 and steam take place, with H2 and CO as co-reagents; the gasification reaction is strongly inhibited by CO and H2, as well has been observed in single atmospheres for the isothermal and non-isothermal reactions. Further, it has been observed that when CO2 and H2O react with carbon at the same time, there is a passive cooperation of steam and carbon dioxide in the gasification reaction, this means that the two gases operate on separate active sites without influencing each other. Finally, despite the extreme reduced operating conditions, it has been demonstrated that the 32.9% of the initial carbon was gasified using LiFeO2-catalyst, while in the non-catalytic case only 8% of the soot was gasified at 650°C.Keywords: soot gasification, nanostructured catalyst, reducing environment, syngas
Procedia PDF Downloads 26115005 Layouting Phase II of New Priok Using Adaptive Port Planning Frameworks
Authors: Mustarakh Gelfi, Tiedo Vellinga, Poonam Taneja, Delon Hamonangan
Abstract:
The development of New Priok/Kalibaru as an expansion terminal of the old port has been being done by IPC (Indonesia Port Cooperation) together with the subsidiary company, Port Developer (PT Pengembangan Pelabuhan Indonesia). As stated in the master plan, from 2 phases that had been proposed, phase I has shown its form and even Container Terminal I has been operated in 2016. It was planned principally, the development will be divided into Phase I (2013-2018) consist of 3 container terminals and 2 product terminals and Phase II (2018-2023) consist of 4 container terminals. In fact, the master plan has to be changed due to some major uncertainties which were escaped in prediction. This study is focused on the design scenario of phase II (2035- onwards) to deal with future uncertainty. The outcome is the robust design of phase II of the Kalibaru Terminal taking into account the future changes. Flexibility has to be a major goal in such a large infrastructure project like New Priok in order to deal and manage future uncertainty. The phasing of project needs to be adapted and re-look frequently before being irrelevant to future challenges. One of the frameworks that have been developed by an expert in port planning is Adaptive Port Planning (APP) with scenario-based planning. The idea behind APP framework is the adaptation that might be needed at any moment as an answer to a challenge. It is a continuous procedure that basically aims to increase the lifespan of waterborne transport infrastructure by increasing flexibility in the planning, contracting and design phases. Other methods used in this study are brainstorming with the port authority, desk study, interview and site visit to the real project. The result of the study is expected to be the insight for the port authority of Tanjung Priok over the future look and how it will impact the design of the port. There will be guidelines to do the design in an uncertain environment as well. Solutions of flexibility can be divided into: 1 - Physical solutions, all the items related hard infrastructure in the projects. The common things in this type of solution are using modularity, standardization, multi-functional, shorter and longer design lifetime, reusability, etc. 2 - Non-physical solutions, usually related to the planning processes, decision making and management of the projects. To conclude, APP framework seems quite robust to deal with the problem of designing phase II of New Priok Project for such a long period.Keywords: Indonesia port, port's design, port planning, scenario-based planning
Procedia PDF Downloads 240