Search results for: entrepreneurial mindset learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7603

Search results for: entrepreneurial mindset learning

4333 Equity and Quality in Saudi Early Childhood Education: A Case Study on Inclusion School

Authors: Ahlam A. Alghamdi

Abstract:

For many years and until now, education based on gendered division is endorsed in the public Saudi schools starting from the primary grades (1,2, 3rd grades). Although preschool has no boys and girls segregation restrictions, children from first grade starting their first form of cultural ideology based on gender. Ensuring high-quality education serving all children -both boys and girls- is an aim for policymakers and early learning professionals in Saudi Arabia. The past five years have witnessed a major change in terms of shifting the paradigm to educating young children in the country. In May 2018, the Ministry of Education (MoE) had declared a commencement decision of inclusion schools serve both girls and boys in primary grades with a high-quality early learning opportunity. This study sought to shed light on one of the earliest schools that have implemented the inclusion experience. The methodological approach adopted is based on the qualitative inquiry of case study to investigate complex phenomena within the contexts of inclusion school. Data collection procedures included on-site visitations and semi-structured interviews with the teachers to document their thoughts, narratives, and living experiences. The findings of this study identified three themes based on cultural, educational, and professional interpretations. An overview of recommendations highlighted the benefits and possible challenges of future implementations of inclusion schools in Saudi Arabia.

Keywords: early learning, gender division, inclusion school, Saudi Arabia

Procedia PDF Downloads 153
4332 Raising Intercultural Awareness in Colombia Classrooms: A Descriptive Review

Authors: Angela Yicely Castro Garces

Abstract:

Aware of the relevance that intercultural education has gained in foreign language learning and teaching, and acknowledging the need to make it part of our classroom practices, this literature review explores studies that have been published in the Colombian context from the years 2012 to 2019. The inquiry was done in six national peer-reviewed journals, in order to examine the population benefited, types of studies and most recurrent topics of concern for educators. The findings present a promising panorama as teacher educators from public universities are leading the way in conducting research projects aimed at fostering intercultural awareness and building a critical intercultural discourse. Nonetheless, more studies that involve the different stakeholders and contexts need to be developed, in order to make intercultural education more visible in Colombian elementary and high school classrooms.

Keywords: Colombian scholarship, foreign language learning, foreign language teaching, intercultural awareness

Procedia PDF Downloads 142
4331 The Impact of Supporting Productive Struggle in Learning Mathematics: A Quasi-Experimental Study in High School Algebra Classes

Authors: Sumeyra Karatas, Veysel Karatas, Reyhan Safak, Gamze Bulut-Ozturk, Ozgul Kartal

Abstract:

Productive struggle entails a student's cognitive exertion to comprehend mathematical concepts and uncover solutions not immediately apparent. The significance of productive struggle in learning mathematics is accentuated by influential educational theorists, emphasizing its necessity for learning mathematics with understanding. Consequently, supporting productive struggle in learning mathematics is recognized as a high-leverage and effective mathematics teaching practice. In this study, the investigation into the role of productive struggle in learning mathematics led to the development of a comprehensive rubric for productive struggle pedagogy through an exhaustive literature review. The rubric consists of eight primary criteria and 37 sub-criteria, providing a detailed description of teacher actions and pedagogical choices that foster students' productive struggles. These criteria encompass various pedagogical aspects, including task design, tool implementation, allowing time for struggle, posing questions, scaffolding, handling mistakes, acknowledging efforts, and facilitating discussion/feedback. Utilizing this rubric, a team of researchers and teachers designed eight 90-minute lesson plans, employing a productive struggle pedagogy, for a two-week unit on solving systems of linear equations. Simultaneously, another set of eight lesson plans on the same topic, featuring identical content and problems but employing a traditional lecture-and-practice model, was designed by the same team. The objective was to assess the impact of supporting productive struggle on students' mathematics learning, defined by the strands of mathematical proficiency. This quasi-experimental study compares the control group, which received traditional lecture- and practice instruction, with the treatment group, which experienced a productive struggle in pedagogy. Sixty-six 10th and 11th-grade students from two algebra classes, taught by the same teacher at a high school, underwent either the productive struggle pedagogy or lecture-and-practice approach over two-week eight 90-minute class sessions. To measure students' learning, an assessment was created and validated by a team of researchers and teachers. It comprised seven open-response problems assessing the strands of mathematical proficiency: procedural and conceptual understanding, strategic competence, and adaptive reasoning on the topic. The test was administered at the beginning and end of the two weeks as pre-and post-test. Students' solutions underwent scoring using an established rubric, subjected to expert validation and an inter-rater reliability process involving multiple criteria for each problem based on their steps and procedures. An analysis of covariance (ANCOVA) was conducted to examine the differences between the control group, which received traditional pedagogy, and the treatment group, exposed to the productive struggle pedagogy, on the post-test scores while controlling for the pre-test. The results indicated a significant effect of treatment on post-test scores for procedural understanding (F(2, 63) = 10.47, p < .001), strategic competence (F(2, 63) = 9.92, p < .001), adaptive reasoning (F(2, 63) = 10.69, p < .001), and conceptual understanding (F(2, 63) = 10.06, p < .001), controlling for pre-test scores. This demonstrates the positive impact of supporting productive struggle in learning mathematics. In conclusion, the results revealed the significance of the role of productive struggle in learning mathematics. The study further explored the practical application of productive struggle through the development of a comprehensive rubric describing the pedagogy of supporting productive struggle.

Keywords: effective mathematics teaching practice, high school algebra, learning mathematics, productive struggle

Procedia PDF Downloads 53
4330 Multimodal Characterization of Emotion within Multimedia Space

Authors: Dayo Samuel Banjo, Connice Trimmingham, Niloofar Yousefi, Nitin Agarwal

Abstract:

Technological advancement and its omnipresent connection have pushed humans past the boundaries and limitations of a computer screen, physical state, or geographical location. It has provided a depth of avenues that facilitate human-computer interaction that was once inconceivable such as audio and body language detection. Given the complex modularities of emotions, it becomes vital to study human-computer interaction, as it is the commencement of a thorough understanding of the emotional state of users and, in the context of social networks, the producers of multimodal information. This study first acknowledges the accuracy of classification found within multimodal emotion detection systems compared to unimodal solutions. Second, it explores the characterization of multimedia content produced based on their emotions and the coherence of emotion in different modalities by utilizing deep learning models to classify emotion across different modalities.

Keywords: affective computing, deep learning, emotion recognition, multimodal

Procedia PDF Downloads 158
4329 Podcasting as an Instructional Method: Case Study of a School Psychology Class

Authors: Jeff A. Tysinger, Dawn P. Tysinger

Abstract:

There has been considerable growth in online learning. Researchers continue to explore the impact various methods of delivery. Podcasting is a popular method for sharing information. The purpose of this study was to examine the impact of student motivation and the perception of the acquisition of knowledge in an online environment of a skill-based class. 25 students in a school psychology graduate class completed a pretest and posttest examining podcast use and familiarity. In addition, at the completion of the course they were administered a modified version of the Instructional Materials Motivation Survey. The four subscales were examined (attention, relevance, confidence, and satisfaction). Results indicated that students are motivated, they perceive podcasts as positive instructional tools, and students are successful in acquiring the needed information. Additional benefits of using podcasts and recommendations in school psychology training are discussed.

Keywords: motivation, online learning, pedagogy, podcast

Procedia PDF Downloads 131
4328 Factors Affecting Expectations and Intentions of University Students in Educational Context

Authors: Davut Disci

Abstract:

Objective: to measure the factors affecting expectations and intentions of using mobile phone in educational contexts by university students, using advanced equations and modeling techniques. Design and Methodology: According to the literature, Mobile Addiction, Parental Surveillance-Safety/Security, Social Relations, and Mobile Behavior are most used terms of defining mobile use of people. Therefore, these variables are tried to be measured to find and estimate their effects on expectations and intentions of using mobile phone in educational context. 421 university students participated in this study and there are 229 Female and 192 Male students. For the purpose of examining the mobile behavior and educational expectations and intentions, a questionnaire is prepared and applied to the participants who had to answer all the questions online. Furthermore, responses to close-ended questions are analyzed by using The Statistical Package for Social Sciences(SPSS) software, reliabilities are measured by Cronbach’s Alpha analysis and hypothesis are examined via using Multiple Regression and Linear Regression analysis and the model is tested with Structural Equation Modeling (SEM) technique which is important for testing the model scientifically. Besides these responses, open-ended questions are taken into consideration. Results: When analyzing data gathered from close-ended questions, it is found that Mobile Addiction, Parental Surveillance, Social Relations and Frequency of Using Mobile Phone Applications are affecting the mobile behavior of the participants in different levels, helping them to use mobile phone in educational context. Moreover, as for open-ended questions, participants stated that they use many mobile applications in their learning environment in terms of contacting with friends, watching educational videos, finding course material via internet. They also agree in that mobile phone brings greater flexibility to their lives. According to the SEM results the model is not evaluated and it can be said that it may be improved to show in SEM besides in multiple regression. Conclusion: This study shows that the specified model can be used by educationalist, school authorities to improve their learning environment.

Keywords: learning technology, instructional technology, mobile learning, technology

Procedia PDF Downloads 452
4327 Teaching Children With Differential Learning Needs By Understanding Their Talents And Interests

Authors: Eunice Tan

Abstract:

The purpose of this presentation is to look at an alternative to the approach and methodologies of working with special needs. The strength-based approach to education embodies a paradigm shift. It is a strategy to move away from a deficit-based methodology which inadvertently may lead to an extensive list of things that the child cannot do or is unable to do. Today, many parents of individuals with special needs are focused on the child’s deficits rather than on his or her strengths. Even when parents Recognise and identify their child’s strengths to be valuable and wish to develop their abilities, they face the challenge that there are insufficient programs committed to supporting the development and improvement of such abilities. What is a strength-based approach in education? A strength-based approach in education focuses on students' positive qualities and contributions to class instead of the skills and abilities they may not have. Many schools are focused on the child’s special educational needs rather than the whole child. Parents interviewed have said that they have to engage external tutors to help hone in on their child’s interests and strengths.

Keywords: differential learning needs, special needs, instructional style, talents

Procedia PDF Downloads 197
4326 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks

Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz

Abstract:

Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.

Keywords: customer relationship management, churn prediction, telecom industry, deep learning, artificial neural networks

Procedia PDF Downloads 147
4325 The Face Sync-Smart Attendance

Authors: Bekkem Chakradhar Reddy, Y. Soni Priya, Mathivanan G., L. K. Joshila Grace, N. Srinivasan, Asha P.

Abstract:

Currently, there are a lot of problems related to marking attendance in schools, offices, or other places. Organizations tasked with collecting daily attendance data have numerous concerns. There are different ways to mark attendance. The most commonly used method is collecting data manually by calling each student. It is a longer process and problematic. Now, there are a lot of new technologies that help to mark attendance automatically. It reduces work and records the data. We have proposed to implement attendance marking using the latest technologies. We have implemented a system based on face identification and analyzing faces. The project is developed by gathering faces and analyzing data, using deep learning algorithms to recognize faces effectively. The data is recorded and forwarded to the host through mail. The project was implemented in Python and Python libraries used are CV2, Face Recognition, and Smtplib.

Keywords: python, deep learning, face recognition, CV2, smtplib, Dlib.

Procedia PDF Downloads 58
4324 Unsupervised Assistive and Adaptative Intelligent Agent in Smart Enviroment

Authors: Sebastião Pais, João Casal, Ricardo Ponciano, Sérgio Lorenço

Abstract:

The adaptation paradigm is a basic defining feature for pervasive computing systems. Adaptation systems must work efficiently in a smart environment while providing suitable information relevant to the user system interaction. The key objective is to deduce the information needed information changes. Therefore relying on fixed operational models would be inappropriate. This paper presents a study on developing an Intelligent Personal Assistant to assist the user in interacting with their Smart Environment. We propose an Unsupervised and Language-Independent Adaptation through Intelligent Speech Interface and a set of methods of Acquiring Knowledge, namely Semantic Similarity and Unsupervised Learning.

Keywords: intelligent personal assistants, intelligent speech interface, unsupervised learning, language-independent, knowledge acquisition, association measures, symmetric word similarities, attributional word similarities

Procedia PDF Downloads 562
4323 Engineers’ Ability to Lead Effectively the Transformation to Sustainable Manufacturing: A Case Study of Saudi Arabia

Authors: Mohammed Alharbi, Clare Wood, Vasileios Samaras

Abstract:

Sustainability leadership is a controversial topic, particularly in the engineering context. The theoretical and practical technical focus of the engineering profession impacts our lives. Technologically, engineers significantly contribute to our modern civilization. Industrial revolutions are among the top engineering accomplishments that have contributed to the flourishing of our life. However, engineers have not always received the credit they deserve; instead, they have been blamed for the advent of various global issues, among them the global warming phenomena that are believed to be a result of the industrial revolutions. Global challenges demand engineers demonstrate more than their technical skills for effective contribution to a sustainable future. As a result, engineering leadership has emerged as a new research field. Sustainable manufacturing is a cornerstone for sustainable development. Investigating the change to more sustainable manufacturing practices is a significant issue for all, and even more in the field of engineering leadership. Engineers dominate the manufacturing industry; however, one of the main criticism of engineers is the lack of leadership skills. The literature on engineering leadership has not highlighted enough the engineers' leadership ability in leading sustainable manufacturing. Since we are at the cusp of a new industrial revolution -Industry 4.0, it is vital to investigate the ability of engineers to lead the industry towards a sustainable future. The primary purpose of this paper is to evaluate engineers' sustainability leadership competencies utilizing The Cambridge University Behavioral Competency Model. However, the practical application of the Cambridge model is limited due to the absence of a reliable measurement tool. Therefore, this study developed a valid and reliable survey instrument tool compatible with the Cambridge model as a secondary objective. More than 300 Saudi engineers from the manufacturing industry responded to an online questionnaire collected through the Qualtrics platform and analyzed using SPSS software. The findings provide a contemporary understanding of engineers' mindset related to sustainability leadership. The output of this research study could be valuable in designing effective engineering leadership programs in academia or industry, particularly for enhancing a sustainable manufacturing environment.

Keywords: engineer, leadership, manufacturing, sustainability

Procedia PDF Downloads 158
4322 Public-Private Partnership for Community Empowerment and Sustainability: Exploring Save the Children’s 'School Me' Project in West Africa

Authors: Gae Hee Song

Abstract:

This paper aims to address the evolution of public-private partnerships for mainstreaming an evaluation approach in the community-based education project. It examines the distinctive features of Save the Children’s School Me project in terms of empowerment evaluation principles introduced by David M. Fetterman, especially community ownership, capacity building, and organizational learning. School Me is a Save the Children Korea funded-project, having been implemented in Cote d’Ivoire and Sierra Leone since 2016. The objective of this project is to reduce gender-based disparities in school completion and learning outcomes by creating an empowering learning environment for girls and boys. Both quasi-experimental and experimental methods for impact evaluation have been used to explore changes in learning outcomes, gender attitudes, and learning environments. To locate School Me in the public-private partnership framework for community empowerment and sustainability, the data have been collected from School Me progress/final reports, baseline, and endline reports, fieldwork observations, inter-rater reliability of baseline and endline data collected from a total of 75 schools in Cote d’Ivoire and Sierra Leone. The findings of this study show that School Me project has a significant evaluation component, including qualitative exploratory research, participatory monitoring, and impact evaluation. It strongly encourages key actors, girls, boys, parents, teachers, community leaders, and local education authorities, to participate in the collection and interpretation of data. For example, 45 community volunteers collected baseline data in Cote d’Ivoire; on the other hand, three local government officers and fourteen enumerators participated in the follow-up data collection of Sierra Leone. Not only does this public-private partnership improve local government and community members’ knowledge and skills of monitoring and evaluation, but the evaluative findings also help them find their own problems and solutions with a strong sense of community ownership. Such community empowerment enables Save the Children country offices and member offices to gain invaluable experiences and lessons learned. As a result, empowerment evaluation leads to community-oriented governance and the sustainability of the School Me project.

Keywords: community empowerment, Cote d’Ivoire, empowerment evaluation, public-private partnership, save the children, school me, Sierra Leone, sustainability

Procedia PDF Downloads 125
4321 Date Palm Fruits from Oman Attenuates Cognitive and Behavioral Defects and Reduces Inflammation in a Transgenic Mice Model of Alzheimer's Disease

Authors: M. M. Essa, S. Subash, M. Akbar, S. Al-Adawi, A. Al-Asmi, G. J. Guillemein

Abstract:

Transgenic (tg) mice which contain an amyloid precursor protein (APP) gene mutation, develop extracellular amyloid beta (Aβ) deposition in the brain, and severe memory and behavioral deficits with age. These mice serve as an important animal model for testing the efficacy of novel drug candidates for the treatment and management of symptoms of Alzheimer's disease (AD). Several reports have suggested that oxidative stress is the underlying cause of Aβ neurotoxicity in AD. Date palm fruits contain very high levels of antioxidants and several medicinal properties that may be useful for improving the quality of life in AD patients. In this study, we investigated the effect of dietary supplementation of Omani date palm fruits on the memory, anxiety and learning skills along with inflammation in an AD mouse model containing the double Swedish APP mutation (APPsw/Tg2576). The experimental groups of APP-transgenic mice from the age of 4 months were fed custom-mix diets (pellets) containing 2% and 4% Date palm fruits. We assessed spatial memory and learning ability, psychomotor coordination, and anxiety-related behavior in Tg and wild-type mice at the age of 4-5 months and 18-19 months using the Morris water maze test, rota rod test, elevated plus maze test, and open field test. Further, inflammatory parameters also analyzed. APPsw/Tg2576 mice that were fed a standard chow diet without dates showed significant memory deficits, increased anxiety-related behavior, and severe impairment in spatial learning ability, position discrimination learning ability and motor coordination along with increased inflammation compared to the wild type mice on the same diet, at the age of 18-19 months In contrast, PPsw/Tg2576 mice that were fed a diet containing 2% and 4% dates showed a significant improvements in memory, learning, locomotor function, and anxiety with reduced inflammatory markers compared to APPsw/Tg2576 mice fed the standard chow diet. Our results suggest that dietary supplementation with dates may slow the progression of cognitive and behavioral impairments in AD. The exact mechanism is still unclear and further extensive research needed.

Keywords: Alzheimer's disease, date palm fruits, Oman, cognitive decline, memory loss, anxiety, inflammation

Procedia PDF Downloads 423
4320 IEP Curriculum to Include For-Credit University English Classes

Authors: Cheyne Kirkpatrick

Abstract:

In an attempt to make the university intensive English program more worthwhile for students, many English language programs are redesigning curriculum to offer for-credit English for Academic Purposes classes, sometimes marketed as “bridge” courses. These programs are designed to be accredited to national language standards, provide communicative language learning, and give students the opportunity to simultaneously earn university language credit while becoming proficient in academic English. This presentation will discuss the curriculum design of one such program in the United States at a large private university that created its own for-credit “bridge” program. The planning, development, piloting, teaching, and challenges of designing this type of curriculum will be presented along with the aspects of accreditation, communicative language learning, and integration within various university programs. Attendees will learn about how such programs are created and what types of objectives and outcomes are included in American EAP classes.

Keywords: IEP, AEP, Curriculum, CEFR, University Credit, Bridge

Procedia PDF Downloads 483
4319 A Program Evaluation of TALMA Full-Year Fellowship Teacher Preparation

Authors: Emilee M. Cruz

Abstract:

Teachers take part in short-term teaching fellowships abroad, and their preparation before, during, and after the experience is critical to affecting teachers’ feelings of success in the international classroom. A program evaluation of the teacher preparation within TALMA: The Israel Program for Excellence in English (TALMA) full-year teaching fellowship was conducted. A questionnaire was developed that examined professional development, deliberate reflection, and cultural and language immersion offered before, during, and after the short-term experience. The evaluation also surveyed teachers’ feelings of preparedness for the Israeli classroom and any recommendations they had for future teacher preparation within the fellowship program. The review suggests the TALMA program includes integrated professional learning communities between fellows and Israeli co-teachers, more opportunities for immersive Hebrew language learning, a broader professional network with Israelis, and opportunities for guided discussion with the TALMA community continued participation in TALMA events and learning following the full-year fellowship. Similar short-term international programs should consider the findings in the design of their participation preparation programs. The review also offers direction for future program evaluation of short-term participant preparation, including the need for frequent response item updates to match current offerings and evaluation of participant feelings of preparedness before, during, and after the full-year fellowship.

Keywords: educational program evaluation, international teaching, short-term teaching, teacher beliefs, teaching fellowship, teacher preparation

Procedia PDF Downloads 182
4318 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks

Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi

Abstract:

Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.

Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex

Procedia PDF Downloads 177
4317 Unsupervised Assistive and Adaptive Intelligent Agent in Smart Environment

Authors: Sebastião Pais, João Casal, Ricardo Ponciano, Sérgio Lourenço

Abstract:

The adaptation paradigm is a basic defining feature for pervasive computing systems. Adaptation systems must work efficiently in smart environment while providing suitable information relevant to the user system interaction. The key objective is to deduce the information needed information changes. Therefore, relying on fixed operational models would be inappropriate. This paper presents a study on developing a Intelligent Personal Assistant to assist the user in interacting with their Smart Environment. We propose a Unsupervised and Language-Independent Adaptation through Intelligent Speech Interface and a set of methods of Acquiring Knowledge, namely Semantic Similarity and Unsupervised Learning.

Keywords: intelligent personal assistants, intelligent speech interface, unsupervised learning, language-independent, knowledge acquisition, association measures, symmetric word similarities, attributional word similarities

Procedia PDF Downloads 644
4316 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening

Authors: Ksheeraj Sai Vepuri, Nada Attar

Abstract:

We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.

Keywords: facial expression recognittion, image preprocessing, deep learning, CNN

Procedia PDF Downloads 143
4315 Idea, Creativity, Design, and Ultimately, Playing with Mathematics

Authors: Yasaman Azarmjoo

Abstract:

Since ancient times, it has been said that mathematics is the mother of all sciences and the foundation of basic concepts in every field and profession. It would be great if, after learning this subject, we could enable students to create games and activities based on the same mathematical concepts. This article explores the design of various mathematical activities in the form of games, utilizing different mathematical topics such as algebra, equations, binary systems, and one-to-one correspondence. The theoretical significance of this article lies in uncovering alternative approaches to teaching and learning mathematics. By employing creative and interactive methods such as game design, it challenges the traditional perception of mathematics as a difficult and laborious subject. The theoretical significance of this article lies in demonstrating that mathematics can be made more accessible and enjoyable, which can result in heightened interest and engagement in the subject. In general, this article reveals another aspect of mathematics.

Keywords: playing with mathematics, algebra and equations, binary systems, one-to-one correspondence

Procedia PDF Downloads 93
4314 Leasing Revisited: Mastering the Digital Transformation with Traditional Financing

Authors: Tobias Huttche, Marco Canipa-Valdez, Corinne Mühlebach

Abstract:

This article discusses the role of leasing on the digital transformation process of companies and corresponding economic effects. Based on the traditional mechanisms of leasing, this article focuses in particular on the benefits of leasing as financing instrument with regard to the innovation potential of companies. Practical examples demonstrate how leasing can become an integral part of new business models. Especially, with regard to the digital transformation and corresponding investments in know-how and infrastructure, leasing can play an important role. Furthermore, findings of an empirical survey are presented dealing with the usage of leasing in Switzerland in an international context. The survey shows not only the benefits of leasing against the backdrop of digital transformation but gives guidance on how other countries can benefit from promoting leasing in their legislation and economy. Based on a simulation model for Switzerland, the economic effect of an increase in leasing volume is being calculated. Again, the respective results underline the substantial growth potential. This holds true especially for economies where asset-based lending is rarely used because of a lack of entrepreneurial or private security of the borrower (cash-based financing for developing and emerging countries). Overall, the authors found that leasing using companies are more productive and tend to grow faster than companies using less or none leasing. The positive effects of leasing on emerging digital challenges for companies and entire economies should encourage other countries to facilitate access to leasing as financing instrument by decreasing legal-, tax- and accounting-related requirements in the respective jurisdiction.

Keywords: Cash-Based financing, digital transformation, financing instruments, growth, innovation, leasing

Procedia PDF Downloads 256
4313 Slowness in Architecture: The Pace of Human Engagement with the Built Environment

Authors: Jaidev Tripathy

Abstract:

A human generation’s lifestyle, behaviors, habits, and actions are governed heavily by homogenous mindsets. But the current scenario is witnessing a rapid gap in this homogeneity as a result of an intervention, or rather, the dominance of the digital revolution in the human lifestyle. The current mindset for mass production, employment, multi-tasking, rapid involvement, and stiff competition to stay above the rest has led to a major shift in human consciousness. Architecture, as an entity, is being perceived differently. The screens are replacing the skies. The pace at which operation and evolution is taking place has increased. It is paradoxical, that time seems to be moving faster despite the intention to save time. Parallelly, there is an evident shift in architectural typologies spanning across different generations. The architecture of today is now seems influenced heavily from here and there. Mass production of buildings and over-exploitation of resources giving shape to uninspiring algorithmic designs, ambiguously catering to multiple user groups, has become a prevalent theme. Borrow-and-steal replaces influence, and the diminishing depth in today’s designs reflects a lack of understanding and connection. The digitally dominated world, perceived as an aid to connect and network, is making humans less capable of real-life interactions and understanding. It is not wrong, but it doesn’t seem right either. The engagement level between human beings and the built environment is a concern which surfaces. This leads to a question: Does human engagement drive architecture, or does architecture drive human engagement? This paper attempts to relook at architecture's capacity and its relativity with pace to influence the conscious decisions of a human being. Secondary research, supported with case examples, helps in understanding the translation of human engagement with the built environment through physicality of architecture. The procedure, or theme, is pace and the role of slowness in the context of human behaviors, thus bridging the widening gap between the human race and the architecture themselves give shape to, avoiding a possible future dystopian world.

Keywords: junkspace, pace, perception, slowness

Procedia PDF Downloads 110
4312 Bridging the Data Gap for Sexism Detection in Twitter: A Semi-Supervised Approach

Authors: Adeep Hande, Shubham Agarwal

Abstract:

This paper presents a study on identifying sexism in online texts using various state-of-the-art deep learning models based on BERT. We experimented with different feature sets and model architectures and evaluated their performance using precision, recall, F1 score, and accuracy metrics. We also explored the use of pseudolabeling technique to improve model performance. Our experiments show that the best-performing models were based on BERT, and their multilingual model achieved an F1 score of 0.83. Furthermore, the use of pseudolabeling significantly improved the performance of the BERT-based models, with the best results achieved using the pseudolabeling technique. Our findings suggest that BERT-based models with pseudolabeling hold great promise for identifying sexism in online texts with high accuracy.

Keywords: large language models, semi-supervised learning, sexism detection, data sparsity

Procedia PDF Downloads 70
4311 Philippine National Police Strategies in the Implementation of 'Peace and Order Agenda for Transformation and Upholding of the Rule-Of-Law' Plan 2030

Authors: Ruby A. L. Espineli

Abstract:

The study assessed the Philippine National Police strategies in the implementation of ‘Peace and Order Agenda for Transformation and Upholding of the Rule-of-Law’ P.A.T.R.O.L Plan 2030. Its operational roadmap presents four perspectives which include resource management, learning and growth, process excellence; and community. Focused group discussion, observation, and distribution of survey questionnaire to selected PNP officers and community members were done to identify and describe the implementation, problems encountered and measures to address the problems of the PNP P.A.T.R.O.L Plan 2030. In resource management, PNP allocates most sufficient funds in providing service firearms, patrol vehicle, and internet connections. In terms of learning and growth, the attitude of PNP officers is relatively higher than their knowledge and skills. Moreover, in terms of process excellence, the PNP use several crime preventions and crime solution strategies to deliver an immediate response to calls of the community. As regards, community perspective, PNP takes effort in establishing partnership with community. It is also interesting to note that PNP officers and community were both undecided on the existence of problems encountered in the implementation of P.A.T.R.O.L Plan 2030. But, they had proactive behavior as they agreed on all the specified measures to address the problems encountered in implementation of PNP P.A.T.R.O.L. Plan 2030. A strategic framework, based on the findings was formulated in this study that could improve and entrench the harmonious working relationship between the PNP and stakeholders in the enhancement of the implementation of PNP P.A.T.R.O.L. Plan 2030.

Keywords: community perspectives, learning and growth, process excellence, resource management

Procedia PDF Downloads 235
4310 Assessment of Students Skills in Error Detection in SQL Classes using Rubric Framework - An Empirical Study

Authors: Dirson Santos De Campos, Deller James Ferreira, Anderson Cavalcante Gonçalves, Uyara Ferreira Silva

Abstract:

Rubrics to learning research provide many evaluation criteria and expected performance standards linked to defined student activity for learning and pedagogical objectives. Despite the rubric being used in education at all levels, academic literature on rubrics as a tool to support research in SQL Education is quite rare. There is a large class of SQL queries is syntactically correct, but certainly, not all are semantically correct. Detecting and correcting errors is a recurring problem in SQL education. In this paper, we usthe Rubric Abstract Framework (RAF), which consists of steps, that allows us to map the information to measure student performance guided by didactic objectives defined by the teacher as long as it is contextualized domain modeling by rubric. An empirical study was done that demonstrates how rubrics can mitigate student difficulties in finding logical errors and easing teacher workload in SQL education. Detecting and correcting logical errors is an important skill for students. Researchers have proposed several ways to improve SQL education because understanding this paradigm skills are crucial in software engineering and computer science. The RAF instantiation was using in an empirical study developed during the COVID-19 pandemic in database course. The pandemic transformed face-to-face and remote education, without presential classes. The lab activities were conducted remotely, which hinders the teaching-learning process, in particular for this research, in verifying the evidence or statements of knowledge, skills, and abilities (KSAs) of students. Various research in academia and industry involved databases. The innovation proposed in this paper is the approach used where the results obtained when using rubrics to map logical errors in query formulation have been analyzed with gains obtained by students empirically verified. The research approach can be used in the post-pandemic period in both classroom and distance learning.

Keywords: rubric, logical error, structured query language (SQL), empirical study, SQL education

Procedia PDF Downloads 190
4309 Screen Casting Instead of Illegible Scribbles: Making a Mini Movie for Feedback on Students’ Scholarly Papers

Authors: Kerri Alderson

Abstract:

There is pervasive awareness by post secondary faculty that written feedback on course assignments is inconsistently reviewed by students. In order to support student success and growth, a novel method of providing feedback was sought, and screen casting - short, narrated “movies” of audio visual instructor feedback on students’ scholarly papers - was provided as an alternative to traditional means. An overview of the teaching and learning experience as well as the user-friendly software utilized will be presented. This study covers an overview of this more direct, student-centered medium for providing feedback using technology familiar to post secondary students. Reminiscent of direct personal contact, the personalized video feedback is positively evaluated by students as a formative medium for student growth in scholarly writing.

Keywords: education, pedagogy, screen casting, student feedback, teaching and learning

Procedia PDF Downloads 119
4308 Challenges of Teaching and Learning English Speech Sounds in Five Selected Secondary Schools in Bauchi, Bauchi State, Nigeria

Authors: Mairo Musa Galadima, Phoebe Mshelia

Abstract:

In Nigeria, the national policy of education stipulates that the kindergarten-primary schools and the legislature are to use the three popular Nigerian Languages namely: Hausa, Igbo, and Yoruba. However, the English language seems to be preferred and this calls for this paper. Attempts were made to draw out the challenges faced by learners in understanding English speech sounds and using them to communicate effectively in English; using 5 (five) selected secondary school in Bauchi. It was discovered that challenges abound in the wrong use of stress and intonation, transfer of phonetic features from their first language. Others are inadequately qualified teachers and relevant materials including textbooks. It is recommended that teachers of English should lay more emphasis on the teaching of supra-segmental features and should be encouraged to go for further studies, seminars and refresher courses.

Keywords: stress and intonation, phonetic and challenges, teaching and learning English, secondary schools

Procedia PDF Downloads 352
4307 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 80
4306 Motivations for Using Social Networking Sites by College Students for Educational Purposes

Authors: Kholoud H. Al-Zedjali, Abir S. Al-Harrasi, Ali H. Al-Badi

Abstract:

Recently there has been a dramatic proliferation in the number of social networking sites (SNSs) users; however, little is published about what motivates college students to use SNSs in education. The main goal of this research is to explore the college students’ motives for using SNSs in education. A conceptual framework has therefore been developed to identify the main factors that influence/motivate students to use social networking sites for learning purposes. To achieve the research objectives a quantitative method was used to collect data. A questionnaire has been distributed amongst college students. The results reveal that social influence, perceived enjoyment, institute regulation, perceived usefulness, ranking up-lift, attractiveness, communication tools, free of charge, sharing material and course nature all play an important role in the motivation of college students to use SNSs for learning purposes.

Keywords: Social Networking Sites (SNSs), education, college students, motivations

Procedia PDF Downloads 263
4305 Emerging Technologies in European Aeronautics: How Collaborative Innovation Efforts Are Shaping the Industry

Authors: Nikola Radovanovic, Petros Gkotsis, Mathieu Doussineau

Abstract:

Aeronautics is regarded as a strategically important sector for European competitiveness. It was at the heart of European entrepreneurial development since the industry was born. Currently, the EU is the world leader in the production of civil aircraft, including helicopters, aircraft engines, parts, and components. It is recording a surplus in trade relating to aerospace products, which are exported all over the globe. Also, this industry shows above-average investments in research and development, as demonstrated in the patent activity in this area. The post-pandemic recovery of the industry will partly depend on the possibilities to streamline collaboration in further research and innovation activities. Aeronautics features as one of the often selected priority domains in smart specialisation, which represents the main regional and national approach in developing and implementing innovation policies in Europe. The basis for the selection of priority domains for smart specialisation lies in the mapping of innovative potential, with research and patent activities being among the key elements of this analysis. This research is aimed at identifying characteristics of the trends in research and patent activities in the regions and countries that base their competitiveness on the aeronautics sector. It is also aimed at determining the scope and patterns of collaborations in aeronautics between innovators from the European regions, focusing on revealing new technology areas that emerge from these collaborations. For this purpose, we developed a methodology based on desk research and the analysis of the PATSTAT patent database as well as the databases of R&I framework programmes.

Keywords: aeronautics, smart specialisation, innovation, research, regional policy

Procedia PDF Downloads 106
4304 Thermodynamic Analysis of Surface Seawater under Ocean Warming: An Integrated Approach Combining Experimental Measurements, Theoretical Modeling, Machine Learning Techniques, and Molecular Dynamics Simulation for Climate Change Assessment

Authors: Nishaben Desai Dholakiya, Anirban Roy, Ranjan Dey

Abstract:

Understanding ocean thermodynamics has become increasingly critical as Earth's oceans serve as the primary planetary heat regulator, absorbing approximately 93% of excess heat energy from anthropogenic greenhouse gas emissions. This investigation presents a comprehensive analysis of Arabian Sea surface seawater thermodynamics, focusing specifically on heat capacity (Cp) and thermal expansion coefficient (α) - parameters fundamental to global heat distribution patterns. Through high-precision experimental measurements of ultrasonic velocity and density across varying temperature (293.15-318.15K) and salinity (0.5-35 ppt) conditions, it characterize critical thermophysical parameters including specific heat capacity, thermal expansion, and isobaric and isothermal compressibility coefficients in natural seawater systems. The study employs advanced machine learning frameworks - Random Forest, Gradient Booster, Stacked Ensemble Machine Learning (SEML), and AdaBoost - with SEML achieving exceptional accuracy (R² > 0.99) in heat capacity predictions. the findings reveal significant temperature-dependent molecular restructuring: enhanced thermal energy disrupts hydrogen-bonded networks and ion-water interactions, manifesting as decreased heat capacity with increasing temperature (negative ∂Cp/∂T). This mechanism creates a positive feedback loop where reduced heat absorption capacity potentially accelerates oceanic warming cycles. These quantitative insights into seawater thermodynamics provide crucial parametric inputs for climate models and evidence-based environmental policy formulation, particularly addressing the critical knowledge gap in thermal expansion behavior of seawater under varying temperature-salinity conditions.

Keywords: climate change, arabian sea, thermodynamics, machine learning

Procedia PDF Downloads 10