Search results for: virus detection
3743 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image
Authors: Abe D. Desta
Abstract:
This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking
Procedia PDF Downloads 1263742 The Regulation of the Pro-inflammatory Cytokine Interleukin 6 (IL6) by Epstein-Barr Virus (EBV)
Authors: Liu Xiaohan
Abstract:
Epstein–Barr virus (EBV) is a human herpesvirus and is closely related to many malignancies of lymphocyte and epithelial origins, such as gastric cancer, Burkitt’s lymphoma, and nasopharyngeal carcinoma (NPC). NPC is a malignant epithelial tumor which is 100% associated with EBV latent infection. Most of the NPC cases are densely populated in southern China, especially in Guangdong and Hong Kong. To our knowledge, overexpression of pro-inflammatory cytokines may result in a loss of balance of the immune system and cause damage to human bodies. Interleukin-6 (IL6) is a pro-inflammatory cytokine which plays an important role in tumor progression. In addition, gene expression is regulated by both transcriptional and post-transcriptional pathways, while post-transcriptional regulation is an important mechanism to modulate the mature mRNA level in mammalian cells. AU-rich element binding factor 1 (AUF1)/heterogeneous nuclear RNP D (hnRNP D) is known for its function in destabilizing mRNAs, including cytokines and cell cycle regulators. Previous studies have found that overexpression of hnRNP D would lead to tumorigenesis. In this project, our aim is to determine the role played by hnRNP D in EBV-infected cells and how our anti-EBV agents can affect the function of hnRNP D. The results of this study will provide a new insight into how the pro-inflammatory cytokine expression can be regulated by EBV.Keywords: interleukin 6 (IL6), epstein-barr virus (EBV), nasopharyngeal carcinoma (NPC, epstein-barr nuclear antigen-1 (EBNA1)
Procedia PDF Downloads 623741 Attack Redirection and Detection using Honeypots
Authors: Chowduru Ramachandra Sharma, Shatunjay Rawat
Abstract:
A false positive state is when the IDS/IPS identifies an activity as an attack, but the activity is acceptable behavior in the system. False positives in a Network Intrusion Detection System ( NIDS ) is an issue because they desensitize the administrator. It wastes computational power and valuable resources when rules are not tuned properly, which is the main issue with anomaly NIDS. Furthermore, most false positives reduction techniques are not performed during the real-time of attempted intrusions; instead, they have applied afterward on collected traffic data and generate alerts. Of course, false positives detection in ‘offline mode’ is tremendously valuable. Nevertheless, there is room for improvement here; automated techniques still need to reduce False Positives in real-time. This paper uses the Snort signature detection model to redirect the alerted attacks to Honeypots and verify attacks.Keywords: honeypot, TPOT, snort, NIDS, honeybird, iptables, netfilter, redirection, attack detection, docker, snare, tanner
Procedia PDF Downloads 1553740 Impact of Hepatitis C Virus Chronic Infection on Quality of Life in Egypt
Authors: Ammal M. Metwally, Ghada A. Abdel-Latif, Walaa A. Fouad, Thanaa M. Rabah, Amira Mohsen, Fatma A. Shaaban, Iman I. Salama
Abstract:
The study aimed at determining the impact of chronic hepatitis C virus (HCV) infection on patients’ Quality of Life (QoL) , its relation to geographical characteristics of patients, awareness of the disease, treatment regimen, co-morbid psychiatric or other diseases. 457 patients were randomly selected from ten National Treatment Reference Centers of Ministry of Health hospitals from four community locations representing Egypt. Health related QoL assessment questionnaire with the 36-item Short Form used for assessment of the enrolled patients. The study showed no significant difference between HCV patients in different governorates as regards total QoL. Females, illiterate patients and those had bilharziasis, diabetes mellitus, hypertension or were depressed had significantly the lowest QoL score. HCV patients who knew the danger of the disease had significant lower mean score of physical and mental health components. Optimal care of overall well-being of HCV patients requires adequate knowledge of their neurological and psychological status. It is important to know that any patient will need to take the time to know that his new physical limitations do not limit him as a person, as soul, no matter what other people are thinking as a positive hopeful attitude is essential for combating HCV. Procedia PDF Downloads 4493739 Preliminary Results on a Maximum Mean Discrepancy Approach for Seizure Detection
Authors: Boumediene Hamzi, Turky N. AlOtaiby, Saleh AlShebeili, Arwa AlAnqary
Abstract:
We introduce a data-driven method for seizure detection drawing on recent progress in Machine Learning. The method is based on embedding probability measures in a high (or infinite) dimensional reproducing kernel Hilbert space (RKHS) where the Maximum Mean Discrepancy (MMD) is computed. The MMD is metric between probability measures that are computed as the difference between the means of probability measures after being embedded in an RKHS. Working in RKHS provides a convenient, general functional-analytical framework for theoretical understanding of data. We apply this approach to the problem of seizure detection.Keywords: kernel methods, maximum mean discrepancy, seizure detection, machine learning
Procedia PDF Downloads 2383738 Development of a Bead Based Fully Automated Mutiplex Tool to Simultaneously Diagnose FIV, FeLV and FIP/FCoV
Authors: Andreas Latz, Daniela Heinz, Fatima Hashemi, Melek Baygül
Abstract:
Introduction: Feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), and feline coronavirus (FCoV) are serious infectious diseases affecting cats worldwide. Transmission of these viruses occurs primarily through close contact with infected cats (via saliva, nasal secretions, faeces, etc.). FeLV, FIV, and FCoV infections can occur in combination and are expressed in similar clinical symptoms. Diagnosis can therefore be challenging: Symptoms are variable and often non-specific. Sick cats show very similar clinical symptoms: apathy, anorexia, fever, immunodeficiency syndrome, anemia, etc. Sample volume for small companion animals for diagnostic purposes can be challenging to collect. In addition, multiplex diagnosis of diseases can contribute to an easier, cheaper, and faster workflow in the lab as well as to the better differential diagnosis of diseases. For this reason, we wanted to develop a new diagnostic tool that utilizes less sample volume, reagents, and consumables than multiplesingleplex ELISA assays Methods: The Multiplier from Dynextechonogies (USA) has been used as platform to develop a Multiplex diagnostic tool for the detection of antibodies against FIV and FCoV/FIP and antigens for FeLV. Multiplex diagnostics. The Dynex®Multiplier®is a fully automated chemiluminescence immunoassay analyzer that significantly simplifies laboratory workflow. The Multiplier®ease-of-use reduces pre-analytical steps by combining the power of efficiently multiplexing multiple assays with the simplicity of automated microplate processing. Plastic beads have been coated with antigens for FIV and FCoV/FIP, as well as antibodies for FeLV. Feline blood samples are incubated with the beads. Read out of results is performed via chemiluminescence Results: Bead coating was optimized for each individual antigen or capture antibody and then combined in the multiplex diagnostic tool. HRP: Antibody conjugates for FIV and FCoV antibodies, as well as detection antibodies for FeLV antigen, have been adjusted and mixed. 3 individual prototyple batches of the assay have been produced. We analyzed for each disease 50 well defined positive and negative samples. Results show an excellent diagnostic performance of the simultaneous detection of antibodies or antigens against these feline diseases in a fully automated system. A 100% concordance with singleplex methods like ELISA or IFA can be observed. Intra- and Inter-Assays showed a high precision of the test with CV values below 10% for each individual bead. Accelerated stability testing indicate a shelf life of at least 1 year. Conclusion: The new tool can be used for multiplex diagnostics of the most important feline infectious diseases. Only a very small sample volume is required. Fully automation results in a very convenient and fast method for diagnosing animal diseases.With its large specimen capacity to process over 576 samples per 8-hours shift and provide up to 3,456 results, very high laboratory productivity and reagent savings can be achieved.Keywords: Multiplex, FIV, FeLV, FCoV, FIP
Procedia PDF Downloads 1043737 Strabismus Detection Using Eye Alignment Stability
Authors: Anoop T. R., Otman Basir, Robert F. Hess, Ben Thompson
Abstract:
Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. Currently, many children with strabismus remain undiagnosed until school entry because current automated screening methods have limited success in the preschool age range. A method for strabismus detection using eye alignment stability (EAS) is proposed. This method starts with face detection, followed by facial landmark detection, eye region segmentation, eye gaze extraction, and eye alignment stability estimation. Binarization and morphological operations are performed for segmenting the pupil region from the eye. After finding the EAS, its absolute value is used to differentiate the strabismic eye from the non-strabismic eye. If the value of the eye alignment stability is greater than a particular threshold, then the eyes are misaligned, and if its value is less than the threshold, the eyes are aligned. The method was tested on 175 strabismic and non-strabismic images obtained from Kaggle and Google Photos. The strabismic eye is taken as a positive class, and the non-strabismic eye is taken as a negative class. The test produced a true positive rate of 100% and a false positive rate of 7.69%.Keywords: strabismus, face detection, facial landmarks, eye segmentation, eye gaze, binarization
Procedia PDF Downloads 763736 Outdoor Anomaly Detection with a Spectroscopic Line Detector
Authors: O. J. G. Somsen
Abstract:
One of the tasks of optical surveillance is to detect anomalies in large amounts of image data. However, if the size of the anomaly is very small, limited information is available to distinguish it from the surrounding environment. Spectral detection provides a useful source of additional information and may help to detect anomalies with a size of a few pixels or less. Unfortunately, spectral cameras are expensive because of the difficulty of separating two spatial in addition to one spectral dimension. We investigate the possibility of modifying a simpler spectral line detector for outdoor detection. This may be especially useful if the area of interest forms a line, such as the horizon. We use a monochrome CCD that also enables detection into the near infrared. A simple camera is attached to the setup to determine which part of the environment is spectrally imaged. Our preliminary results indicate that sensitive detection of very small targets is indeed possible. Spectra could be taken from the various targets by averaging columns in the line image. By imaging a set of lines of various width we found narrow lines that could not be seen in the color image but remained visible in the spectral line image. A simultaneous analysis of the entire spectra can produce better results than visual inspection of the line spectral image. We are presently developing calibration targets for spatial and spectral focusing and alignment with the spatial camera. This will present improved results and more use in outdoor applicationKeywords: anomaly detection, spectroscopic line imaging, image analysis, outdoor detection
Procedia PDF Downloads 4813735 Bayesian Prospective Detection of Small Area Health Anomalies Using Kullback Leibler Divergence
Authors: Chawarat Rotejanaprasert, Andrew Lawson
Abstract:
Early detection of unusual health events depends on the ability to detect rapidly any substantial changes in disease, thus facilitating timely public health interventions. To assist public health practitioners to make decisions, statistical methods are adopted to assess unusual events in real time. We introduce a surveillance Kullback-Leibler (SKL) measure for timely detection of disease outbreaks for small area health data. The detection methods are compared with the surveillance conditional predictive ordinate (SCPO) within the framework of Bayesian hierarchical Poisson modeling and applied to a case study of a group of respiratory system diseases observed weekly in South Carolina counties. Properties of the proposed surveillance techniques including timeliness and detection precision are investigated using a simulation study.Keywords: Bayesian, spatial, temporal, surveillance, prospective
Procedia PDF Downloads 3113734 Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery
Authors: Ebrahim Taherzadeh, Helmi Z. M. Shafri, Kaveh Shahi
Abstract:
One of the most important tasks in urban area remote sensing is detection of impervious surface (IS), such as building roof and roads. However, detection of IS in heterogeneous areas still remains as one of the most challenging works. In this study, detection of concrete roof using an object-oriented approach was proposed. A new rule-based classification was developed to detect concrete roof tile. The proposed rule-based classification was applied to WorldView-2 image. Results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images with 85% accuracy.Keywords: object-based, roof material, concrete tile, WorldView-2
Procedia PDF Downloads 4243733 An Internet of Things Smart Washroom Framework
Authors: Robin Ratnasingham, Maher Elshakankiri
Abstract:
This research report will look at how to make a smart washroom to increase public hygiene and cleanliness. The system would use IoT devices to pick up various activities in the washroom and notify the appropriate stakeholders or devices to regulate the condition of the washroom. As more people are required to physically go back to the office or school, ensuring a clean and sanitized washroom is even more important now than before. It would help prevent virus outbreaks and safeguard the organization from shutdowns or slowdowns in their business. A framework of the suggested smart washroom was introduced to help reduce the chances of a virus outbreak. Most organizations outsource renovation or implementation to an external party. Using the smart washroom framework, we looked at vendors that provide smart washroom solutions. There are IoT vendors that cannot match the framework, and there are vendors that can support the framework design. This segment is a niche market, and most of the devices are similar in their basic functions. However, all the vendors have unique characteristics to give them a competitive advantage over the rest of the IoT washroom companies. Ultimately, the organization would need to decide if they want to add IoT devices to enable smart capability or renovate the washroom to create a fluid IoT smart washroom design. The report would introduce an IoT smart washroom framework to help organizations design a cohesive preventive measure network for the daily maintenance routine. The framework is designed to help understand how to manage washroom cleanliness more efficiently and to provide guidance in achieving this goal. The leading result is eliminating potential viral outbreaks that could jeopardize the organization.Keywords: IoT, smart washroom, public hygiene, cleanliness, virus outbreaks, safeguard
Procedia PDF Downloads 953732 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic
Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato
Abstract:
Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security
Procedia PDF Downloads 3683731 Serotype Distribution and Demographics of Dengue Patients in a Tertiary Hospital of Lahore, Pakistan During the 2011 Epidemic
Authors: Muhammad Munir, Riffat Mehboob, Samina Naeem, Muhammad Salman, Shehryar Ahmed, Irshad Hussain Qureshi, Tahira Murtaza Cheema, Ashraf Sultan, Akmal Laeeq, Nakhshab Choudhry, Asad Aslam Khan, Fridoon Jawad Ahmad
Abstract:
A dengue outbreak in Lahore, Pakistan during 2011 was unprecedented in terms of severity and magnitude. This research aims to determine the serotype distribution of dengue virus during this outbreak and classify the patients demographically. 5ml of venous blood was drawn aseptically from 166 patients with dengue-like signs to test for the virus between the months of August to November 2011. The samples were sent to the CDC, Atlanta, Georgia for the purpose of molecular assays to determine their serotype. RT-PCR protocol was performed targeting at the 4 dengue serotypes. Out of 166 cases, dengue infection was detected with RT-PCR in 95 cases, all infected with same serotype DEN-2. 75% of positive cases were males while 25% were females. Most positive patients were in the age range of 16-30 years. 33% positive cases had accompanying bleeding. This is first study during the 2011 dengue epidemic in Lahore that reports DEN-2 as the only prevalent serotype. It also indicates that more infected patients were males, adults, within age range of 16-30 years, peaked in the month of November, Dengue hemorrhagic fever (DHF) is manifested more in females, Ravi town was heavily hit by dengue virus infection.Keywords: dengue, serotypes, Pakistan, DEN 2, Lahore, demography, serotype distrbution, 2011 epidemic
Procedia PDF Downloads 5003730 Overview and Future Opportunities of Sarcasm Detection on Social Media Communications
Authors: Samaneh Nadali, Masrah Azrifah Azmi Murad, Nurfadhlina Mohammad Sharef
Abstract:
Sarcasm is a common phenomenon in social media which is a nuanced form of language for stating the opposite of what is implied. Due to the intentional ambiguity, analysis of sarcasm is a difficult task not only for a machine but even for a human. Although sarcasm detection has an important effect on sentiment, it is usually ignored in social media analysis because sarcasm analysis is too complicated. While there is a few systems exist which can detect sarcasm, almost no work has been carried out on a study and the review of the existing work in this area. This survey presents a nearly full image of sarcasm detection techniques and the related fields with brief details. The main contributions of this paper include the illustration of the recent trend of research in the sarcasm analysis and we highlight the gaps and propose a new framework that can be explored.Keywords: sarcasm detection, sentiment analysis, social media, sarcasm analysis
Procedia PDF Downloads 4573729 Developing Artificial Neural Networks (ANN) for Falls Detection
Authors: Nantakrit Yodpijit, Teppakorn Sittiwanchai
Abstract:
The number of older adults is rising rapidly. The world’s population becomes aging. Falls is one of common and major health problems in the elderly. Falls may lead to acute and chronic injuries and deaths. The fall-prone individuals are at greater risk for decreased quality of life, lowered productivity and poverty, social problems, and additional health problems. A number of studies on falls prevention using fall detection system have been conducted. Many available technologies for fall detection system are laboratory-based and can incur substantial costs for falls prevention. The utilization of alternative technologies can potentially reduce costs. This paper presents the new design and development of a wearable-based fall detection system using an Accelerometer and Gyroscope as motion sensors for the detection of body orientation and movement. Algorithms are developed to differentiate between Activities of Daily Living (ADL) and falls by comparing Threshold-based values with Artificial Neural Networks (ANN). Results indicate the possibility of using the new threshold-based method with neural network algorithm to reduce the number of false positive (false alarm) and improve the accuracy of fall detection system.Keywords: aging, algorithm, artificial neural networks (ANN), fall detection system, motion sensorsthreshold
Procedia PDF Downloads 4963728 Multiscale Edge Detection Based on Nonsubsampled Contourlet Transform
Authors: Enqing Chen, Jianbo Wang
Abstract:
It is well known that the wavelet transform provides a very effective framework for multiscale edges analysis. However, wavelets are not very effective in representing images containing distributed discontinuities such as edges. In this paper, we propose a novel multiscale edge detection method in nonsubsampled contourlet transform (NSCT) domain, which is based on the dominant multiscale, multidirection edge expression and outstanding edge location of NSCT. Through real images experiments, simulation results demonstrate that the proposed method is better than other edge detection methods based on Canny operator, wavelet and contourlet. Additionally, the proposed method also works well for noisy images.Keywords: edge detection, NSCT, shift invariant, modulus maxima
Procedia PDF Downloads 4883727 Implementation of Edge Detection Based on Autofluorescence Endoscopic Image of Field Programmable Gate Array
Authors: Hao Cheng, Zhiwu Wang, Guozheng Yan, Pingping Jiang, Shijia Qin, Shuai Kuang
Abstract:
Autofluorescence Imaging (AFI) is a technology for detecting early carcinogenesis of the gastrointestinal tract in recent years. Compared with traditional white light endoscopy (WLE), this technology greatly improves the detection accuracy of early carcinogenesis, because the colors of normal tissues are different from cancerous tissues. Thus, edge detection can distinguish them in grayscale images. In this paper, based on the traditional Sobel edge detection method, optimization has been performed on this method which considers the environment of the gastrointestinal, including adaptive threshold and morphological processing. All of the processes are implemented on our self-designed system based on the image sensor OV6930 and Field Programmable Gate Array (FPGA), The system can capture the gastrointestinal image taken by the lens in real time and detect edges. The final experiments verified the feasibility of our system and the effectiveness and accuracy of the edge detection algorithm.Keywords: AFI, edge detection, adaptive threshold, morphological processing, OV6930, FPGA
Procedia PDF Downloads 2303726 Detection of Nanotoxic Material Using DNA Based QCM
Authors: Juneseok You, Chanho Park, Kuehwan Jang, Sungsoo Na
Abstract:
Sensing of nanotoxic materials is strongly important, as their engineering applications are growing recently and results in that nanotoxic material can harmfully influence human health and environment. In current study we report the quartz crystal microbalance (QCM)-based, in situ and real-time sensing of nanotoxic-material by frequency shift. We propose the in situ detection of nanotoxic material of zinc oxice by using QCM functionalized with a taget-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz electrode is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated the in-situ and fast detection of zinc oxide using the quartz crystal microbalance (QCM). The detection was derived from the DNA hybridization between the DNA on the quartz electrode. The results suggest that QCM-based detection opens a new avenue for the development of a practical water-testing sensor.Keywords: nanotoxic material, qcm, frequency, in situ sensing
Procedia PDF Downloads 4223725 Parental Awareness and Willingness to Vaccinate Adolescent Daughters against Human Papilloma Virus for Cervical Cancer Prevention in Eastern Region of Kenya: Towards Affirmative Action
Authors: Jacinta Musyoka, Wesley Too
Abstract:
Cervical cancer is the second leading cause of cancer-related deaths in Kenya and the second most common cancer among women, yet preventable following prevention strategies put in place, which includes vaccination with Human Papilloma Virus Vaccine (HPPV) among the young adolescent girls. Kenya has the highest burden of cervical cancer and the leading cause of death among women of reproductive age and is a known frequent type of cancer amongst women. This is expected to double by 2025 if the necessary steps are not taken, which include vaccinating girls between the ages of 9 and 14 and screening women. Parental decision is critical in ensuring that their daughters receive this vaccine. Hence this study sought to establish parental willingness and factors associate with the acceptability to vaccine adolescent daughters against the human papilloma virus for cervical cancer prevention in Machakos County, Eastern Region of Kenya. Method: Cross-sectional study design utilizing a mixed methods approach was used to collect data from Nguluni Health Centre in Machakos County; Matungulu sub-county, Kenya. This study targeted all parents of adolescent girls seeking health care services in the Matungulu sub-county area who were aged 18 years and above. A total of 220 parents with adolescent girls aged 10-14 years were enrolled into the study after informed consent were sought. All ethical considerations were observed. Quantitative data were analyzed using Multivariate regression analysis, and thematic analysis was used for qualitative data related to perceptions of parents on HPVV. Results, conclusions, and recommendations- ongoing. We expect to report findings and articulate contributions based on the study findings in due course before October 2022Keywords: adolescents, human papilloma virus, kenya, parents
Procedia PDF Downloads 1093724 Hepatitis B, Hepatitis C and HIV Infections and Associated Risk Factors among Substance Abusers in Mekelle Substance Users Treatment and Rehabilitation Centers, Tigrai, Northern Ethiopia
Authors: Tadele Araya, Tsehaye Asmelash, Girmatsion Fiseha
Abstract:
Background: Hepatitis B virus (HBV), Hepatitis C virus (HCV) and Human Immunodeficiency Virus (HIV) constitute serious healthcare problems worldwide. Blood-borne pathogens HBV, HCV and HIV are commonly associated with infections among substance or Injection Drug Users (IDUs). The objective of this study was to determine the prevalence of HBV, HCV, and HIV infections among substance users in Mekelle Substance users Treatment and Rehabilitation Centers. Methods: A cross-sectional study design was used from Dec 2020 to Sep / 2021 to conduct the study. A total of 600 substance users were included. Data regarding the socio-demographic, clinical and sexual behaviors of the substance users were collected using a structured questionnaire. For laboratory analysis, 5-10 ml of venous blood was taken from the substance users. The laboratory analysis was performed by Enzyme-Linked Immunosorbent Assay (ELISA) at Mekelle University, Department of Medical Microbiology and Immunology Research Laboratory. The Data was analyzed using SPSS and Epi-data. The association of variables with HBV, HCV and HIV infections was determined using multivariate analysis and a P value < 0.05 was considered statistically significant. Result: The overall prevalence rate of HBV, HCV and HIV infections were 10%, 6.6%, and 7.5%, respectively. The mean age of the study participants was 28.12 ± 6.9. A higher prevalence of HBV infection was seen in participants who were users of drug injections and in those who were infected with HIV. HCV was comparatively higher in those who had a previous history of unsafe surgical procedures than their counterparts. Homeless participants were highly exposed to HCV and HIV infections than their counterparts. The HBV/HIV Co-infection prevalence was 3.5%. Those doing unprotected sexual practices [P= 0.03], Injection Drug users [P= 0.03], those who had an HBV-infected person in their family [P=0.02], infected with HIV [P= 0.025] were statistically associated with HBV infection. HCV was significantly associated with Substance users and previous history of unsafe surgical procedures [p=0.03, p=0.04), respectively. HIV was significantly associated with unprotected sexual practices and being homeless [p=0.045, p=0.05) respectively. Conclusion-The highly prevalent viral infection was HBV compared to others. There was a High prevalence of HBV/HIV co-infection. The presence of HBV-infected persons in a family, unprotected sexual practices and sharing of needles for drug injection were the risk factors associated with HBV, HIV, and HCV. Continuous health education and screening of the viral infection coupled with medical and psychological treatment is mandatory for the prevention and control of the infections.Keywords: hepatitis b virus, hepatitis c virus, HIV, substance users
Procedia PDF Downloads 853723 Detection of Epinephrine in Chicken Serum at Iron Oxide Screen Print Modified Electrode
Authors: Oluwole Opeyemi Dina, Saheed E. Elugoke, Peter Olutope Fayemi, Omolola E. Fayemi
Abstract:
This study presents the detection of epinephrine (EP) at Fe₃O₄ modified screen printed silver electrode (SPSE). The iron oxide (Fe₃O₄) nanoparticles were characterized with UV-visible spectroscopy, Fourier-Transform infrared spectroscopy (FT-IR) and Scanning electron microscopy (SEM) prior to the modification of the SPSE. The EP oxidation peak current (Iap) increased with an increase in the concentration of EP as well as the scan rate (from 25 - 400 mVs⁻¹). Using cyclic voltammetry (CV), the relationship between Iap and EP concentration was linear over a range of 3.8 -118.9 µM and 118.9-175 µM with a detection limit of 41.99 µM and 83.16 µM, respectively. Selective detection of EP in the presence of ascorbic acid was also achieved at this electrode.Keywords: screenprint electrode, iron oxide nanoparticle, epinephrine, serum, cyclic voltametry
Procedia PDF Downloads 1653722 Same-Day Detection Method of Salmonella Spp., Shigella Spp. and Listeria Monocytogenes with Fluorescence-Based Triplex Real-Time PCR
Authors: Ergun Sakalar, Kubra Bilgic
Abstract:
Faster detection and characterization of pathogens are the basis of the evoid from foodborne pathogens. Salmonella spp., Shigella spp. and Listeria monocytogenes are common foodborne bacteria that are among the most life-threatining. It is important to rapid and accurate detection of these pathogens to prevent food poisoning and outbreaks or to manage food chains. The present work promise to develop a sensitive, species specific and reliable PCR based detection system for simultaneous detection of Salmonella spp., Shigella spp. and Listeria monocytogenes. For this purpose, three genes were picked out, ompC for Salmonella spp., ipaH for Shigella spp. and hlyA for L. monocytogenes. After short pre-enrichment of milk was passed through a vacuum filter and bacterial DNA was exracted using commercially available kit GIDAGEN®(Turkey, İstanbul). Detection of amplicons was verified by examination of the melting temperature (Tm) that are 72° C, 78° C, 82° C for Salmonella spp., Shigella spp. and L. monocytogenes, respectively. The method specificity was checked against a group of bacteria strains, and also carried out sensitivity test resulting in under 10² CFU mL⁻¹ of milk for each bacteria strain. Our results show that the flourescence based triplex qPCR method can be used routinely to detect Salmonella spp., Shigella spp. and L. monocytogenes during the milk processing procedures in order to reduce cost, time of analysis and the risk of foodborne disease outbreaks.Keywords: evagreen, food-born bacteria, pathogen detection, real-time pcr
Procedia PDF Downloads 2443721 Latency-Based Motion Detection in Spiking Neural Networks
Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang
Abstract:
Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.Keywords: neural network, motion detection, signature detection, convolutional neural network
Procedia PDF Downloads 873720 Blindness and Deafness, the Outcomes of Varicella Zoster Virus Encephalitis in HIV Positive Patient
Authors: Hadiseh Hosamirudsari, Farhad Afsarikordehmahin, Pooria Sekhavatfar
Abstract:
Concomitant cortical blindness and deafness that follow varicella zoster virus (VZV) infection is rare. We describe a case of ophthalmic zoster that caused cortical blindness and deafness after central nervous system (CNS) involvement. A 42-year old, HIV infected woman has developed progressive blurry vision and deafness, 4 weeks after ophthalmic zoster. A physical examination and positive VZV polymerase chain reaction (PCR) of cerebrospinal fluid (CSF) suggested VZV encephalitis. Complication of VZV encephalitis is considered as the cause of blindness and deafness. In neurological deficit patient especially with a history of herpes zoster, VZV infection should be regarded as the responsible agent in inflammatory disorders of nervous system. The immunocompromised state of patient (including HIV) is as important an agent as VZV infection in developing the disease.Keywords: blindness, deafness, hiv, VZV encephalitis
Procedia PDF Downloads 3083719 Inverter IGBT Open–Circuit Fault Detection Using Park's Vectors Enhanced by Polar Coordinates
Authors: Bendiabdellah Azzeddine, Cherif Bilal Djamal Eddine
Abstract:
The three-phase power converter voltage structure is widely used in many power applications but its failure can lead to partial or total loss of control of the phase currents and can cause serious system malfunctions or even a complete system shutdown. To ensure continuity of service in all circumstances, effective and rapid techniques of detection and location of inverter fault is to be implemented. The present paper is dedicated to open-circuit fault detection in a three-phase two-level inverter fed induction motor. For detection purpose, the proposed contribution addresses the Park’s current vectors associated to a polar coordinates calculation tool to compute the exact value of the fault angle corresponding directly to the faulty IGBT switch. The merit of the proposed contribution is illustrated by experimental results.Keywords: diagnosis, detection, Park’s vectors, polar coordinates, open-circuit fault, inverter, IGBT switch
Procedia PDF Downloads 4023718 Comparative Analysis of Edge Detection Techniques for Extracting Characters
Authors: Rana Gill, Chandandeep Kaur
Abstract:
Segmentation of images can be implemented using different fundamental algorithms like edge detection (discontinuity based segmentation), region growing (similarity based segmentation), iterative thresholding method. A comprehensive literature review relevant to the study gives description of different techniques for vehicle number plate detection and edge detection techniques widely used on different types of images. This research work is based on edge detection techniques and calculating threshold on the basis of five edge operators. Five operators used are Prewitt, Roberts, Sobel, LoG and Canny. Segmentation of characters present in different type of images like vehicle number plate, name plate of house and characters on different sign boards are selected as a case study in this work. The proposed methodology has seven stages. The proposed system has been implemented using MATLAB R2010a. Comparison of all the five operators has been done on the basis of their performance. From the results it is found that Canny operators produce best results among the used operators and performance of different edge operators in decreasing order is: Canny>Log>Sobel>Prewitt>Roberts.Keywords: segmentation, edge detection, text, extracting characters
Procedia PDF Downloads 4263717 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters
Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu
Abstract:
Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning
Procedia PDF Downloads 2003716 Preliminary Prospecting on the Distribution of the Disease of Citrus Tristeza Orchards in the Province of Chlef
Authors: Ibrahim Djelloul Berkane
Abstract:
A survey was conducted to assess the presence of the virus in Citrus tristeza one of the main citrus regions of Algeria, namely the Chlef region, using the technique of Direct Tissue Print Immunoprinting Assay (DTBIA) and the Double Sandwich ELISA antibodies. A nursery citrus, lumber yards, and commercial orchards, which are the main varieties cultivated citrus were subjected to samples collected samples for laboratory analysis. 0.91% of the plants tested orchards were infected with CTV, while no positive case was detected at the nursery the yard, however, it is reported that an alarming rate of 10,5% of orchards tested at the common Chettia were infected with tristeza virus. The investigation was launched to identify the vector species tristeza revealed the presence of a vector is important Aphis gossypii.Keywords: aphis, chlef, citrus, DAS-ELISA, DTBIA, tristeza
Procedia PDF Downloads 3033715 Plasmablastic Lymphoma a New Entity in Patients with HIV Infections
Authors: Rojith K. Balakrishnan
Abstract:
Plasmablastic lymphoma (PBL) is an uncommon, recently described B-cell derived lymphoma that is most commonly seen in patients with Human Immunodeficiency Virus (HIV) infection. Here we report a case of PBL in a 35 year old man with HIV who presented with multiple subcutaneous swellings all over the body and oral mucosal lesions.The biopsy report was suggestive of Diffuse Large B Cell Lymphoma. Immunohistochemistry was done which showed, lymphoma cells, positive for MUM1, CD 138, and VS 38. The proliferation index (MIB) was 95%. Final report was consistent with the diagnosis of Plasmablastic Lymphoma. The lesion completely regressed after treatment with systemic chemotherapy. Up to date, only a few cases of plasmablastic lymphoma have been reported from India. Increased frequency of this lymphoma in HIV patients and rarity of the tumour, along with rapid response of the same to chemotherapy, make this case a unique one. Hence the knowledge about this new entity is important for clinicians who deal with HIV patients.Keywords: human immunodeficiency virus (HIV), oral cavity lesion, plasmablastic lymphoma, subcutaneous swelling
Procedia PDF Downloads 2743714 Determining the Effects of Wind-Aided Midge Movement on the Probability of Coexistence of Multiple Bluetongue Virus Serotypes in Patchy Environments
Authors: Francis Mugabi, Kevin Duffy, Joseph J. Y. T Mugisha, Obiora Collins
Abstract:
Bluetongue virus (BTV) has 27 serotypes, with some of them coexisting in patchy (different) environments, which make its control difficult. Wind-aided midge movement is a known mechanism in the spread of BTV. However, its effects on the probability of coexistence of multiple BTV serotypes are not clear. Deterministic and stochastic models for r BTV serotypes in n discrete patches connected by midge and/or cattle movement are formulated and analyzed. For the deterministic model without midge and cattle movement, using the comparison principle, it is shown that if the patch reproduction number R0 < 1, i=1,2,...,n, j=1,2,...,r, all serotypes go extinct. If R^j_i0>1, competitive exclusion takes place. Using numerical simulations, it is shown that when the n patches are connected by midge movement, coexistence takes place. To account for demographic and movement variability, the deterministic model is transformed into a continuous-time Markov chain stochastic model. Utilizing a multitype branching process, it is shown that the midge movement can have a large effect on the probability of coexistence of multiple BTV serotypes. The probability of coexistence can be brought to zero when the control interventions that directly kill the adult midges are applied. These results indicate the significance of wind-aided midge movement and vector control interventions on the coexistence and control of multiple BTV serotypes in patchy environments.Keywords: bluetongue virus, coexistence, multiple serotypes, midge movement, branching process
Procedia PDF Downloads 150