Search results for: interferon gamma release assay
2510 Developing Well-Being Indicators and Measurement Methods as Illustrated by Projects Aimed at Preventing Obesity in Children
Authors: E. Grochowska-Niedworok, K. Brukało, M. Hadasik, M. Kardas
Abstract:
Consumption of vegetables by school children and adolescents is essential for their normal growth, development and health, but a significant minority of the world's population consumes the right amount of these products. The aim of the study was to evaluate the preferences and frequency of consumption of vegetables by school children and adolescents. It has been assumed that effectively implemented nutrition education programs should have an impact on increasing the frequency of vegetable consumption among the recipients. The study covered 514 students of five schools in the Opole Voivodeship aged 9 years to 22 years. The research tool was an author's questionnaire, which consisted of closed questions on the frequency of vegetable consumption and the use of 10 ways to treat them. Preferences and frequencies are shown in percentages, while correlations were estimated on the basis of Cramer`s V and gamma coefficients. In each of the examined age groups, the relationship between sex and vegetable consumption (the Cramer`s V coefficient value was 0.06 to 0.38) was determined and the various methods of culinary processing were used (V Craméra was 0.08 to 0.34). For both sexes, the relationship between age and frequency of vegetable consumption was shown (gamma values ranged from ~ 0.00 to 0.39) and different cooking methods (gamma values were 0.01 to 0.22). The most important determinant of nutritional choices is the taste and availability of products. The fact that they have a positive effect on their health is only in third position. As has been shown, obesity prevention programs can not only address nutrition education but also teach about new flavors and increase the availability of healthy foods. In addition, the frequency of vegetable consumption can be a good indicator reflecting the healthy behaviors of children and adolescents.Keywords: children and adolescents, frequency, welfare rate, vegetables
Procedia PDF Downloads 2042509 The Association between IFNAR2 and Dpp9 Genes Single Nucleotide Polymorphisms Frequency with COVID-19 Severity in Iranian Patients
Authors: Sima Parvizi Omran, Rezvan Tavakoli, Mahnaz Safari, Mohammadreza Aghasadeghi, Abolfazl Fateh, Pooneh Rahimi
Abstract:
Background: SARS-CoV-2, a single-stranded RNA betacoronavirus causes the global outbreak of coronavirus disease 2019 (COVID-19). Several clinical and scientific concerns are raised by this pandemic. Genetic factors can contribute to pathogenesis and disease susceptibility. There are single nucleotide polymorphisms (SNPs) in many of the genes in the immune system that affect the expression of specific genes or functions of some proteins related to immune responses against viral infections. In this study, we analyzed the impact of polymorphism in the interferon alpha and beta receptor subunit 2 (IFNAR2) and dipeptidyl peptidase 9 (Dpp9) genes and clinical parameters on the susceptibility and resistance to Coronavirus disease (COVID-19). Methods: A total of 330- SARS-CoV-2 positive patients (188 survivors and 142 nonsurvivors) were included in this study. All single-nucleotide polymorphisms (SNPs) on IFNAR2 (rs2236757) and Dpp9 (rs2109069) were genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results: In survivor patients, the frequency of the favourable genotypes of IFNAR2 SNP (rs2236757 GC) was significantly higher than in nonsurvivor patients, and also Dpp9 (rs2109069 AT) genotypes were associated with the severity of COVID-19 infection. Conclusions: This study demonstrated that the severity of COVID- 19 patients was strongly associated with clinical parameters and unfavourable IFNAR2, Dpp9 SNP genotypes. In order to establish the relationship between host genetic factors and the severity of COVID-19 infection, further studies are needed in multiple parts of the world.Keywords: SARS-CoV-2, COVID-19, interferon alpha and beta receptor subunit 2, dipeptidyl peptidase 9, single-nucleotide polymorphisms
Procedia PDF Downloads 1642508 Poly(N-Vinylcaprolactam) Based Degradable Microgels for Controlled Drug Delivery
Authors: G. Agrawal, R. Agrawal, A. Pich
Abstract:
The pH and temperature responsive biodegradable poly(N-vinylcaprolactam) (PVCL) based microgels functionalized with itaconic acid (IA) units are prepared via precipitation polymerization for drug delivery applications. Volume phase transition temperature (VPTT) of the obtained microgels is influenced by both IA content and pH of the surrounding medium. The developed microgels can be degraded under acidic conditions due to the presence of hydrazone based crosslinking points inside the microgel network. The microgel particles are able to effectively encapsulate doxorubicin (DOX) drug and exhibit low drug leakage under physiological conditions. At low pH, rapid DOX release is observed due to the changes in electrostatic interactions along with the degradation of particles. The results of the cytotoxicity assay further display that the DOX-loaded microgel exhibit effective antitumor activity against HeLa cells demonstrating their great potential as drug delivery carriers for cancer therapy.Keywords: degradable, drug delivery, hydrazone linkages, microgels, responsive
Procedia PDF Downloads 3132507 Solid Lipid Nanoparticles of Levamisole Hydrochloride
Authors: Surendra Agrawal, Pravina Gurjar, Supriya Bhide, Ram Gaud
Abstract:
Levamisole hydrochloride is a prominent anticancer drug in the treatment of colon cancer but resulted in toxic effects due poor bioavailability and poor cellular uptake by tumor cells. Levamisole is an unstable drug. Incorporation of this molecule in solid lipids may minimize their exposure to the aqueous environment and partly immobilize the drug molecules within the lipid matrix-both of which may protect the encapsulated drugs against degradation. The objectives of the study were to enhance bioavailability by sustaining drug release and to reduce the toxicities associated with the therapy. Solubility of the drug was determined in different lipids to select the components of Solid Lipid Nanoparticles (SLN). Pseudoternary phase diagrams were created using aqueous titration method. Formulations were subjected to particle size and stability evaluation to select the final test formulations which were characterized for average particle size, zeta potential, and in-vitro drug release and percentage transmittance to optimize the final formulation. SLN of Levamisole hydrochloride was prepared by Nanoprecipitation method. Glyceryl behenate (Compritol 888 ATO) was used as core comprising of Tween 80 as surfactant and Lecithin as co-surfactant in (1:1) ratio. Entrapment efficiency (EE) was found to be 45.89%. Particle size was found in the range of 100-600 nm. Zeta potential of the formulation was -17.0 mV revealing the stability of the product. In-vitro release study showed that 66 % drug released in 24 hours in pH 7.2 which represent that formulation can give controlled action at the intestinal environment. In pH 5.0 it showed 64% release indicating that it can even release drug in acidic environment of tumor cells. In conclusion, results revealed SLN to be a promising approach to sustain the drug release so as to increase bioavailability and cellular uptake of the drug with reduction in toxic effects as dose has been reduced with controlled delivery.Keywords: SLN, nanoparticulate delivery of levamisole, pharmacy, pharmaceutical sciences
Procedia PDF Downloads 4312506 Sun Protection Factor (SPF) Determination of Sericin Cream and Niosomal Gel
Authors: Farzad Doostishoar, Abbas Pardakhty, Abdolreza Hassanzadeh, Sudeh salarpour, Elham Sharif
Abstract:
Background: Sericin is a protein extracted from silk and has antioxidant, antimicrobial, antineoplastic, wound healing and moisturizing properties. Different cosmetic formulation of sericin is available in different countries such as Japan and the other south-eastern Asian countries. We formulated and evaluated the sunscreen properties of topical formulations of sericin by an in vitro method. Method: Niosomes composed of sorbitan palmitate (Span 40), polysorbate 40 (Tween 40) and cholesterol (300 µmol, 3.5:3.5:3 molar ratio) were prepared by film hydration technique. Sericin was dissolved in normal saline and the lipid hydration was carried out at 60°C and the niosomes were incorporated in a Carbomer gel base. A W/O cream was also prepared and the release of sericin was evaluated by using Franz diffusion cell. Particle size analysis, sericin encapsulation efficiency measurement, morphological studies and stability evaluation were done in niosomal formulations. SPF was calculated by using Transpore tape in vitro method for both formulations. Results: Niosomes had high stability during 6 months storage at 4-8°C. The mean volume diameter of niosomes was less than 7 µm which is ideal for sustained release of drugs in topical formulations. The SPF of niosomal gel was 25 and higher than sericin cream with a diffusion based release pattern of active material. Conclusion: Sericin can be successfully entrapped in niosomes with sustained release pattern and relatively high SPF.Keywords: sericin, niosomes, sun protection factor, cream, gel
Procedia PDF Downloads 5002505 Cellular Uptake and Endocytosis of Doxorubicin Loaded Methoxy Poly (Ethylene Glycol)-Block-Poly (Glutamic Acid) [DOX/mPEG-b-PLG] Nanoparticles against Human Breast Cancer Cell Lines
Authors: Zaheer Ahmad, Afzal Shah
Abstract:
pH responsive block copolymers consist of mPEG and glutamic acid units were syntheiszed in different formulations. The synthesized polymers were structurally investigated. Doxorubicin Hydrocholide (DOX-HCl) as a chemotherapy medication for the treatment of cancer was selected. DOX-HCl was loaded and their drug loading content and drug loading efficiency were determined. The nanocarriers were obtained in small size, well shaped and slightly negative surface charge. The release study was carried out both at pH 7.4 and 5.5 and it was revealed that the release was sustained and in controlled manner and there was no initial burst release. The in vitro release study was further carried out for different formulations with different glutamic acid moieties. Time dependent cell proliferation inhibition of the free drug and drug loaded nanoparticles against human breast cancer cell lines MCF-7 and Zr-75-30 was observed. Cellular uptakes and endocytosis were investigated by confocal laser scanning microscopy (CLSM) and flow cytometery. The biocompatibility, optimum size, shape and surface charge of the developed nanoparticles make the nanoparticles an efficient drug delivery carrier.Keywords: doxorubicin, glutamic acid, cell proliferation inhibition, breast cancer cell
Procedia PDF Downloads 1432504 In-Situ Determination of Radioactivity Levels and Radiological Hazards in and around the Gold Mine Tailings of the West Rand Area, South Africa
Authors: Paballo M. Moshupya, Tamiru A. Abiye, Ian Korir
Abstract:
Mining and processing of naturally occurring radioactive materials could result in elevated levels of natural radionuclides in the environment. The aim of this study was to evaluate the radioactivity levels on a large scale in the West Rand District in South Africa, which is dominated by abandoned gold mine tailings and the consequential radiological exposures to members of the public. The activity concentrations of ²³⁸U, ²³²Th and 40K in mine tailings, soil and rocks were assessed using the BGO Super-Spec (RS-230) gamma spectrometer. The measured activity concentrations for ²³⁸U, ²³²Th and 40K in the studied mine tailings were found to range from 209.95 to 2578.68 Bq/kg, 19.49 to 108.00 Bq/kg and 31.30 to 626.00 Bq/kg, respectively. In surface soils, the overall average activity concentrations were found to be 59.15 Bq/kg, 34.91 and 245.64 Bq/kg for 238U, ²³²Th and 40K, respectively. For the rock samples analyzed, the mean activity concentrations were 32.97 Bq/kg, 32.26 Bq/kg and 351.52 Bg/kg for ²³⁸U, ²³²Th and 40K, respectively. High radioactivity levels were found in mine tailings, with ²³⁸U contributing significantly to the overall activity concentration. The external gamma radiation received from surface soil in the area is generally low, with an average of 0.07 mSv/y. The highest annual effective doses were estimated from the tailings dams and the levels varied between 0.14 mSv/y and 1.09 mSv/y, with an average of 0.51 mSv/y. In certain locations, the recommended dose constraint of 0.25 mSv/y from a single source to the average member of the public within the exposed population was exceeded, indicating the need for further monitoring and regulatory control measures specific to these areas to ensure the protection of resident members of the public.Keywords: activity concentration, gold mine tailings, in-situ gamma spectrometry, radiological exposures
Procedia PDF Downloads 1272503 Nanoparticle-Based Histidine-Rich Protein-2 Assay for the Detection of the Malaria Parasite Plasmodium Falciparum
Authors: Yagahira E. Castro-Sesquen, Chloe Kim, Robert H. Gilman, David J. Sullivan, Peter C. Searson
Abstract:
Diagnosis of severe malaria is particularly important in highly endemic regions since most patients are positive for parasitemia and treatment differs from non-severe malaria. Diagnosis can be challenging due to the prevalence of diseases with similar symptoms. Accurate diagnosis is increasingly important to avoid overprescribing antimalarial drugs, minimize drug resistance, and minimize costs. A nanoparticle-based assay for detection and quantification of Plasmodium falciparum histidine-rich protein 2 (HRP2) in urine and serum is reported. The assay uses magnetic beads conjugated with anti-HRP2 antibody for protein capture and concentration, and antibody-conjugated quantum dots for optical detection. Western Blot analysis demonstrated that magnetic beads allows the concentration of HRP2 protein in urine by 20-fold. The concentration effect was achieved because large volume of urine can be incubated with beads, and magnetic separation can be easily performed in minutes to isolate beads containing HRP2 protein. Magnetic beads and Quantum Dots 525 conjugated to anti-HRP2 antibodies allows the detection of low concentration of HRP2 protein (0.5 ng mL-1), and quantification in the range of 33 to 2,000 ng mL-1 corresponding to the range associated with non-severe to severe malaria. This assay can be easily adapted to a non-invasive point-of-care test for classification of severe malaria.Keywords: HRP2 protein, malaria, magnetic beads, Quantum dots
Procedia PDF Downloads 3332502 Simultaneous Determination of p-Phenylenediamine, N-Acetyl-p-phenylenediamine and N,N-Diacetyl-p-phenylenediamine in Human Urine by LC-MS/MS
Authors: Khaled M. Mohamed
Abstract:
Background: P-Phenylenediamine (PPD) is used in the manufacture of hair dyes and skin decoration. In some developing countries, suicidal, homicidal and accidental cases by PPD were recorded. In this work, a sensitive LC-MS/MS method for determination of PPD and its metabolites N-acetyl-p-phenylenediamine (MAPPD) and N,N-diacetyl-p-phenylenediamine (DAPPD) in human urine has been developed and validated. Methods: PPD, MAPPD and DAPPD were extracted from urine by methylene chloride at alkaline pH. Acetanilide was used as internal standard (IS). The analytes and IS were separated on an Eclipse XDB- C18 column (150 X 4.6 mm, 5 µm) using a mobile phase of acetonitrile-1% formic acid in gradient elution. Detection was performed by LC-MS/MS using electrospray positive ionization under multiple reaction-monitoring mode. The transition ions m/z 109 → 92, m/z 151 → 92, m/z 193 → 92, and m/z 136 → 77 were selected for the quantification of PPD, MAPPD, DAPPD, and IS, respectively. Results: Calibration curves were linear in the range 10–2000 ng/mL for all analytes. The mean recoveries for PPD, MAPPD and DAPPD were 57.62, 74.19 and 50.99%, respectively. Intra-assay and inter-assay imprecisions were within 1.58–9.52% and 5.43–9.45% respectively for PPD, MAPPD and DAPPD. Inter-assay accuracies were within -7.43 and 7.36 for all compounds. PPD, MAPPD and DAPPD were stable in urine at –20 degrees for 24 hours. Conclusions: The method was successfully applied to the analysis of PPD, MAPPD and DAPPD in urine samples collected from suicidal cases.Keywords: p-Phenylenediamine, metabolites, urine, LC-MS/MS, validation
Procedia PDF Downloads 3552501 Formulation Development and Evaluation of Floating Tablets of Venlafaxine Hydrochloride
Authors: Gajera Lalit, Shah Pranav, Shah Shailesh
Abstract:
Venlafaxine hydrochloride has a short elimination half-life of 5 ± 2 hr, and absorption window in the upper part of gastrointestinal tract. The conventional tablets need to be administered two to three times a day and possess an oral bioavailability of 45%. The purpose of this study was to formulate gastroretentive effervescent floating tablets of Venlafaxine HCl. Different grades of HPMC namely K15M, K4M, K100M and E15LV were employed as swelling polymers whereas sodium bicarbonate was employed as gas generating agent. The direct compression method was employed for the formulation of tablets. The tablets were evaluated in terms of hardness, friability, weight variation, drug content, water uptake, in-vitro floating behavior and in-vitro drug release study. All the formulations exhibited very short floating lag time of < 1 min and total floating time of 12 hr. Formulation L3 containing 25 mg and 75 mg of HPMC E15 LV and HPMC K15M respectively exhibited complete drug release within 12 hrs.Keywords: venlafaxine HCl, hydroxyl propyl methylcellulose, floating gastro retentive tablets, in-vitro drug release, non-fickian diffusion
Procedia PDF Downloads 5432500 Effect of Surfactant Level of Microemulsions and Nanoemulsions on Cell Viability
Authors: Sonal Gupta, Rakhi Bansal, Javed Ali, Reema Gabrani, Shweta Dang
Abstract:
Nanoemulsions (NEs) and microemulsions (MEs) have been an attractive tool for encapsulation of both hydrophilic and lipophillic actives. Both these systems are composed of oil phase, surfactant, co-surfactant and aqueous phase. Depending upon the application and intended use, both oil-in-water and water-in-oil emulsions can be designed. NEs are fabricated using high energy methods employing less percentage of surfactant as compared to MEs which are self assembled drug delivery systems. Owing to the nanometric size of the droplets these systems have been widely used to enhance solubility and bioavailability of natural as well as synthetic molecules. The aim of the present study is to assess the effect of % age of surfactants on cell viability of Vero cells (African Green Monkeys’ Kidney epithelial cells) via MTT assay. Green tea catechin (Polyphenon 60) loaded ME employing low energy vortexing and NE employing high energy ultrasonication were prepared using same excipients (labrasol as oil, cremophor EL as surfactant and glycerol as co-surfactant) however, the % age of oil and surfactant needed to prepare the ME was higher as compared to NE. These formulations along with their excipients (oilME=13.3%, SmixME=26.67%; oilNE=10%, SmixNE=13.52%) were added to Vero cells for 24 hrs. The tetrazolium dye, 3-(4,5-dimethylthia/ol-2-yl)-2,5-diphi-iiyltclrazolium bromide (MTT), is reduced by live cells and this reaction is used as the end point to evaluate the cytoxicity level of a test formulation. Results of MTT assay indicated that oil at different percentages exhibited almost equal cell viability (oilME ≅ oilNE) while surfactant mixture had a significant difference in the cell viability values (SmixME < SmixNE). Polyphenon 60 loaded ME and its PlaceboME showed higher toxicity as compared to Polyphenon 60 loaded NE and its PlaceboNE that can be attributed to the higher concentration of surfactants present in MEs. Another probable reason for high % cell viability of Polyphenon 60 loaded NE might be due to the effective release of Polyphenon 60 from NE formulation that helps in the sustenance of Vero cells.Keywords: cell viability, microemulsion, MTT, nanoemulsion, surfactants, ultrasonication
Procedia PDF Downloads 4362499 Energy Production with Closed Methods
Authors: Bujar Ismaili, Bahti Ismajli, Venhar Ismaili, Skender Ramadani
Abstract:
In Kosovo, the problem with the electricity supply is huge and does not meet the demands of consumers. Older thermal power plants, which are regarded as big environmental polluters, produce most of the energy. Our experiment is based on the production of electricity using the closed method that does not affect environmental pollution by using waste as fuel that is considered to pollute the environment. The experiment was carried out in the village of Godanc, municipality of Shtime - Kosovo. In the experiment, a production line based on the production of electricity and central heating was designed at the same time. The results are the benefits of electricity as well as the release of temperature for heating with minimal expenses and with the release of 0% gases into the atmosphere. During this experiment, coal, plastic, waste from wood processing, and agricultural wastes were used as raw materials. The method utilized in the experiment allows for the release of gas through pipes and filters during the top-to-bottom combustion of the raw material in the boiler, followed by the method of gas filtration from waste wood processing (sawdust). During this process, the final product is obtained - gas, which passes through the carburetor, which enables the gas combustion process and puts into operation the internal combustion machine and the generator and produces electricity that does not release gases into the atmosphere. The obtained results show that the system provides energy stability without environmental pollution from toxic substances and waste, as well as with low production costs. From the final results, it follows that: in the case of using coal fuel, we have benefited from more electricity and higher temperature release, followed by plastic waste, which also gave good results. The results obtained during these experiments prove that the current problems of lack of electricity and heating can be met at a lower cost and have a clean environment and waste management.Keywords: energy, heating, atmosphere, waste, gasification
Procedia PDF Downloads 2352498 Sol-Gel Coated Fabric for Controlled Release of Mosquito Repellent
Authors: Bhaskar M. Murai, Neeraj Banchor, Ishveen Chabbra, Madhusudhan Nadgir, S. Vidhya
Abstract:
Sol-gel technology combined with electronics and biochemistry helps to overcome the problems caused by mosquitoes by developing a portable, low-cost device which enables controlled release of trapped compound inside it. It is a wet-chemical technique which is used primarily for fabrication of silicate gel which is usually allowed to dry as per requirement. The outcome is solid rock hard material which is porous and has lots of applications in different fields. Taking porosity as a key factor, allethrin a naturally occurring synthetic compound with molecular mass 302.40 was entrapped inside the sol-gel matrix as a dopant. Allethrin is commonly used as an insecticide and is a key ingredient in commercially available mosquitoes repellent in Asian and subtropical countries. It has low toxicity for humans and birds, and are used in many household insecticides such as RAID as well as mosquito coils. They are however highly toxic to fish and bees. Insects subject to its exposure become paralyzed (nervous system effect) before dying. They are also used as an ultra-low volume spray for outdoor mosquito control. Therefore, there is a need for controlled release of allethrin in the environment. For controlled release of allethrin from sol-gel matrix, its (allethrin) we utilized temperature based controlled evaporation through porous sol-gel. Different types of fabric like cotton, Terri-cotton, polyester, surgical cap, knee-cap etc are studied and the best with maximum absorption capacity is selected to hold the sol-gel matrix with maximum quantity. For sol-gel coating 2 x 2cm cloth pieces are dipped in sol-gel solution for 10 minutes and by calculating the weight difference we concluded that Terri cotton is best suitable for our project. An electronic circuit with heating plate is developed in to test the controlled release of compound. An oscillatory circuit is used to produce the required heat.Keywords: sol-gel, allethrin, TEOS, biochemistry
Procedia PDF Downloads 3752497 Biological Activity of Hibiscus sabdariffa Extract
Authors: Chanasit Chaocharoenphat
Abstract:
Hibiscus sabdariffa is a herbal plant that is commonly used for home remedies in Thailand. This study aims to determine the antioxidant activity of polyphenols, as oxidative stress plays a vital role in the development of cancer, and H. sabdariffa was used in this study. The total flavonoids content was determined using the aluminium chloride colourimetric method and expressed as quercetin equivalents (QE)/g and the antioxidant capacity of the flavonoids using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity assays. The IC50 values of H. sabdariffa extract were 167.14 μg/mL ± 0.843 and 77.59 μg/mL ± 0.798, respectively. In the DPPH assay, vitamin C was used as a positive control, whereas Trolox was used as a positive control in the ABTS assay. To summarise, H. sabdariffa extract contains a high concentration of total flavonoids and exhibits potent antioxidant activity. However, additional antioxidant activity assays such as superoxide dismutase (SOD), reactive oxygen species (ROS), and reactive nitrogen species (RNS) scavenging assays and in vitro antioxidant experiments should be carried out to investigate the molecular mechanism of the compound.Keywords: ABTS assay, antioxidant activity, Gracilaria fisheri, DPPH assays, total flavonoid content
Procedia PDF Downloads 2422496 Multiparticulate SR Formulation of Dexketoprofen Trometamol by Wurster Coating Technique
Authors: Bhupendra G. Prajapati, Alpesh R. Patel
Abstract:
The aim of this research work is to develop sustained release multi-particulates dosage form of Dexketoprofen trometamol, which is the pharmacologically active isomer of ketoprofen. The objective is to utilization of active enantiomer with minimal dose and administration frequency, extended release multi-particulates dosage form development for better patience compliance was explored. Drug loaded and sustained release coated pellets were prepared by fluidized bed coating principle by wurster coater. Microcrystalline cellulose as core pellets, povidone as binder and talc as anti-tacking agents were selected during drug loading while Kollicoat SR 30D as sustained release polymer, triethyl citrate as plasticizer and micronized talc as an anti-adherent were used in sustained release coating. Binder optimization trial in drug loading showed that there was increase in process efficiency with increase in the binder concentration. 5 and 7.5%w/w concentration of Povidone K30 with respect to drug amount gave more than 90% process efficiency while higher amount of rejects (agglomerates) were observed for drug layering trial batch taken with 7.5% binder. So for drug loading, optimum Povidone concentration was selected as 5% of drug substance quantity since this trial had good process feasibility and good adhesion of the drug onto the MCC pellets. 2% w/w concentration of talc with respect to total drug layering solid mass shows better anti-tacking property to remove unnecessary static charge as well as agglomeration generation during spraying process. Optimized drug loaded pellets were coated for sustained release coating from 16 to 28% w/w coating to get desired drug release profile and results suggested that 22% w/w coating weight gain is necessary to get the required drug release profile. Three critical process parameters of Wurster coating for sustained release were further statistically optimized for desired quality target product profile attributes like agglomerates formation, process efficiency, and drug release profile using central composite design (CCD) by Minitab software. Results show that derived design space consisting 1.0 to 1.2 bar atomization air pressure, 7.8 to 10.0 gm/min spray rate and 29-34°C product bed temperature gave pre-defined drug product quality attributes. Scanning Image microscopy study results were also dictate that optimized batch pellets had very narrow particle size distribution and smooth surface which were ideal properties for reproducible drug release profile. The study also focused on optimized dexketoprofen trometamol pellets formulation retain its quality attributes while administering with common vehicle, a liquid (water) or semisolid food (apple sauce). Conclusion: Sustained release multi-particulates were successfully developed for dexketoprofen trometamol which may be useful to improve acceptability and palatability of a dosage form for better patient compliance.Keywords: dexketoprofen trometamol, pellets, fluid bed technology, central composite design
Procedia PDF Downloads 1362495 Effect of Therapeutic Exercises with or without Positional Release Technique in Treatment of Chronic Mechanical Low Back Pain Patients a Randomized Controlled Trial
Authors: Ghada M. R. Koura, Mohamed N. Mohamed, Ahmed M. F. El Shiwi
Abstract:
Chronic mechanical Low back dysfunction (CMLBD) is the most common problem of the working-age population in modern industrial sociaty; it causes a substantial economic burden due to the wide use of medical services and absence from work. Aim of work: the aim of this study was to investigate the effect of positional release technique on patients with chronic mechanical low back pain. Materials and Methods: Thirty two patients from both sexes were diagnosed with CMLBP, aged 20 to 45 years and were divided randomly into two equal groups; sixteen patients each; group A (control group) received therapeutic exercises that include (Stretch and Strength exercises for back and abdominal muscles). Group B (experimental group) received therapeutic exercises with positional release technique; treatment was applied 3 days/week for 4 weeks. Pain was measured by Visual Analogue Scale, Lumbar range of motion was measured by Inclinometer and Functional disability was measured by Oswestry disability scale. Measurements were taken at two intervals pre-treatment and post-treatment. Results: Data obtained was analyzed via paired and unpaired t-Test. There were statistical differences between the 2 groups, where the experimental group showed greater improvement than control group. Conclusion: Positional release technique is considered as an effective treatment for reducing pain, functional disability and increasing lumbar range of motion in individuals with chronic mechanical low back pain.Keywords: chronic mechanical low back pain, traditional physical therapy program, positional release technique, randomized controlled trial
Procedia PDF Downloads 5972494 Ceramide-PLGA Nanoparticle Formation to Apply to Atopic Dermatitis
Authors: Sang-Myung Jung, Gwang Heum Yoon, Hoo Chul Lee, Hwa Sung Shin
Abstract:
Ceramide, a component of stratum corneum at epidermis, helps to construct a rigid and dense skin barrier to prevent pathogens that cause atopic dermatitis. However, ceramide was too hydrophobic to be directly absorbed into stratum corneum and has risks of side effects by excessive treatment. To overcome the obstacles, ceramide was embedded into PLGA nanoparticles coated with chitosan. PLGA and chitosan have been known as biocompatible materials. PLGA was squeezed when faced with water and pumped ceramide out of PLGA nanoparticle. In addition, the chitosan coating layer helped initial adherence of nanoparticles to skin and regulate ceramide release until removed. This coating was degraded at weakly acid state like skin surface, finally ceramide release could be controlled. Finally, the nanoparticle was demonstrated to be non-cytotoxic and regenerate stratum corneum of atopic dermatitis model. Overall the nanoparticle is suggested as a novel and effective nanodrug to apply atopic dermatitis.Keywords: nanoparticle, controlled release, atopic dermatitis, chitosan coating, ceramide
Procedia PDF Downloads 3952493 Poly-ε-Caprolactone Nanofibers with Synthetic Growth Factor Enriched Liposomes as Controlled Drug Delivery System
Authors: Vera Sovkova, Andrea Mickova, Matej Buzgo, Karolina Vocetkova, Eva Filova, Evzen Amler
Abstract:
PCL (poly-ε-caprolactone) nanofibrous scaffolds with adhered liposomes were prepared and tested as a possible drug delivery system for various synthetic growth factors. TGFβ, bFGF, and IGF-I have been shown to increase hMSC (human mesenchymal stem cells) proliferation and to induce hMSC differentiation. Functionalized PCL nanofibers were prepared with synthetic growth factors encapsulated in liposomes adhered to them in three different concentrations. Other samples contained PCL nanofibers with adhered, free synthetic growth factors. The synthetic growth factors free medium served as a control. The interaction of liposomes with the PCL nanofibers was visualized by SEM, and the release kinetics were determined by ELISA testing. The potential of liposomes, immobilized on the biodegradable scaffolds, as a delivery system for synthetic growth factors, and as a suitable system for MSCs adhesion, proliferation and differentiation in vitro was evaluated by MTS assay, dsDNA amount determination, confocal microscopy, flow cytometry and real-time PCR. The results showed that the growth factors adhered to the PCL nanofibers stimulated cell proliferation mainly up to day 11 and that subsequently their effect was lower. By contrast, the release of the lowest concentration of growth factors from liposomes resulted in gradual proliferation of MSCs throughout the experiment. Moreover, liposomes, as well as free growth factors, stimulated type II collagen production, which was confirmed by immunohistochemical staining using monoclonal antibody against type II collagen. The results of this study indicate that growth factors enriched liposomes adhered to surface of PCL nanofibers could be useful as a drug delivery instrument for application in short timescales, be combined with nanofiber scaffolds to promote local and persistent delivery while mimicking the local microenvironment. This work was supported by project LO1508 from the Ministry of Education, Youth and Sports of the Czech RepublicKeywords: drug delivery, growth factors, hMSC, liposomes, nanofibres
Procedia PDF Downloads 2902492 The Use of Image Processing Responses Tools Applied to Analysing Bouguer Gravity Anomaly Map (Tangier-Tetuan's Area-Morocco)
Authors: Saad Bakkali
Abstract:
Image processing is a powerful tool for the enhancement of edges in images used in the interpretation of geophysical potential field data. Arial and terrestrial gravimetric surveys were carried out in the region of Tangier-Tetuan. From the observed and measured data of gravity Bouguer gravity anomalies map was prepared. This paper reports the results and interpretations of the transformed maps of Bouguer gravity anomaly of the Tangier-Tetuan area using image processing. Filtering analysis based on classical image process was applied. Operator image process like logarithmic and gamma correction are used. This paper also present the results obtained from this image processing analysis of the enhancement edges of the Bouguer gravity anomaly map of the Tangier-Tetuan zone.Keywords: bouguer, tangier, filtering, gamma correction, logarithmic enhancement edges
Procedia PDF Downloads 4222491 Influence of Cobalt Incorporation on the Structure and Properties of SOL-Gel Derived Mesoporous Bioglass Nanoparticles
Authors: Ahmed El-Fiqi, Hae-Won Kim
Abstract:
Incorporation of therapeutic elements such as Sr, Cu and Co into bioglass structure and their release as ions is considered as one of the promising approaches to enhance cellular responses, e.g., osteogenesis and angiogenesis. Here, cobalt as angiogenesis promoter has been incorporated (at 0, 1 and 4 mol%) into sol-gel derived calcium silicate mesoporous bioglass nanoparticles. The composition and structure of cobalt-free (CFN) and cobalt-doped (CDN) mesoporous bioglass nanoparticles have been analyzed by X-ray fluorescence (XRF), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier-Transform Infra-red spectroscopy (FT-IR). The physicochemical properties of CFN and CDN have been investigated using high-resolution transmission electron microscopy (HR-TEM), Selected area electron diffraction (SAED), and Energy-dispersive X-ray (EDX). Furthermore, the textural properties, including specific surface area, pore-volume, and pore size, have been analyzed from N²⁻sorption analyses. Surface charges of CFN and CDN were also determined from surface zeta potential measurements. The release of ions, including Co²⁺, Ca²⁺, and SiO₄⁴⁻ has been analyzed using inductively coupled plasma atomic emission spectrometry (ICP-AES). Loading and release of diclofenac as an anti-inflammatory drug model were explored in vitro using Ultraviolet-visible spectroscopy (UV-Vis). XRD results ensured the amorphous state of CFN and CDN whereas, XRF further confirmed that their chemical compositions are very close to the designed compositions. HR-TEM analyses unveiled nanoparticles with spherical morphologies, highly mesoporous textures, and sizes in the range of 90 - 100 nm. Moreover, N²⁻ sorption analyses revealed that the nanoparticles have pores with sizes of 3.2 - 2.6 nm, pore volumes of 0.41 - 0.35 cc/g and highly surface areas in the range of 716 - 830 m²/g. High-resolution XPS analysis of Co 2p core level provided structural information about Co atomic environment and it confirmed the electronic state of Co in the glass matrix. ICP-AES analysis showed the release of therapeutic doses of Co²⁺ ions from 4% CDN up to 100 ppm within 14 days. Finally, diclofenac loading and release have ensured the drug/ion co-delivery capability of 4% CDN.Keywords: mesoporous bioactive glass, nanoparticles, cobalt ions, release
Procedia PDF Downloads 1072490 Resin-coated Controlled Release Fertilizer (CRF) for Oil Palm: Laboratory and Main Nursery Evaluation
Authors: Umar Adli Amran, Tan Choon Chek, Mohd Shahkhirat Norizan, Then Kek Hoe
Abstract:
Controlled release fertilizer (CRF) enables a regulated nutrients release for more efficient plant uptake compared to the normal granular fertilizer. It reduces nutrients loss via surface run-off and leaching, hence promotes sustainable agriculture. Although the performance of CRF in providing consistent and timely nutrients supply is well known, its expensive price limits it usage in a large scale plantation. This study is conducted to evaluate the properties and performance of bio-based polyurethane (PU)-coated CRF via laboratory and oil palm main nursery trial. The CRF is produced by coating of a normal commercial compound granular fertilizer from FGV Fertiliser Sdn. Bhd., namely Felda 10 (10.5-8-20-3+0.5B), and designated as CRF FGV10. Based on laboratory evaluation, the CRF FGV10 can sustain nutrients release for more than 6 months. Vegetative growth parameters such as girth size, palm height, third frond length, and the total number of fronds produced were recorded. Besides that, dry biomass of the oil palm seedlings was also determined. From the evaluation, it is proved that at 50% reduction of nutrients application rate and for only two times application (T3), CRF FGV10 enabled the oil palm seedlings to achieve similar vegetative growth with the control samples (T1). It is also proven that only PU-coated CRF FGV10 had allowed the reduction of fertilizer rate and application rounds.Keywords: nutrition, oil palm seedlings, polyurethane, sustainable manuring, vegetative growth
Procedia PDF Downloads 612489 Genetic Instabilities in Marine Bivalve Following Benzo(α)pyrene Exposure: Utilization of Combined Random Amplified Polymorphic DNA and Comet Assay
Authors: Mengjie Qu, Yi Wang, Jiawei Ding, Siyu Chen, Yanan Di
Abstract:
Marine ecosystem is facing intensified multiple stresses caused by environmental contaminants from human activities. Xenobiotics, such as benzo(α)pyrene (BaP) have been discharged into marine environment and cause hazardous impacts on both marine organisms and human beings. As a filter-feeder, marine mussels, Mytilus spp., has been extensively used to monitor the marine environment. However, their genomic alterations induced by such xenobiotics are still kept unknown. In the present study, gills, as the first defense barrier in mussels, were selected to evaluate the genetic instability alterations induced by the exposure to BaP both in vivo and in vitro. Both random amplified polymorphic DNA (RAPD) assay and comet assay were applied as the rapid tools to assess the environmental stresses due to their low money- and time-consumption. All mussels were identified to be the single species of Mytilus coruscus before used in BaP exposure at the concentration of 56 μg/l for 1 & 3 days (in vivo exposure) or 1 & 3 hours (in vitro). Both RAPD and comet assay results were showed significantly increased genomic instability with time-specific altering pattern. After the recovery period in 'in vivo' exposure, the genomic status was as same as control condition. However, the relative higher genomic instabilities were still observed in gill cells after the recovery from in vitro exposure condition. Different repair mechanisms or signaling pathway might be involved in the isolated gill cells in the comparison with intact tissues. The study provides the robust and rapid techniques to exam the genomic stability in marine organisms in response to marine environmental changes and provide basic information for further mechanism research in stress responses in marine organisms.Keywords: genotoxic impacts, in vivo/vitro exposure, marine mussels, RAPD and comet assay
Procedia PDF Downloads 2792488 Improving Software Technology to Support Release Process in Global Software Development Environment: An Experience Report
Authors: Hualter Barbosa, Bruno Bonifacio
Abstract:
The process of globalization and new business has transformed the dynamics of software development. To meet the new demands, the software industry has adapted new methodologies that can shorten development cycles to ensure greater competitiveness. Given this scenario, Global Software Development (GSD) has become a strategic element for new products' success. However, the reliability, opportunity, and perceived value can be influenced substantially with the automation of steps in the development process activities. In this sense, the development of new technologies can help developers and managers to improve the quality of development. This paper presents a report on improving one of the release process activities of Sidia's mobile product area using software technology. The objective is to present the improvement of the CLCATCH tool developed based on experimental studies and qualitative analysis on the points of improvement for the release process in Android update projects for Samsung mobile devices. The results show improvement for the new version and approach of the tool, with points that can facilitate new features of the proposed technology.Keywords: Android updated, empirical studies, GSD, process improvement
Procedia PDF Downloads 1432487 Everolimus Loaded Polyvinyl Alcohol Microspheres for Sustained Drug Delivery in the Treatment of Subependymal Giant Cell Astrocytoma
Authors: Lynn Louis, Bor Shin Chee, Marion McAfee, Michael Nugent
Abstract:
This article aims to develop a sustained release formulation of microspheres containing the mTOR inhibitor Everolimus (EVR) using Polyvinyl alcohol (PVA) to enhance the bioavailability of the drug and to overcome poor solubility characteristics of Everolimus. This paper builds on recent work in the manufacture of microspheres using the sessile droplet technique by freezing the polymer-drug solution by suspending the droplets into pre-cooled ethanol vials immersed in liquid nitrogen. The spheres were subjected to 6 freezing cycles and 3 freezing cycles with thawing to obtain proper geometry, prevent aggregation, and achieve physical cross-linking. The prepared microspheres were characterised for surface morphology by SEM, where a 3-D porous structure was observed. The in vitro release studies showed a 62.17% release over 12.5 days, indicating a sustained release due to good encapsulation. This result is comparatively much more than the 49.06% release achieved within 4 hours from the solvent cast Everolimus film as a control with no freeze-thaw cycles performed. The solvent cast films were made in this work for comparison. A prolonged release of Everolimus using a polymer-based drug delivery system is essential to reach optimal therapeutic concentrations in treating SEGA tumours without systemic exposure. These results suggest that the combination of PVA and Everolimus via a rheological synergism enhanced the bioavailability of the hydrophobic drug Everolimus. Physical-chemical characterisation using DSC and FTIR analysis showed compatibility of the drug with the polymer, and the stability of the drug was maintained owing to the high molecular weight of the PVA. The obtained results indicate that the developed PVA/EVR microsphere is highly suitable as a potential drug delivery system with improved bioavailability in treating Subependymal Giant cell astrocytoma (SEGA).Keywords: drug delivery system, everolimus, freeze-thaw cycles, polyvinyl alcohol
Procedia PDF Downloads 1272486 A Study on the Synthetic Resin of Fire Risk Using the Room Corner Test
Authors: Ji Hun Choi, Seung Un Chae, Kyeong Suk Cho
Abstract:
Synthetic resins are widely used in various fields including electricity, engineering, construction and agriculture. Many of interior and exterior finishing materials for buildings are synthetic resin products. In this study, full-scale fire tests were conducted on polyvinyl chloride, polypropylene and urethane in accordance with the “ISO 9705: Fire test - Full-scale room test for surface products” to measure heat release rate, toxic gas emission and smoke production rate. Based on the tests, fire growth pattern and fire risk were analyzed. Findings from the tests conducted on polyvinyl chloride and urethane are as follows. The total heat release rate and total smoke production rate of polyvinyl chloride were 98.89MW and 5284.41m2, respectively and its highest CO2 concentration was 0.149%. The values obtained from the test with urethane were 469.94 MW, 3396.28 m2 and 1.549%. While heat release rate and CO2 concentration were higher in urethane implying its high combustibility, smoke production rate was 1.5 times higher in polyvinyl chloride. Follow-up tests are planned to be conducted to accumulate data for the evaluation of heat emission and fire risk associated with synthetic resins.Keywords: synthetic resins, fire test, full-scale test, heat release rate, smoke production rate, polyvinyl chloride, polypropylene, urethane
Procedia PDF Downloads 4312485 An Activatable Prodrug for the Treatment of Metastatic Tumors
Authors: Eun-Joong Kim, Sankarprasad Bhuniya, Hyunseung Lee, Hyun Min Kim, Chaejoon Cheong, Su-khendu Maiti, Kwan Soo Hong, Jong Seung Kim
Abstract:
Metastatic cancers have historically been difficult to treat. However, metastatic tumors have been found to have high levels of reactive oxygen species such as hydrogen peroxide (H2O2), supporting the hypothesis that a prodrug could be activated by intracellular H2O2 and lead to a potential anti-metastatic therapy. In this study, prodrug 7 was designed to be activated by H2O2-mediated boronate oxidation, resulting in activation of the fluorophore for detection and release of the therapeutic agent, SN-38. Drug release from prodrug 7 was investigated by monitoring fluorescence after addition of H2O2 to the cancer cells. Prodrug 7 activated by H2O2 selectively inhibited tumor cell growth. Furthermore, intratracheally administered prodrug 7 showed effective anti-tumor activity in a mouse model of metastatic lung disease. Thus, this H2O2-responsive prodrug has therapeutic potential as a novel treatment for metastatic cancer via cellular imaging with fluorescence as well as selective release of the anti-cancer drug, SN-38.Keywords: hydrogen peroxide, prodrug, metastatic tumors, fluorescence
Procedia PDF Downloads 4532484 Peculiarities of Internal Friction and Shear Modulus in 60Co γ-Rays Irradiated Monocrystalline SiGe Alloys
Authors: I. Kurashvili, G. Darsavelidze, T. Kimeridze, G. Chubinidze, I. Tabatadze
Abstract:
At present, a number of modern semiconductor devices based on SiGe alloys have been created in which the latest achievements of high technologies are used. These devices might cause significant changes to networking, computing, and space technology. In the nearest future new materials based on SiGe will be able to restrict the A3B5 and Si technologies and firmly establish themselves in medium frequency electronics. Effective realization of these prospects requires the solution of prediction and controlling of structural state and dynamical physical –mechanical properties of new SiGe materials. Based on these circumstances, a complex investigation of structural defects and structural-sensitive dynamic mechanical characteristics of SiGe alloys under different external impacts (deformation, radiation, thermal cycling) acquires great importance. Internal friction (IF) and shear modulus temperature and amplitude dependences of the monocrystalline boron-doped Si1-xGex(x≤0.05) alloys grown by Czochralski technique is studied in initial and 60Co gamma-irradiated states. In the initial samples, a set of dislocation origin relaxation processes and accompanying modulus defects are revealed in a temperature interval of 400-800 ⁰C. It is shown that after gamma-irradiation intensity of relaxation internal friction in the vicinity of 280 ⁰C increases and simultaneously activation parameters of high temperature relaxation processes reveal clear rising. It is proposed that these changes of dynamical mechanical characteristics might be caused by a decrease of the dislocation mobility in the Cottrell atmosphere enriched by the radiation defects.Keywords: internal friction, shear modulus, gamma-irradiation, SiGe alloys
Procedia PDF Downloads 1432483 Acute Exposure Of Two Classes Of Fungicides And Its Effects On Hematological Indices Of Fish (Clarius batrachus) - A Comparative Study
Authors: Pallavi Srivastava, Ajay Singh
Abstract:
Hematological assay has used for evaluation of blood changes according to its environment. It’s studies employed to evaluate possible eco-toxic risk due to the exposure of chemicals and pesticides in aquatic organisms. Fishes serve as a sensitive bio-indicator, as changes occur in its surrounding environment. The aim of present study has two-folds first we observed that after exposure of two doses of each class of fungicide i.e. 1.11mg/l, 2.23mg/l for Propiconazole and 11.43mg/l, 22.87mg/l for Mancozeb show maximum blood changes. Second we conclude that toxic effects and blood changes induced by Propiconazole is greater than Mancozeb.Keywords: hematological assay, fungicides, bio-indicator, eco-toxic risk
Procedia PDF Downloads 4082482 In vivo Activity of Pathogenic Bacteria on Natural Polyphenolic Compounds
Authors: Lubna Azmi, Ila Shukla, Shyam Sundar Gupta, Padam Kant, Ch. V. Rao
Abstract:
Gastric ulcer is a major global health threat, and it is the leading cause of stomach cancer death worldwide. Helicobacter pylori bacteriumis the most important etiologic factor for gastric ulcer. This infection is highly pervasive in South Asian developing countries, especially in India, Nepal, Srilanka etc. due to diversification in geographic area. Pathophysiology of gastric mucosal damage associated with non-invasive bacterium has not justified in detail, but it leads to change in histopathology, immunochemistry of the gastric and duodenal reason of host. The mechanism responsible for bacteria tissue tropism and mucosal damage in stomach variance during the disease is not clearly described and understood scientifically in treatment and control of pathogenic organisms. Polyphenols are secondary metabolites of plants and are generally involved in defense against aggression by pathogens. 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one and 1-hydroxy-5,7-dimethoxy-2-naphthalene-carboxaldehyde are polyphenolic compound obtained from popular Indian medicinal plants ghavpatta (ArgeriaspeciosaLinn.f) andBael (Aeglemarmelos) have long been used in traditional Ayurvedic Indian medicine for various diseases. They have promising effects on ulcer, as detailed investigation has made in our laboratory. Therefore, the aim of present study is to explore membrane –dependent morphogenesis of H. pylori and associated apoptosis-mediated cell death. Based on this we analyzed immune gene expression in stomach of experimental animals with H. pylori, using quantitative reverse transcription polymerase chain reaction(q RT-PCR). This revealed rapid induction of prostaglandin, interferon I (INF-I), interferon II (INF-II) and INF-I associated genes in the infected animal. Ultrastructural changes associated with H. pylori will be taken for advanced studies. This investigation shows that the biomarkers eradicate H. pylori bacterium caused gastric ulcer which is a major risk factor for gastric cancer.Keywords: gastric ulcer, Helicobacter pylori, immunochemistry, polyphenols
Procedia PDF Downloads 3722481 Screening for Hit Identification against Mycobacterium abscessus
Authors: Jichan Jang
Abstract:
Mycobacterium abscessus is a rapidly growing life-threatening mycobacterium with multiple drug-resistance mechanisms. In this study, we screened the library to identify active molecules targeting Mycobacterium abscessus using resazurin live/dead assays. In this screening assay, the Z-factor was 0.7, as an indication of the statistical confidence of the assay. A cut-off of 80% growth inhibition in the screening resulted in the identification of four different compounds at a single concentration (20 μM). Dose-response curves identified three different hit candidates, which generated good inhibitory curves. All hit candidates were expected to have different molecular targets. Thus, we found that compound X, identified, may be a promising candidate in the M. abscessus drug discovery pipeline.Keywords: Mycobacterium abscessus, antibiotics, drug discovery, emerging Pathogen
Procedia PDF Downloads 209