Search results for: CO₂ separation
955 RP-HPLC Method Development and Its Validation for Simultaneous Estimation of Metoprolol Succinate and Olmesartan Medoxomil Combination in Bulk and Tablet Dosage Form
Authors: S. Jain, R. Savalia, V. Saini
Abstract:
A simple, accurate, precise, sensitive and specific RP-HPLC method was developed and validated for simultaneous estimation of Metoprolol Succinate and Olmesartan Medoxomil in bulk and tablet dosage form. The RP-HPLC method has shown adequate separation for Metoprolol Succinate and Olmesartan Medoxomil from its degradation products. The separation was achieved on a Phenomenex luna ODS C18 (250mm X 4.6mm i.d., 5μm particle size) with an isocratic mixture of acetonitrile: 50mM phosphate buffer pH 4.0 adjusted with glacial acetic acid in the ratio of 55:45 v/v. The mobile phase at a flow rate of 1.0ml/min, Injection volume 20μl and wavelength of detection was kept at 225nm. The retention time for Metoprolol Succinate and Olmesartan Medoxomil was 2.451±0.1min and 6.167±0.1min, respectively. The linearity of the proposed method was investigated in the range of 5-50μg/ml and 2-20μg/ml for Metoprolol Succinate and Olmesartan Medoxomil, respectively. Correlation coefficient was 0.999 and 0.9996 for Metoprolol Succinate and Olmesartan Medoxomil, respectively. The limit of detection was 0.2847μg/ml and 0.1251μg/ml for Metoprolol Succinate and Olmesartan Medoxomil, respectively and the limit of quantification was 0.8630μg/ml and 0.3793μg/ml for Metoprolol and Olmesartan, respectively. Proposed methods were validated as per ICH guidelines for linearity, accuracy, precision, specificity and robustness for estimation of Metoprolol Succinate and Olmesartan Medoxomil in commercially available tablet dosage form and results were found to be satisfactory. Thus the developed and validated stability indicating method can be used successfully for marketed formulations.Keywords: metoprolol succinate, olmesartan medoxomil, RP-HPLC method, validation, ICH
Procedia PDF Downloads 315954 Ultrathin Tin-Silicalite 1 Zeolite Membrane in Ester Solvent Recovery
Authors: Kun Liang Ang, Eng Toon Saw, Wei He, Xuecheng Dong, Seeram Ramakrishna
Abstract:
Ester solvents are widely used in pharmaceutical, printing and flavor industry due to their good miscibility, low toxicity, and high volatility. Through pervaporation, these ester solvents can be recovered from industrial wastewater. While metal-doped silicalite 1 zeolite membranes are commonly used in organic solvent recovery in the pervaporation process, these ceramic membranes suffer from low membrane permeation flux, mainly due to the high thickness of the metal-doped zeolite membrane. Herein, a simple method of fabricating an ultrathin tin-silicalite 1 membrane supported on alumina tube is reported. This ultrathin membrane is able to achieve high permeation flux and separation factor for an ester in a diluted aqueous solution. Nanosized tin-Silicalite 1 seeds which are smaller than 500nm has been formed through hydrothermal synthesis. The sn-Silicalite 1 seeds were then seeded onto alumina tube through dip coating, and the tin-Silicalite 1 membrane was then formed by hydrothermal synthesis in an autoclave through secondary growth method. Multiple membrane synthesis factors such as seed size, ceramic substrate surface pore size selection, and secondary growth conditions were studied for their effects on zeolite membrane growth. The microstructure, morphology and the membrane thickness of tin-Silicalite 1 zeolite membrane were examined. The membrane separation performance and stability will also be reported.Keywords: ceramic membrane, pervaporation, solvent recovery, Sn-MFI zeolite
Procedia PDF Downloads 189953 The Impact of Corporate Governance Attributes on Dividends Payouts Policy: Evidence from the Emerging Capital Market of Jordan
Authors: Amneh Alkurdi, Yasean Tahat, Hamzeh Almuali
Abstract:
Purpose: The primary objective of the present paper is to examine the impact of CG attributes, including the board size, independency, separation and managerial ownership) on firm dividend payouts policy; using a sample of 72 Jordanian listed companies for the period of 2007-2013. Methodology: The study does manually review the sample firm’s annual reports for data collection and use OLS regression to carry out this investigation. Findings: The findings indicate that CG attributes have a strong impact on dividend payouts policy. In particular, board size, independency and separation have had significant associations with dividends payouts indicating that such variables matter when determining on dividends which may mitigate the conflicts between stakeholders’ and managers’ interests. The results also indicate that managerial ownership has had no significant impact on the dividends policy suggesting that managers do not use the strength of their position to influence the dividends policy. Finally, the results show that firm size and profitability have had statistically positive associations with dividend payouts, while this was not the case for firm leverage and growth where significant and positive relationships were documented. Originality/implication: The current paper extends the extant literature in this field by investigating the impact of the board composition on dividends and provides some insights for policy makers in emerging markets.Keywords: corporate governance, dividends payouts policy, jordan, accounting
Procedia PDF Downloads 192952 Thermophilic Anaerobic Granular Membrane Distillation Bioreactor for Wastewater Reuse
Authors: Duong Cong Chinh, Shiao-Shing Chen, Le Quang Huy
Abstract:
Membrane distillation (MD) is actually claimed to be a cost-effective separation process when waste heat, alternative energy sources, or wastewater are used. To the best of our knowledge, this is the first study that a thermophilic anaerobic granular bioreactor is integrated with membrane distillation (ThAnMDB) was investigated. In this study, the laboratory scale anaerobic bioreactor (1.2 litter) was set-up. The bioreactor was maintained at temperature 55 ± 2°C, hydraulic retention time = 0.5 days, organic loading rates of 7 and 10 kg chemical oxygen demand (COD) m³/day. Side-stream direct contact membrane distillation with the polytetrafluoroethylene membrane area was 150 cm². The temperature of the distillate was kept at 25°C. Results show that distillate flux was 19.6 LMH (Liters per square meter per hour) on the first day and gradually decreased to 6.9 LMH after 10 days, and the membrane was not wet. Notably, by directly using the heat from the thermophilic anaerobic for MD separation process, all distilled water from wastewater was reuse as fresh water (electrical conductivity < 120 µs/cm). The ThAnMDB system showed its high pollutant removal performance: chemical oxygen demand (COD) from 99.6 to 99.9%, NH₄⁺ from 60 to 95%, and PO₄³⁻ complete removal. In addition, methane yield was from 0.28 to 0.34 lit CH₄/gram COD removal (80 – 97% of the theoretical) demonstrated that the ThAnMDB system was quite stable. The achievement of the ThAnMDB is not only in removing pollutants and reusing wastewater but also in absolutely unnecessarily adding alkaline to the anaerobic bioreactor system.Keywords: high rate anaerobic digestion, membrane distillation, thermophilic anaerobic, wastewater reuse
Procedia PDF Downloads 127951 The Trauma Suffered by Left behind Children and Its Impact on Their Emotional Development: A Pilot Study with Brazilian Immigrants in the United States
Authors: Liliane Clark
Abstract:
Immigrating to a different country may imply having to handle many difficult exertions. There is a particular issue that has to be endured by some immigrants: the children they had to leave behind. It is a phenomenon that occurs with certain frequency. Surprisingly, despite the fact that immigration in the United States is such a large proceeding, there is not much research about the topic in America exploring the trauma of the abandonment caused by this separation and its consequences on the mental health of those children. The term “left behind children” is usually applied to children who were left behind by their parents in their original nation under the care of a noteworthy relative, frequently the grandparents, when they moved to another country. This preliminary research, which is a partial study projected for a doctoral thesis, investigated whether the trauma of abandonment experienced by ten left behind children had affected their emotional development. The Strengths and Difficulties Questionnaire (SDQ) and a brief interview were utilized to assess the information. The SDQ explored scales such as emotional symptoms, conduct problems, hyperactivity, peer problems and prosocial behavior. In this pilot study, the results indicated that all these issues had some sort of significant correlation between them. During the interviews, the participants or their parents identified a range of symptoms: anxiety disorder, eating disorders, panic attacks, psychotic-like experiences, drug use and depression. Hence, it seems that there is a connection between the trauma of abandonment suffered due to the separation and the children’s consequent symptomatic behavior. Further studies are indeed necessary to validate the initial results of this investigation.Keywords: abandonment, parent migration, psychological problems, trauma
Procedia PDF Downloads 187950 Optimization of Multistage Extractor for the Butanol Separation from Aqueous Solution Using Ionic Liquids
Authors: Dharamashi Rabari, Anand Patel
Abstract:
n-Butanol can be regarded as a potential biofuel. Being resistive to corrosion and having high calorific value, butanol is a very attractive energy source as opposed to ethanol. By fermentation process called ABE (acetone, butanol, ethanol), bio-butanol can be produced. ABE carried out mostly by bacteria Clostridium acetobutylicum. The major drawback of the process is the butanol concentration higher than 10 g/L, delays the growth of microbes resulting in a low yield. It indicates the simultaneous separation of butanol from the fermentation broth. Two hydrophobic Ionic Liquids (ILs) 1-butyl-1-methylpiperidinium bis (trifluoromethylsulfonyl)imide [bmPIP][Tf₂N] and 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [hmim][Tf₂N] were chosen. The binary interaction parameters for both ternary systems i.e. [bmPIP][Tf₂N] + water + n-butanol and [hmim][Tf₂N] + water +n-butanol were taken from the literature that was generated by NRTL model. Particle swarm optimization (PSO) with the isothermal sum rate (ISR) method was used to optimize the cost of liquid-liquid extractor. For [hmim][Tf₂N] + water +n-butanol system, PSO shows 84% success rate with the number of stages equal to eight and solvent flow rate equal to 461 kmol/hr. The number of stages was three with 269.95 kmol/hr solvent flow rate for [bmPIP][Tf₂N] + water + n-butanol system. Moreover, both ILs were very efficient as the loss of ILs in raffinate phase was negligible.Keywords: particle swarm optimization, isothermal sum rate method, success rate, extraction
Procedia PDF Downloads 122949 Estimation of Energy Efficiency of Blue Hydrogen Production Onboard of Ships
Authors: Li Chin Law, Epaminondas Mastorakos, Mohd Roslee Othman, Antonis Trakakis
Abstract:
The paper introduces an alternative concept of carbon capture for shipping by using pre-combustion carbon capture technology (Pre-CCS), which was proven to be less energy intensive than post-combustion carbon capture from the engine exhaust. Energy assessment on amine-based post-combustion CCS on LNG-fuelled ships showed that the energy efficiency of CCS ships reduced from 48% to 36.6%. Then, an energy assessment was carried out to compare the power and heat requirements of the most used hydrogen production methods and carbon capture technologies. Steam methane reformer (SMR) was found to be 20% more energy efficient and achieved a higher methane conversion than auto thermal reaction and methane decomposition. Next, pressure swing adsorber (PSA) has shown a lower energy requirement than membrane separation, cryogenic separation, and amine absorption in pre-combustion carbon capture. Hence, an integrated system combining SMR and PSA (SMR-PSA) with waste heat integration (WHR) was proposed. This optimized SMR-based integrated system has achieved 65% of CO₂ reduction with less than 7-percentage point of energy penalty (41.7% of energy efficiency). Further integration of post-combustion CCS with the SMR-PSA integrated system improved carbon capture rate to 86.3% with 9-percentage points of energy penalty (39% energy efficiency). The proposed system was shown to be able to meet the carbon reduction targets set by International Maritime Organization (IMO) with certain energy penalties.Keywords: shipping, decarbonisation, alternative fuels, low carbon, hydrogen, carbon capture
Procedia PDF Downloads 78948 Analysis of Lift Force in Hydrodynamic Transport of a Finite Sized Particle in Inertial Microfluidics with a Rectangular Microchannel
Authors: Xinghui Wu, Chun Yang
Abstract:
Inertial microfluidics is a competitive fluidic method with applications in separation of particles, cells and bacteria. In contrast to traditional microfluidic devices with low Reynolds number, inertial microfluidics works in the intermediate Re number range which brings about several intriguing inertial effects on particle separation/focusing to meet the throughput requirement in the real-world. Geometric modifications to make channels become irregular shapes can leverage fluid inertia to create complex secondary flow for adjusting the particle equilibrium positions and thus enhance the separation resolution and throughput. Although inertial microfluidics has been extensively studied by experiments, our current understanding of its mechanisms is poor, making it extremely difficult to build rational-design guidelines for the particle focusing locations, especially for irregularly shaped microfluidic channels. Inertial particle microfluidics in irregularly shaped channels were investigated in our group. There are several fundamental issues that require us to address. One of them is about the balance between the inertial lift forces and the secondary drag forces. Also, it is critical to quantitatively describe the dependence of the life forces on particle-particle interactions in irregularly shaped channels, such as a rectangular one. To provide physical insights into the inertial microfluidics in channels of irregular shapes, in this work the immersed boundary-lattice Boltzmann method (IB-LBM) was introduced and validated to explore the transport characteristics and the underlying mechanisms of an inertial focusing single particle in a rectangular microchannel. The transport dynamics of a finitesized particle were investigated over wide ranges of Reynolds number (20 < Re < 500) and particle size. The results show that the inner equilibrium positions are more difficult to occur in the rectangular channel, which can be explained by the secondary flow caused by the presence of a finite-sized particle. Furthermore, force decoupling analysis was utilized to study the effect of each type of lift force on the inertia migration, and a theoretical model for the lateral lift force of a finite-sized particle in the rectangular channel was established. Such theoretical model can be used to provide theoretical guidance for the design and operation of inertial microfluidics.Keywords: inertial microfluidics, particle focuse, life force, IB-LBM
Procedia PDF Downloads 71947 Synthesis of Visible-Light-Driven Magnetically Recoverable N-TiO2@SiO2@Fe3O4 Nanophotocatalyst for Enhanced Degradation of Ibuprofen
Authors: Ashutosh Kumar, Irene M. C. Lo
Abstract:
Ever since the discovery of TiO2 for decomposition of cyanide in water, it has been investigated extensively for the photocatalytic degradation of environmental pollutants, and became the most practical and prevalent photocatalyst. The superiority of TiO2 is due to its chemical and biological inertness, nontoxicity, strong oxidizing power and cost-effectiveness. However, during degradation of pollutants in wastewater, it suffers from problems, such as (a) separation after use, and (b) its poor photocatalytic performance under visible light irradiation (~45% of the solar spectrum). In order to bridge the research gaps, N-TiO2@SiO2@Fe3O4 nanophotocatalysts of average size 19 nm and effective surface area 47 m2 gm-1 were synthesized using sol-gel method. The characterization was performed using BET, TEM-EDX, VSM and XRD. The performance was improved by considering different factors involved during the synthesis, such as calcination temperature, amount of Fe3O4 nanoparticles used and amount of urea used for N-doping. The final nanophotocatalyst was calcined at 500 °C which was able to degrade 94% of the ibuprofen within 5 h of irradiation time. Under the influence of ~200 mT electromagnetic field, 95% nanophotocatalysts separation efficiency was achieved within 20-25 min. Moreover, the effect of different visible light source of similar irradiance, such as compact fluorescent lamp (CFL) and light emitting diode (LED), is also investigated in this research. The performance of nanophotocatalysts was found to be comparatively higher under ~310 µW cm-2 irradiance with peak emissive wavelengths of 543 nm emitted by CFL. Therefore, a promising visible-light-driven magnetically separable TiO2-based nanophotocatalysts was synthesized for the efficient degradation of ibuprofen.Keywords: ibuprofen, magnetic N-TiO2, photocatalysis, visible light sources
Procedia PDF Downloads 248946 Kinetic and Removable of Amoxicillin Using Aliquat336 as a Carrier via a HFSLM
Authors: Teerapon Pirom, Ura Pancharoen
Abstract:
Amoxicillin is an antibiotic which is widely used to treat various infections in both human beings and animals. However, when amoxicillin is released into the environment, it is a major problem. Amoxicillin causes bacterial resistance to these drugs and failure of treatment with antibiotics. Liquid membrane is of great interest as a promising method for the separation and recovery of the target ions from aqueous solutions due to the use of carriers for the transport mechanism, resulting in highly selectivity and rapid transportation of the desired metal ions. The simultaneous processes of extraction and stripping in a single unit operation of liquid membrane system are very interesting. Therefore, it is practical to apply liquid membrane, particularly the HFSLM for industrial applications as HFSLM is proved to be a separation process with lower capital and operating costs, low energy and extractant with long life time, high selectivity and high fluxes compared with solid membranes. It is a simple design amenable to scaling up for industrial applications. The extraction and recovery for (Amoxicillin) through the hollow fiber supported liquid membrane (HFSLM) using aliquat336 as a carrier were explored with the experimental data. The important variables affecting on transport of amoxicillin viz. extractant concentration and operating time were investigated. The highest AMOX- extraction percentages of 85.35 and Amoxicillin stripping of 80.04 were achieved with the best condition at 6 mmol/L [aliquat336] and operating time 100 min. The extraction reaction order (n) and the extraction reaction rate constant (kf) were found to be 1.00 and 0.0344 min-1, respectively.Keywords: aliquat336, amoxicillin, HFSLM, kinetic
Procedia PDF Downloads 275945 A Cohesive Zone Model with Parameters Determined by Uniaxial Stress-Strain Curve
Abstract:
A key issue of cohesive zone models is how to determine the cohesive zone model parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model (CZM): The maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is modeled by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral
Procedia PDF Downloads 474944 Determination of Cohesive Zone Model’s Parameters Based On the Uniaxial Stress-Strain Curve
Authors: Y. J. Wang, C. Q. Ru
Abstract:
A key issue of cohesive zone models is how to determine the cohesive zone model (CZM) parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model: the maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is simulated by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral
Procedia PDF Downloads 513943 A Case of Borderline Personality Disorder: An Explanatory Study of Unconscious Conflicts through Dream-Analysis
Authors: Mariam Anwaar, Kiran B. Ahmad
Abstract:
Borderline Personality Disorder (BPD) is an invasive presence of affect instability, disturbance in self-concept and attachment in relationships. The profound indicator is the dichotomous approach of the world in which the ego categorizes individuals, especially their significant others, into secure or threatful beings, leaving little room for a complex combination of characteristics in one person. This defense mechanism of splitting their world has been described through the explanatory model of unconscious conflict theorized by Sigmund Freud’s Electra Complex in the Phallic Stage. The central role is of the father with whom the daughter experiences penis envy, thus identifying with the mother’s characteristics to receive the father’s attention. However, Margret Mahler, an object relation theorist, elucidates the central role of the mother and that the split occurs during the pre-Electra complex stage. Amid the 14 and 24 months of the infant, it acknowledges the world away from the mother as they have developed milestones such as crawling. In such novelty, the infant crawls away from the mother creating a sense of independence (individuation). On the other hand, being distant causes anxiety, making them return to their original object of security (separation). In BPD, the separation-individuation stage is disrupted, due to contradictory actions of the caregiver, which results in splitting the object into negative and positive aspects, repressing the former and adhering to the latter for survival. Thus, with time, the ego distorts the reality into dichotomous categories, using the splitting defenses, and the mental representation of the self is distorted due to the internalization of the negative objects. The explanatory model was recognized in the case study of Fizza, at 21-year-old Pakistani female, residing in Karachi. Her marital status is single with an occupation being a dental student. Fizza lives in a nuclear family but is surrounded by her extended family as they all are in close vicinity. She came with the complaints of depressive symptoms for two-years along with self-harm due to severe family conflicts. Through the intervention of Dialectical Behavior Therapy (DBT), the self-harming actions were reduced, however, this libidinal energy transformed into claustrophobic symptoms and, along with this, Fizza has always experienced vivid dreams. A retrospective method of Jungian dream-analysis was applied to locate the origins of the splitting in the unconscious. The result was the revelation of a sexual harassment trauma at the age of six-years which was displaced in the form of self-harm. In addition to this, the presence of a conflict at the separation-individuation stage was detected during the dream-analysis, and it was the underlying explanation of the claustrophobic symptoms. This qualitative case study implicates the use of a patient’s subjective experiences, such as dreams, to journey through the spiral of the unconscious in order to not only detect repressed memories but to use them in psychotherapy as a means of healing the patient.Keywords: borderline personality disorder, dream-analysis, Electra complex, separation-individuation, splitting, unconscious
Procedia PDF Downloads 153942 Development of Stability Indicating Method and Characterization of Degradation Impurity of Nirmaltrelvir in Its Self-Emulsifying Drug Delivery System
Authors: Ravi Patel, Ravisinh Solanki, Dignesh Khunt
Abstract:
A stability-indicating reverse phase high performance liquid chromatography (RP-HPLC) method was developed and validated for estimating Nirmatrelvir in its self-emulsifying drug delivery system (SEDDS). The separation of Nirmatrelvir and its degradation products was accomplished by employing an Agilent Zorbax Eclipse plus C18 (250 mm x 4.6 mm, 5 µm) column, through which the mobile phase 5 mM phosphate buffer (pH 4.0) as mobile phase A and Acetonitrile as mobile phase B in a ratio of (40:60 % v/v) was pumped at a flow rate of 1.0 mL/min, through the HPLC system. Chromatographic separation and elution were monitored by a photo-diode array detector at 210 nm. Stress studies have been employed to evaluate this method's ability to indicate stability. Nirmatrelvir was exposed to several stress conditions, such as acid, alkali, oxidative, photolytic, and thermal degradations. Significant degradation was observed during acid and alkali hydrolysis, and the resulting degradation product was successfully separated from the Nirmatrelvir peak, preventing any interference. Furthermore, the primary degradant produced under alkali degradation conditions was identified using UPLC-ESI-TQ-MS/MS. The method was validated in accordance with the International Council on Harmonization (ICH) and found to be selective, precise, accurate, linear, and robust. The apparent permeability of Nirmatrelvir SEDDS was 4.20 ± 0.21×10-6 cm/sec, and the average proportion of free drug recovered was 0.5%. The method developed in this study was feasible and accurate for routine quality control evaluation of Nirmatrelvir SEDDS.Keywords: Nirmatrelvir, SEDDS, degradation study, HPLC, LC-MS/MS
Procedia PDF Downloads 18941 Conditionality in the European Union as a New Instrument to Guarantee the Principle of Separation of Powers
Authors: Ana Neves
Abstract:
The European Union’s multi-level constitutionalism is grounded in an intricate network of vertical and horizontal legal relationships among different levels and types of public authorities. In a very significant way since the 2008 crisis, evolving institutional arrangements and institutional dynamics in the European Union have been progressively impacting Member States and the terms under which national public authorities are organised, interact and exercise their powers. This impact occurs in both macro and micro dimensions. Several examples are relevant here, such as the involvement of national Parliaments in the activities of the European Union, the enhanced integration of public administrations, the side effects of the Council framework decision on the European Arrest Warrant, the European Union Justice Scoreboard, the protection of whistle-blowers regulation, the enhanced cooperation on the establishment of the European Public Prosecutor’s Office, the regime for the protection of the Union budget and the European Rule of Law Mechanism. A common trend or denominator underlies the deepening of institutional interdependence and the increased interactions between the European Union, Member States, and public authorities at different levels. This seems to be conditionality as a general principle. The European multi-level constitutionalism must be considered in the light of this conditionality principle, which does not “imply a relationship of command and obedience”. Nevertheless, it might be more effective or be a very compelling principle. It is as if the extension of the shared rule is being accompanied by a contrapuntal dialogue. The different public authorities at various levels are being called to rethink and readjust themselves within a broader and more plural framework concerning understanding the limitation of power.Keywords: european union -, multi-level hierarchy, conditionality, separation of powers
Procedia PDF Downloads 107940 Multiscale Entropy Analysis of Electroencephalogram (EEG) of Alcoholic and Control Subjects
Authors: Lal Hussain, Wajid Aziz, Imtiaz Ahmed Awan, Sharjeel Saeed
Abstract:
Multiscale entropy analysis (MSE) is a useful technique recently developed to quantify the dynamics of physiological signals at different time scales. This study is aimed at investigating the electroencephalogram (EEG) signals to analyze the background activity of alcoholic and control subjects by inspecting various coarse-grained sequences formed at different time scales. EEG recordings of alcoholic and control subjects were taken from the publically available machine learning repository of University of California (UCI) acquired using 64 electrodes. The MSE analysis was performed on the EEG data acquired from all the electrodes of alcoholic and control subjects. Mann-Whitney rank test was used to find significant differences between the groups and result were considered statistically significant for p-values<0.05. The area under receiver operator curve was computed to find the degree separation between the groups. The mean ranks of MSE values at all the times scales for all electrodes were higher control subject as compared to alcoholic subjects. Higher mean ranks represent higher complexity and vice versa. The finding indicated that EEG signals acquired through electrodes C3, C4, F3, F7, F8, O1, O2, P3, T7 showed significant differences between alcoholic and control subjects at time scales 1 to 5. Moreover, all electrodes exhibit significance level at different time scales. Likewise, the highest accuracy and separation was obtained at the central region (C3 and C4), front polar regions (P3, O1, F3, F7, F8 and T8) while other electrodes such asFp1, Fp2, P4 and F4 shows no significant results.Keywords: electroencephalogram (EEG), multiscale sample entropy (MSE), Mann-Whitney test (MMT), Receiver Operator Curve (ROC), complexity analysis
Procedia PDF Downloads 376939 Investigation of the Operational Principle and Flow Analysis of a Newly Developed Dry Separator
Authors: Sung Uk Park, Young Su Kang, Sangmo Kang, Young Kweon Suh
Abstract:
Mineral product, waste concrete (fine aggregates), waste in the optical field, industry, and construction employ separators to separate solids and classify them according to their size. Various sorting machines are used in the industrial field such as those operating under electrical properties, centrifugal force, wind power, vibration, and magnetic force. Study on separators has been carried out to contribute to the environmental industry. In this study, we perform CFD analysis for understanding the basic mechanism of the separation of waste concrete (fine aggregate) particles from air with a machine built with a rotor with blades. In CFD, we first performed two-dimensional particle tracking for various particle sizes for the model with 1 degree, 1.5 degree, and 2 degree angle between each blade to verify the boundary conditions and the method of rotating domain method to be used in 3D. Then we developed 3D numerical model with ANSYS CFX to calculate the air flow and track the particles. We judged the capability of particle separation for given size by counting the number of particles escaping from the domain toward the exit among 10 particles issued at the inlet. We confirm that particles experience stagnant behavior near the exit of the rotating blades where the centrifugal force acting on the particles is in balance with the air drag force. It was also found that the minimum particle size that can be separated by the machine with the rotor is determined by its capability to stay at the outlet of the rotor channels.Keywords: environmental industry, separator, CFD, fine aggregate
Procedia PDF Downloads 595938 Separation and Characterization of Micobacterium bovis Cell Surface Lysate Antigen
Authors: Albina V. Moskvicheva, Gevorg G. Kazarian, Anna R. Valeeva, Marina A. Efimova, Malik N. Mukminov, Eduard A. Shuralev, Rustam Kh. Ravilov, Kamil S. Khaertynov
Abstract:
Improving the early diagnosis of tuberculosis and solving a number of problems associated with the differential diagnosis of Mycobacterium bovis infection, nonspecific tuberculin reactions caused by sensitization of the body by non-tuberculosis mycobacteria, is urgent. The filtrates and extracts of M. bovis cell surface components are promising antigens with diagnostic potential. The purpose of this study was to isolate and characterize antigenic proteins and determine the dominant M. bovis antigens recognized by the humoral immune system. The mycobacterial cells were homogenized on FastPrep-24. Gel-filtration chromatography was used to fractionate the lysates of cell surface component extracts and proteins isolated from M. bovis culture supernatant. The separated fractions were analyzed using two-dimensional gel electrophoresis followed by determination of antigen serological activity using immunoblot with specific hyperimmune rabbit blood serum. As a result of electrophoretic separation of components by molecular weight, 23 antigen fractions were obtained. Analysis of densitograms showed that the fractions contained two zones of antigens with pronounced serological activity, corresponding to molecular weights of 28 and 21 kDa. The high serological activity of the 28 kDa antigen was established by immunoblot using hyperimmune blood sera. Separated and characterized by M. bovis specific antigen with a molecular weight of 28 kDa was added to the collection of specific marker antigens for M. bovis.Keywords: antigen, gel-filtration chromatography, immunoblot, Mycobacterium bovis
Procedia PDF Downloads 136937 Extraction and Characterization of Ethiopian Hibiscus macranthus Bast Fiber
Authors: Solomon Tilahun Desisa, Muktar Seid Hussen
Abstract:
Hibiscus macranthus is one of family Malvaceae and genus Hibiscus plant which grows mainly in western part of Ethiopia. Hibiscus macranthus is the most adaptable and abundant plant in the nation, which are used as an ornamental plant often a hedge or fence plant, and used as a firewood after harvesting the stem together with the bark, and used also as a fiber for trying different kinds of things by forming the rope. However, Hibiscus macranthus plant fibre has not been commercially exploited and extracted properly. This study of work describes the possibility of mechanical and retting methods of Hibiscus macranthus fibre extraction and characterization. Hibiscus macranthus fibre is a bast fibre which obtained naturally from the stem or stalks of the dicotyledonous plant since it is a natural cellulose plant fiber. And the fibre characterized by studying its physical and chemical properties. The physical characteristics were investigated as follows, including the length of 100-190mm, fineness of 1.0-1.2Tex, diameter under X100 microscopic view 16-21 microns, the moisture content of 12.46% and dry tenacity of 48-57cN/Tex along with breaking extension of 0.9-1.6%. Hibiscus macranthus fiber productivity was observed that 12-18% of the stem out of which more than 65% is primary long fibers. The fiber separation methods prove to decrease of non-cellulose ingredients in the order of mechanical, water and chemical methods. The color measurement also shows the raw Hibiscus macranthus fiber has a natural golden color according to YID1925 and paler look under both retting methods than mechanical separation. Finally, it is suggested that Hibiscus macranthus fibre can be used for manufacturing of natural and organic crop and coffee packages as well as super absorbent, fine and high tenacity textile products.Keywords: Hibiscus macranthus, bast fiber, extraction, characterization
Procedia PDF Downloads 210936 Vapour Liquid Equilibrium Measurement of CO₂ Absorption in Aqueous 2-Aminoethylpiperazine (AEP)
Authors: Anirban Dey, Sukanta Kumar Dash, Bishnupada Mandal
Abstract:
Carbondioxide (CO2) is a major greenhouse gas responsible for global warming and fossil fuel power plants are the main emitting sources. Therefore the capture of CO2 is essential to maintain the emission levels according to the standards. Carbon capture and storage (CCS) is considered as an important option for stabilization of atmospheric greenhouse gases and minimizing global warming effects. There are three approaches towards CCS: Pre combustion capture where carbon is removed from the fuel prior to combustion, Oxy-fuel combustion, where coal is combusted with oxygen instead of air and Post combustion capture where the fossil fuel is combusted to produce energy and CO2 is removed from the flue gases left after the combustion process. Post combustion technology offers some advantage as existing combustion technologies can still be used without adopting major changes on them. A number of separation processes could be utilized part of post –combustion capture technology. These include (a) Physical absorption (b) Chemical absorption (c) Membrane separation (d) Adsorption. Chemical absorption is one of the most extensively used technologies for large scale CO2 capture systems. The industrially important solvents used are primary amines like Monoethanolamine (MEA) and Diglycolamine (DGA), secondary amines like diethanolamine (DEA) and Diisopropanolamine (DIPA) and tertiary amines like methyldiethanolamine (MDEA) and Triethanolamine (TEA). Primary and secondary amines react fast and directly with CO2 to form stable carbamates while Tertiary amines do not react directly with CO2 as in aqueous solution they catalyzes the hydrolysis of CO2 to form a bicarbonate ion and a protonated amine. Concentrated Piperazine (PZ) has been proposed as a better solvent as well as activator for CO2 capture from flue gas with a 10 % energy benefit compared to conventional amines such as MEA. However, the application of concentrated PZ is limited due to its low solubility in water at low temperature and lean CO2 loading. So following the performance of PZ its derivative 2-Aminoethyl piperazine (AEP) which is a cyclic amine can be explored as an activator towards the absorption of CO2. Vapour liquid equilibrium (VLE) in CO2 capture systems is an important factor for the design of separation equipment and gas treating processes. For proper thermodynamic modeling accurate equilibrium data for the solvent system over a wide range of temperatures, pressure and composition is essential. The present work focuses on the determination of VLE data for (AEP + H2O) system at 40 °C for various composition range.Keywords: absorption, aminoethyl piperazine, carbondioxide, vapour liquid equilibrium
Procedia PDF Downloads 267935 Soybean Lecithin Based Reverse Micellar Extraction of Pectinase from Synthetic Solution
Authors: Sivananth Murugesan, I. Regupathi, B. Vishwas Prabhu, Ankit Devatwal, Vishnu Sivan Pillai
Abstract:
Pectinase is an important enzyme which has a wide range of applications including textile processing and bioscouring of cotton fibers, coffee and tea fermentation, purification of plant viruses, oil extraction etc. Selective separation and purification of pectinase from fermentation broth and recover the enzyme form process stream for reuse are cost consuming process in most of the enzyme based industries. It is difficult to identify a suitable medium to enhance enzyme activity and retain its enzyme characteristics during such processes. The cost effective, selective separation of enzymes through the modified Liquid-liquid extraction is of current research interest worldwide. Reverse micellar extraction, globally acclaimed Liquid-liquid extraction technique is well known for its separation and purification of solutes from the feed which offers higher solute specificity and partitioning, ease of operation and recycling of extractants used. Surfactant concentrations above critical micelle concentration to an apolar solvent form micelles and addition of micellar phase to water in turn forms reverse micelles or water-in-oil emulsions. Since, electrostatic interaction plays a major role in the separation/purification of solutes using reverse micelles. These interaction parameters can be altered with the change in pH, addition of cosolvent, surfactant and electrolyte and non-electrolyte. Even though many chemical based commercial surfactant had been utilized for this purpose, the biosurfactants are more suitable for the purification of enzymes which are used in food application. The present work focused on the partitioning of pectinase from the synthetic aqueous solution within the reverse micelle phase formed by a biosurfactant, Soybean Lecithin dissolved in chloroform. The critical micelle concentration of soybean lecithin/chloroform solution was identified through refractive index and density measurements. Effect of surfactant concentrations above and below the critical micelle concentration was considered to study its effect on enzyme activity, enzyme partitioning within the reverse micelle phase. The effect of pH and electrolyte salts on the partitioning behavior was studied by varying the system pH and concentration of different salts during forward and back extraction steps. It was observed that lower concentrations of soybean lecithin enhanced the enzyme activity within the water core of the reverse micelle with maximizing extraction efficiency. The maximum yield of pectinase of 85% with a partitioning coefficient of 5.7 was achieved at 4.8 pH during forward extraction and 88% yield with a partitioning coefficient of 7.1 was observed during backward extraction at a pH value of 5.0. However, addition of salt decreased the enzyme activity and especially at higher salt concentrations enzyme activity declined drastically during both forward and back extraction steps. The results proved that reverse micelles formed by Soybean Lecithin and chloroform may be used for the extraction of pectinase from aqueous solution. Further, the reverse micelles can be considered as nanoreactors to enhance enzyme activity and maximum utilization of substrate at optimized conditions, which are paving a way to process intensification and scale-down.Keywords: pectinase, reverse micelles, soybean lecithin, selective partitioning
Procedia PDF Downloads 372934 Distributed Generation Connection to the Network: Obtaining Stability Using Transient Behavior
Authors: A. Hadadi, M. Abdollahi, A. Dustmohammadi
Abstract:
The growing use of DGs in distribution networks provide many advantages and also cause new problems which should be anticipated and be solved with appropriate solutions. One of the problems is transient voltage drop and short circuit in the electrical network, in the presence of distributed generation - which can lead to instability. The appearance of the short circuit will cause loss of generator synchronism, even though if it would be able to recover synchronizing mode after removing faulty generator, it will be stable. In order to increase system reliability and generator lifetime, some strategies should be planned to apply even in some situations which a fault prevent generators from separation. In this paper, one fault current limiter is installed due to prevent DGs separation from the grid when fault occurs. Furthermore, an innovative objective function is applied to determine the impedance optimal amount of fault current limiter in order to improve transient stability of distributed generation. Fault current limiter can prevent generator rotor's sudden acceleration after fault occurrence and thereby improve the network transient stability by reducing the current flow in a fast and effective manner. In fact, by applying created impedance by fault current limiter when a short circuit happens on the path of current injection DG to the fault location, the critical fault clearing time improve remarkably. Therefore, protective relay has more time to clear fault and isolate the fault zone without any instability. Finally, different transient scenarios of connection plan sustainability of small scale synchronous generators to the distribution network are presented.Keywords: critical clearing time, fault current limiter, synchronous generator, transient stability, transient states
Procedia PDF Downloads 196933 Comprehensive Validation of High-Performance Liquid Chromatography-Diode Array Detection (HPLC-DAD) for Quantitative Assessment of Caffeic Acid in Phenolic Extracts from Olive Mill Wastewater
Authors: Layla El Gaini, Majdouline Belaqziz, Meriem Outaki, Mariam Minhaj
Abstract:
In this study, it introduce and validate a high-performance liquid chromatography method with diode-array detection (HPLC-DAD) specifically designed for the accurate quantification of caffeic acid in phenolic extracts obtained from olive mill wastewater. The separation process of caffeic acid was effectively achieved through the use of an Acclaim Polar Advantage column (5µm, 250x4.6mm). A meticulous multi-step gradient mobile phase was employed, comprising water acidified with phosphoric acid (pH 2.3) and acetonitrile, to ensure optimal separation. The diode-array detection was adeptly conducted within the UV–VIS spectrum, spanning a range of 200–800 nm, which facilitated precise analytical results. The method underwent comprehensive validation, addressing several essential analytical parameters, including specificity, repeatability, linearity, as well as the limits of detection and quantification, alongside measurement uncertainty. The generated linear standard curves displayed high correlation coefficients, underscoring the method's efficacy and consistency. This validated approach is not only robust but also demonstrates exceptional reliability for the focused analysis of caffeic acid within the intricate matrices of wastewater, thus offering significant potential for applications in environmental and analytical chemistry.Keywords: high-performance liquid chromatography (HPLC-DAD), caffeic acid analysis, olive mill wastewater phenolics, analytical method validation
Procedia PDF Downloads 70932 Nanocomposites Based Micro/Nano Electro-Mechanical Systems for Energy Harvesters and Photodetectors
Authors: Radhamanohar Aepuru, R. V. Mangalaraja
Abstract:
Flexible electronic devices have drawn potential interest and provide significant new insights to develop energy conversion and storage devices such as photodetectors and nanogenerators. Recently, self-powered electronic systems have captivated huge attention for next generation MEMS/NEMS devices that can operate independently by generating built-in field without any need of external bias voltage and have wide variety of applications in telecommunication, imaging, environmental and defence sectors. The basic physical process involved in these devices are charge generation, separation, and charge flow across the electrodes. Many inorganic nanostructures have been exploring to fabricate various optoelectronic and electromechanical devices. However, the interaction of nanostructures and their excited charge carrier dynamics, photoinduced charge separation, and fast carrier mobility are yet to be studied. The proposed research is to address one such area and to realize the self-powered electronic devices. In the present work, nanocomposites of inorganic nanostructures based on ZnO, metal halide perovskites; and polyvinylidene fluoride (PVDF) based nanocomposites are realized for photodetectors and nanogenerators. The characterization of the inorganic nanostructures is carried out through steady state optical absorption and luminescence spectroscopies as well as X-ray diffraction and high-resolution transmission electron microscopy (TEM) studies. The detailed carrier dynamics is investigated using various spectroscopic techniques. The developed composite nanostructures exhibit significant optical and electrical properties, which have wide potential applications in various MEMS/NEMS devices such as photodetectors and nanogenerators.Keywords: dielectrics, nanocomposites, nanogenerators, photodetectors
Procedia PDF Downloads 129931 Development and Validation of Selective Methods for Estimation of Valaciclovir in Pharmaceutical Dosage Form
Authors: Eman M. Morgan, Hayam M. Lotfy, Yasmin M. Fayez, Mohamed Abdelkawy, Engy Shokry
Abstract:
Two simple, selective, economic, safe, accurate, precise and environmentally friendly methods were developed and validated for the quantitative determination of valaciclovir (VAL) in the presence of its related substances R1 (acyclovir), R2 (guanine) in bulk powder and in the commercial pharmaceutical product containing the drug. Method A is a colorimetric method where VAL selectively reacts with ferric hydroxamate and the developed color was measured at 490 nm over a concentration range of 0.4-2 mg/mL with percentage recovery 100.05 ± 0.58 and correlation coefficient 0.9999. Method B is a reversed phase ultra performance liquid chromatographic technique (UPLC) which is considered superior in technology to the high-performance liquid chromatography with respect to speed, resolution, solvent consumption, time, and cost of analysis. Efficient separation was achieved on Agilent Zorbax CN column using ammonium acetate (0.1%) and acetonitrile as a mobile phase in a linear gradient program. Elution time for the separation was less than 5 min and ultraviolet detection was carried out at 256 nm over a concentration range of 2-50 μg/mL with mean percentage recovery 100.11±0.55 and correlation coefficient 0.9999. The proposed methods were fully validated as per International Conference on Harmonization specifications and effectively applied for the analysis of valaciclovir in pure form and tablets dosage form. Statistical comparison of the results obtained by the proposed and official or reported methods revealed no significant difference in the performance of these methods regarding the accuracy and precision respectively.Keywords: hydroxamic acid, related substances, UPLC, valaciclovir
Procedia PDF Downloads 246930 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration
Authors: Dina Magdy Abdo, Ayat N. El-Shazly, E. A. Abdel-Aal
Abstract:
Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, the traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.Keywords: forward osmosis, membrane, solar, water treatement
Procedia PDF Downloads 91929 Composite 'C' Springs for Anti-Seismic Building Suspension: Positioning 'Virtual Center of Pendulation above Gravity Center'
Authors: Max Sardou, Patricia Sardou
Abstract:
Now that weight saving is mandatory, to author best knowledge composite springs, that we have invented, are best choice for automotive suspensions, against steel. So, we have created a Joint Ventures called S.ARA, in order to mass produce composite coils springs. Start of Production of composite coils springs was in 2014 for AUDI. As we have demonstrated, on the road, that composite springs are not a sweet dream. The present paper describes all the benefits of ‘C’ springs and ‘S’ springs for high performance vehicles suspension, for rocket stage separation, and for satellite injection into orbit. Developing rocket stage separation, we have developed for CNES (Centre National d’Etudes Spatiales) the following concept. If we call ‘line of action’ a line going from one end of a spring to the other. Our concept is to use for instance two springs inclined. In such a way that their line of action cross together and create at this crossing point a virtual center well above the springs. This virtual center, is pulling from above the top stage and is offering a guidance, perfectly stable and straight. About buildings, our solution is to transfer this rocket technology, creating a ‘virtual center’ of pendulation positioned above the building center of gravity. This is achieved by using tilted composite springs benches oriented in such a way that their line of action converges creating the ‘virtual center’. Thanks to the ‘virtual center’ position, the building behaves as a pendulum, hanged from above. When earthquake happen then the building will oscillate around its ‘virtual center’ and will go back safely to equilibrium after the tremor. ‘C’ springs, offering anti-rust, anti-settlement, fail-safe suspension, plus virtual center solution is the must for long-lasting, perfect protection of buildings against earthquakes.Keywords: virtual center of tilt, composite springs, fail safe springs, antiseismic suspention
Procedia PDF Downloads 244928 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration
Authors: Dina Magdy Abdo, Ayat N. El-Shazly, Hamdy Maamoun Abdel-Ghafar, E. A. Abdel-Aal
Abstract:
Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of the doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.Keywords: forword, membrane, solar, water treatment
Procedia PDF Downloads 81927 Investigation of Mass Transfer for RPB Distillation at High Pressure
Authors: Amiza Surmi, Azmi Shariff, Sow Mun Serene Lock
Abstract:
In recent decades, there has been a significant emphasis on the pivotal role of Rotating Packed Beds (RPBs) in absorption processes, encompassing the removal of Volatile Organic Compounds (VOCs) from groundwater, deaeration, CO2 absorption, desulfurization, and similar critical applications. The primary focus is elevating mass transfer rates, enhancing separation efficiency, curbing power consumption, and mitigating pressure drops. Additionally, substantial efforts have been invested in exploring the adaptation of RPB technology for offshore deployment. This comprehensive study delves into the intricacies of nitrogen removal under low temperature and high-pressure conditions, employing the high gravity principle via innovative RPB distillation concept with a specific emphasis on optimizing mass transfer. Based on the author's knowledge and comprehensive research, no cryogenic experimental testing was conducted to remove nitrogen via RPB. The research identifies pivotal process control factors through meticulous experimental testing, with pressure, reflux ratio, and reboil ratio emerging as critical determinants in achieving the desired separation performance. The results are remarkable, with nitrogen removal reaching less than one mole% in the Liquefied Natural Gas (LNG) product and less than three moles% methane in the nitrogen-rich gas stream. The study further unveils the mass transfer coefficient, revealing a noteworthy trend of decreasing Number of Transfer Units (NTU) and Area of Transfer Units (ATU) as the rotational speed escalates. Notably, the condenser and reboiler impose varying demands based on the operating pressure, with lower pressures at 12 bar requiring a more substantial duty than the 15-bar operation of the RPB. In pursuit of optimal energy efficiency, a meticulous sensitivity analysis is conducted, pinpointing the ideal combination of pressure and rotating speed that minimizes overall energy consumption. These findings underscore the efficiency of the RPB distillation approach in effecting efficient separation, even when operating under the challenging conditions of low temperature and high pressure. This achievement is attributed to a rigorous process control framework that diligently manages the operational pressure and temperature profile of the RPB. Nonetheless, the study's conclusions point towards the need for further research to address potential scaling challenges and associated risks, paving the way for the industrial implementation of this transformative technology.Keywords: mass transfer coefficient, nitrogen removal, liquefaction, rotating packed bed
Procedia PDF Downloads 54926 Changes in the Median Sacral Crest Associated with Sacrocaudal Fusion in the Greyhound
Authors: S. M. Ismail, H-H Yen, C. M. Murray, H. M. S. Davies
Abstract:
A recent study reported a 33% incidence of complete sacrocaudal fusion in greyhounds compared to a 3% incidence in other dogs. In the dog, the median sacral crest is formed by the fusion of sacral spinous processes. Separation of the 1st spinous process from the median crest of the sacrum in the dog has been reported as a diagnostic tool of type one lumbosacral transitional vertebra (LTV). LTV is a congenital spinal anomaly, which includes either sacralization of the caudal lumbar part or lumbarization of the most cranial sacral segment of the spine. In this study, the absence or reduction of fusion (presence of separation) between the 1st and 2ndspinous processes of the median sacral crest has been identified in association with sacrocaudal fusion in the greyhound, without any feature of LTV. In order to provide quantitative data on the absence or reduction of fusion in the median sacral crest between the 1st and 2nd sacral spinous processes, in association with sacrocaudal fusion. 204 dog sacrums free of any pathological changes (192 greyhound, 9 beagles and 3 labradors) were grouped based on the occurrence and types of fusion and the presence, absence, or reduction in the median sacral crest between the 1st and 2nd sacral spinous processes., Sacrums were described and classified as follows: F: Complete fusion (crest is present), N: Absence (fusion is absent), and R: Short crest (fusion reduced but not absent (reduction). The incidence of sacrocaudal fusion in the 204 sacrums: 57% of the sacrums were standard (3 vertebrae) and 43% were fused (4 vertebrae). Type of sacrum had a significant (p < .05) association with the absence and reduction of fusion between the 1st and 2nd sacral spinous processes of the median sacral crest. In the 108 greyhounds with standard sacrums (3 vertebrae) the percentages of F, N and R were 45% 23% and 23% respectively, while in the 84 fused (4 vertebrae) sacrums, the percentages of F, N and R were 3%, 87% and 10% respectively and these percentages were significantly different between standard (3 vertebrae) and fused (4 vertebrae) sacrums (p < .05). This indicates that absence of spinous process fusion in the median sacral crest was found in a large percentage of the greyhounds in this study and was found to be particularly prevalent in those with sacrocaudal fusion – therefore in this breed, at least, absence of sacral spinous process fusion may be unlikely to be associated with LTV.Keywords: greyhound, median sacral crest, sacrocaudal fusion, sacral spinous process
Procedia PDF Downloads 446