Search results for: time workflow network
18410 Structure Clustering for Milestoning Applications of Complex Conformational Transitions
Authors: Amani Tahat, Serdal Kirmizialtin
Abstract:
Trajectory fragment methods such as Markov State Models (MSM), Milestoning (MS) and Transition Path sampling are the prime choice of extending the timescale of all atom Molecular Dynamics simulations. In these approaches, a set of structures that covers the accessible phase space has to be chosen a priori using cluster analysis. Structural clustering serves to partition the conformational state into natural subgroups based on their similarity, an essential statistical methodology that is used for analyzing numerous sets of empirical data produced by Molecular Dynamics (MD) simulations. Local transition kernel among these clusters later used to connect the metastable states using a Markovian kinetic model in MSM and a non-Markovian model in MS. The choice of clustering approach in constructing such kernel is crucial since the high dimensionality of the biomolecular structures might easily confuse the identification of clusters when using the traditional hierarchical clustering methodology. Of particular interest, in the case of MS where the milestones are very close to each other, accurate determination of the milestone identity of the trajectory becomes a challenging issue. Throughout this work we present two cluster analysis methods applied to the cis–trans isomerism of dinucleotide AA. The choice of nucleic acids to commonly used proteins to study the cluster analysis is two fold: i) the energy landscape is rugged; hence transitions are more complex, enabling a more realistic model to study conformational transitions, ii) Nucleic acids conformational space is high dimensional. A diverse set of internal coordinates is necessary to describe the metastable states in nucleic acids, posing a challenge in studying the conformational transitions. Herein, we need improved clustering methods that accurately identify the AA structure in its metastable states in a robust way for a wide range of confused data conditions. The single linkage approach of the hierarchical clustering available in GROMACS MD-package is the first clustering methodology applied to our data. Self Organizing Map (SOM) neural network, that also known as a Kohonen network, is the second data clustering methodology. The performance comparison of the neural network as well as hierarchical clustering method is studied by means of computing the mean first passage times for the cis-trans conformational rates. Our hope is that this study provides insight into the complexities and need in determining the appropriate clustering algorithm for kinetic analysis. Our results can improve the effectiveness of decisions based on clustering confused empirical data in studying conformational transitions in biomolecules.Keywords: milestoning, self organizing map, single linkage, structure clustering
Procedia PDF Downloads 22418409 Artificial Intelligence Based Predictive Models for Short Term Global Horizontal Irradiation Prediction
Authors: Kudzanayi Chiteka, Wellington Makondo
Abstract:
The whole world is on the drive to go green owing to the negative effects of burning fossil fuels. Therefore, there is immediate need to identify and utilise alternative renewable energy sources. Among these energy sources solar energy is one of the most dominant in Zimbabwe. Solar power plants used to generate electricity are entirely dependent on solar radiation. For planning purposes, solar radiation values should be known in advance to make necessary arrangements to minimise the negative effects of the absence of solar radiation due to cloud cover and other naturally occurring phenomena. This research focused on the prediction of Global Horizontal Irradiation values for the sixth day given values for the past five days. Artificial intelligence techniques were used in this research. Three models were developed based on Support Vector Machines, Radial Basis Function, and Feed Forward Back-Propagation Artificial neural network. Results revealed that Support Vector Machines gives the best results compared to the other two with a mean absolute percentage error (MAPE) of 2%, Mean Absolute Error (MAE) of 0.05kWh/m²/day root mean square (RMS) error of 0.15kWh/m²/day and a coefficient of determination of 0.990. The other predictive models had prediction accuracies of MAPEs of 4.5% and 6% respectively for Radial Basis Function and Feed Forward Back-propagation Artificial neural network. These two models also had coefficients of determination of 0.975 and 0.970 respectively. It was found that prediction of GHI values for the future days is possible using artificial intelligence-based predictive models.Keywords: solar energy, global horizontal irradiation, artificial intelligence, predictive models
Procedia PDF Downloads 27418408 A Real Time Ultra-Wideband Location System for Smart Healthcare
Authors: Mingyang Sun, Guozheng Yan, Dasheng Liu, Lei Yang
Abstract:
Driven by the demand of intelligent monitoring in rehabilitation centers or hospitals, a high accuracy real-time location system based on UWB (ultra-wideband) technology was proposed. The system measures precise location of a specific person, traces his movement and visualizes his trajectory on the screen for doctors or administrators. Therefore, doctors could view the position of the patient at any time and find them immediately and exactly when something emergent happens. In our design process, different algorithms were discussed, and their errors were analyzed. In addition, we discussed about a , simple but effective way of correcting the antenna delay error, which turned out to be effective. By choosing the best algorithm and correcting errors with corresponding methods, the system attained a good accuracy. Experiments indicated that the ranging error of the system is lower than 7 cm, the locating error is lower than 20 cm, and the refresh rate exceeds 5 times per second. In future works, by embedding the system in wearable IoT (Internet of Things) devices, it could provide not only physical parameters, but also the activity status of the patient, which would help doctors a lot in performing healthcare.Keywords: intelligent monitoring, ultra-wideband technology, real-time location, IoT devices, smart healthcare
Procedia PDF Downloads 14018407 Efficient Frequent Itemset Mining Methods over Real-Time Spatial Big Data
Authors: Hamdi Sana, Emna Bouazizi, Sami Faiz
Abstract:
In recent years, there is a huge increase in the use of spatio-temporal applications where data and queries are continuously moving. As a result, the need to process real-time spatio-temporal data seems clear and real-time stream data management becomes a hot topic. Sliding window model and frequent itemset mining over dynamic data are the most important problems in the context of data mining. Thus, sliding window model for frequent itemset mining is a widely used model for data stream mining due to its emphasis on recent data and its bounded memory requirement. These methods use the traditional transaction-based sliding window model where the window size is based on a fixed number of transactions. Actually, this model supposes that all transactions have a constant rate which is not suited for real-time applications. And the use of this model in such applications endangers their performance. Based on these observations, this paper relaxes the notion of window size and proposes the use of a timestamp-based sliding window model. In our proposed frequent itemset mining algorithm, support conditions are used to differentiate frequents and infrequent patterns. Thereafter, a tree is developed to incrementally maintain the essential information. We evaluate our contribution. The preliminary results are quite promising.Keywords: real-time spatial big data, frequent itemset, transaction-based sliding window model, timestamp-based sliding window model, weighted frequent patterns, tree, stream query
Procedia PDF Downloads 16218406 Effect of Quenching Medium on the Hardness of Dual Phase Steel Heat Treated at a High Temperature
Authors: Tebogo Mabotsa, Tamba Jamiru, David Ibrahim
Abstract:
Dual phase(DP) steel consists essentially of fine grained equiaxial ferrite and a dispersion of martensite. Martensite is the primary precipitate in DP steels, it is the main resistance to dislocation motion within the material. The objective of this paper is to present a relation between the intercritical annealing holding time and the hardness of a dual phase steel. The initial heat treatment involved heating the specimens to 1000oC and holding the sample at that temperature for 30 minutes. After the initial heat treatment, the samples were heated to 770oC and held for a varying amount of time at constant temperature. The samples were held at 30, 60, and 90 minutes respectively. After heating and holding the samples at the austenite-ferrite phase field, the samples were quenched in water, brine, and oil for each holding time. The experimental results proved that an equation for predicting the hardness of a dual phase steel as a function of the intercritical holding time is possible. The relation between intercritical annealing holding time and hardness of a dual phase steel heat treated at high temperatures is parabolic in nature. Theoretically, the model isdependent on the cooling rate because the model differs for each quenching medium; therefore, a universal hardness equation can be derived where the cooling rate is a variable factor.Keywords: quenching medium, annealing temperature, dual phase steel, martensite
Procedia PDF Downloads 8218405 Computational Fluid Dynamics Simulation of Reservoir for Dwell Time Prediction
Authors: Nitin Dewangan, Nitin Kattula, Megha Anawat
Abstract:
Hydraulic reservoir is the key component in the mobile construction vehicles; most of the off-road earth moving construction machinery requires bigger side hydraulic reservoirs. Their reservoir construction is very much non-uniform and designers used such design to utilize the space available under the vehicle. There is no way to find out the space utilization of the reservoir by oil and validity of design except virtual simulation. Computational fluid dynamics (CFD) helps to predict the reservoir space utilization by vortex mapping, path line plots and dwell time prediction to make sure the design is valid and efficient for the vehicle. The dwell time acceptance criteria for effective reservoir design is 15 seconds. The paper will describe the hydraulic reservoir simulation which is carried out using CFD tool acuSolve using automated mesh strategy. The free surface flow and moving reference mesh is used to define the oil flow level inside the reservoir. The first baseline design is not able to meet the acceptance criteria, i.e., dwell time below 15 seconds because the oil entry and exit ports were very close. CFD is used to redefine the port locations for the reservoir so that oil dwell time increases in the reservoir. CFD also proposed baffle design the effective space utilization. The final design proposed through CFD analysis is used for physical validation on the machine.Keywords: reservoir, turbulence model, transient model, level set, free-surface flow, moving frame of reference
Procedia PDF Downloads 15218404 Rapid Soil Classification Using Computer Vision, Electrical Resistivity and Soil Strength
Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, Lionel L. J. Ang, Algernon C. S. Hong, Danette S. E. Tan, Grace H. B. Foo, K. Q. Hong, L. M. Cheng, M. L. Leong
Abstract:
This paper presents a novel rapid soil classification technique that combines computer vision with four-probe soil electrical resistivity method and cone penetration test (CPT), to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from local construction projects are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labour-intensive. Thus, a rapid classification method is needed at the SGs. Computer vision, four-probe soil electrical resistivity and CPT were combined into an innovative non-destructive and instantaneous classification method for this purpose. The computer vision technique comprises soil image acquisition using industrial grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). Complementing the computer vision technique, the apparent electrical resistivity of soil (ρ) is measured using a set of four probes arranged in Wenner’s array. It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the soil strength is measured using a modified mini cone penetrometer, and w is measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay” and an even mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay”. It is also found that these parameters can be integrated with the computer vision technique on-site to complete the rapid soil classification in less than three minutes.Keywords: Computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification
Procedia PDF Downloads 21918403 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition
Authors: A. Shoiynbek, K. Kozhakhmet, P. Menezes, D. Kuanyshbay, D. Bayazitov
Abstract:
Speech emotion recognition has received increasing research interest all through current years. There was used emotional speech that was collected under controlled conditions in most research work. Actors imitating and artificially producing emotions in front of a microphone noted those records. There are four issues related to that approach, namely, (1) emotions are not natural, and it means that machines are learning to recognize fake emotions. (2) Emotions are very limited by quantity and poor in their variety of speaking. (3) There is language dependency on SER. (4) Consequently, each time when researchers want to start work with SER, they need to find a good emotional database on their language. In this paper, we propose the approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describe the sequence of actions of the proposed approach. One of the first objectives of the sequence of actions is a speech detection issue. The paper gives a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian languages. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To illustrate the working capacity of the developed model, we have performed an analysis of speech detection and extraction from real tasks.Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset
Procedia PDF Downloads 10118402 Accessibility Assessment of School Facilities Using Geospatial Technologies: A Case Study of District Sheikhupura
Authors: Hira Jabbar
Abstract:
Education is vital for inclusive growth of an economy and a critical contributor for investment in human capital. Like other developing countries, Pakistan is facing enormous challenges regarding the provision of public facilities, improper infrastructure planning, accelerating rate of population and poor accessibility. The influence of the rapid advancement and innovations in GIS and RS techniques have proved to be a useful tool for better planning and decision making to encounter these challenges. Therefore present study incorporates GIS and RS techniques to investigate the spatial distribution of school facilities, identifies settlements with served and unserved population, finds potential areas for new schools based on population and develops an accessibility index to evaluate the higher accessibility for schools. For this purpose high-resolution worldview imagery was used to develop road network, settlements and school facilities and to generate school accessibility for each level. Landsat 8 imagery was utilized to extract built-up area by applying pre and post-processing models and Landscan 2015 was used to analyze population statistics. Service area analysis was performed using network analyst extension in ArcGIS 10.3v and results were evaluated for served and underserved areas and population. An accessibility tool was used to evaluate a set of potential destinations to determine which is the most accessible with the given population distribution. Findings of the study may contribute to facilitating the town planners and education authorities for understanding the existing patterns of school facilities. It is concluded that GIS and remote sensing can be effectively used in urban transport and facility planning.Keywords: accessibility, geographic information system, landscan, worldview
Procedia PDF Downloads 32518401 Web and Android-Based Applications as a Breakthrough in Preventing Non-System Fault Disturbances Due to Work Errors in the Transmission Unit
Authors: Dhany Irvandy, Ary Gemayel, Mohammad Azhar, Leidenti Dwijayanti, Iif Hafifah
Abstract:
Work safety is among the most important things in work execution. Unsafe conditions and actions are priorities in accident prevention in the world of work, especially in the operation and maintenance of electric power transmission. Considering the scope of work, operational work in the transmission has a very high safety risk. Various efforts have been made to avoid work accidents. However, accidents or disturbances caused by non-conformities in work implementation still often occur. Unsafe conditions or actions can cause these. Along with the development of technology, website-based applications and mobile applications have been widely used as a medium to monitor work in real-time and by more people. This paper explains the use of web and android-based applications to monitor work and work processes in the field to prevent work accidents or non-system fault disturbances caused by non-conformity of work implementation with predetermined work instructions. Because every job is monitored in real-time, recorded in time and documented systemically, this application can reduce the occurrence of possible unsafe actions carried out by job executors that can cause disruption or work accidents.Keywords: work safety, unsafe action, application, non-system fault, real-time.
Procedia PDF Downloads 4418400 Deep Graph Embeddings for the Analysis of Short Heartbeat Interval Time Series
Authors: Tamas Madl
Abstract:
Sudden cardiac death (SCD) constitutes a large proportion of cardiovascular mortalities, provides little advance warning, and the risk is difficult to recognize based on ubiquitous, low cost medical equipment such as the standard, 12-lead, ten second ECG. Autonomic abnormalities have been shown to be strongly predictive of SCD risk; yet current methods are not trivially applicable to the brevity and low temporal and electrical resolution of standard ECGs. Here, we build horizontal visibility graph representations of very short inter-beat interval time series, and perform unsuper- vised representation learning in order to convert these variable size objects into fixed-length vectors preserving similarity rela- tions. We show that such representations facilitate classification into healthy vs. at-risk patients on two different datasets, the Mul- tiparameter Intelligent Monitoring in Intensive Care II and the PhysioNet Sudden Cardiac Death Holter Database. Our results suggest that graph representation learning of heartbeat interval time series facilitates robust classification even in sequences as short as ten seconds.Keywords: sudden cardiac death, heart rate variability, ECG analysis, time series classification
Procedia PDF Downloads 23418399 A Study on an Evacuation Test to Measure Delay Time in Using an Evacuation Elevator
Authors: Kyungsuk Cho, Seungun Chae, Jihun Choi
Abstract:
Elevators are examined as one of evacuation methods in super-tall buildings. However, data on the use of elevators for evacuation at a fire are extremely scarce. Therefore, a test to measure delay time in using an evacuation elevator was conducted. In the test, time taken to get on and get off an elevator was measured and the case in which people gave up boarding when the capacity of the elevator was exceeded was also taken into consideration. 170 men and women participated in the test, 130 of whom were young people (20 ~ 50 years old) and 40 were senior citizens (over 60 years old). The capacity of the elevator was 25 people and it travelled between the 2nd and 4th floors. A video recording device was used to analyze the test. An elevator at an ordinary building, not a super-tall building, was used in the test to measure delay time in getting on and getting off an elevator. In order to minimize interference from other elements, elevator platforms on the 2nd and 4th floors were partitioned off. The elevator travelled between the 2nd and 4th floors where people got on and off. If less than 20 people got on the elevator which was empty, the data were excluded. If the elevator carrying 10 passengers stopped and less than 10 new passengers got on the elevator, the data were excluded. Getting-on an empty elevator was observed 49 times. The average number of passengers was 23.7, it took 14.98 seconds for the passengers to get on the empty elevator and the load factor was 1.67 N/s. It took the passengers, whose average number was 23.7, 10.84 seconds to get off the elevator and the unload factor was 2.33 N/s. When an elevator’s capacity is exceeded, the excessive number of people should get off. Time taken for it and the probability of the case were measure in the test. 37% of the times of boarding experienced excessive number of people. As the number of people who gave up boarding increased, the load factor of the ride decreased. When 1 person gave up boarding, the load factor was 1.55 N/s. The case was observed 10 times, which was 12.7% of the total. When 2 people gave up boarding, the load factor was 1.15 N/s. The case was observed 7 times, which was 8.9% of the total. When 3 people gave up boarding, the load factor was 1.26 N/s. The case was observed 4 times, which was 5.1% of the total. When 4 people gave up boarding, the load factor was 1.03 N/s. The case was observed 5 times, which was 6.3% of the total. Getting-on and getting-off time data for people who can walk freely were obtained from the test. In addition, quantitative results were obtained from the relation between the number of people giving up boarding and time taken for getting on. This work was supported by the National Research Council of Science & Technology (NST) grant by the Korea government (MSIP) (No. CRC-16-02-KICT).Keywords: evacuation elevator, super tall buildings, evacuees, delay time
Procedia PDF Downloads 17718398 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing
Authors: Tolulope Aremu
Abstract:
This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving
Procedia PDF Downloads 3218397 Documentary Project as an Active Learning Strategy in a Developmental Psychology Course
Authors: Ozge Gurcanli
Abstract:
Recent studies in active-learning focus on how student experience varies based on the content (e.g. STEM versus Humanities) and the medium (e.g. in-class exercises versus off-campus activities) of experiential learning. However, little is known whether the variation in classroom time and space within the same active learning context affects student experience. This study manipulated the use of classroom time for the active learning component of a developmental psychology course that is offered at a four-year university in the South-West Region of United States. The course uses a blended model: traditional and active learning. In the traditional learning component of the course, students do weekly readings, listen to lectures, and take midterms. In the active learning component, students make a documentary on a developmental topic as a final project. Students used the classroom time and space for the documentary in two ways: regular classroom time slots that were dedicated to the making of the documentary outside without the supervision of the professor (Classroom-time Outside) and lectures that offered basic instructions about how to make a documentary (Documentary Lectures). The study used the public teaching evaluations that are administered by the Office of Registrar’s. A total of two hundred and seven student evaluations were available across six semesters. Because the Office of Registrar’s presented the data separately without personal identifiers, One-Way ANOVA with four groups (Traditional, Experiential-Heavy: 19% Classroom-time Outside, 12% for Documentary Lectures, Experiential-Moderate: 5-7% for Classroom-time Outside, 16-19% for Documentary Lectures, Experiential Light: 4-7% for Classroom-time Outside, 7% for Documentary Lectures) was conducted on five key features (Organization, Quality, Assignments Contribution, Intellectual Curiosity, Teaching Effectiveness). Each measure used a five-point reverse-coded scale (1-Outstanding, 5-Poor). For all experiential conditions, the documentary counted towards 30% of the final grade. Organization (‘The instructors preparation for class was’), Quality (’Overall, I would rate the quality of this course as’) and Assignment Contribution (’The contribution of the graded work that made to the learning experience was’) did not yield any significant differences across four course types (F (3, 202)=1.72, p > .05, F(3, 200)=.32, p > .05, F(3, 203)=.43, p > .05, respectively). Intellectual Curiosity (’The instructor’s ability to stimulate intellectual curiosity was’) yielded a marginal effect (F (3, 201)=2.61, p = .053). Tukey’s HSD (p < .05) indicated that the Experiential-Heavy (M = 1.94, SD = .82) condition was significantly different than all other three conditions (M =1.57, 1.51, 1.58; SD = .68, .66, .77, respectively) showing that heavily active class-time did not elicit intellectual curiosity as much as others. Finally, Teaching Effectiveness (’Overall, I feel that the instructor’s effectiveness as a teacher was’) was significant (F (3, 198)=3.32, p <.05). Tukey’s HSD (p <.05) showed that students found the courses with moderate (M=1.49, SD=.62) to light (M=1.52, SD=.70) active class-time more effective than heavily active class-time (M=1.93, SD=.69). Overall, the findings of this study suggest that within the same active learning context, the time and the space dedicated to active learning results in different outcomes in intellectual curiosity and teaching effectiveness.Keywords: active learning, learning outcomes, student experience, learning context
Procedia PDF Downloads 19018396 The Eloquent Importance of Knowing Fyodor Dostoevsky: An Understanding of The Dilettante
Authors: Ravi Teja Mandapaka
Abstract:
Literary assonance and lexical consonance have always put the readers pondering, shirking away, at times too, and beefing on the baffling question that hardly invited any answer. ‘Why should we read Fyodor Mikhailovich Dostoevsky today?’ Does he, during a surreal life beneath his bruised and broken soul, writhing in pain, toying with the affirmatives of pleasure in an innate way, draw the readers any sheath of support? Alexithymia has ruled the time and space for a quite a long time as many a reader spent more time than required on reading his works of art in literature. Do his swirling theories of deism and laconic gushiness when put in black and white push us towards reading the lost pieces of exuberant dilettantism? With a view of that, and a hallucinated panorama of another, its best to say, thoughts and droughts’ glorious uncertainties in literature have come forward towards putting the pen on the eloquent importance of knowing Fyodor Dostoevsky, the Socrates of Literature.Keywords: Dostoyevsky, dilettantism, gushiness, hallucinations, puissance
Procedia PDF Downloads 31818395 Pseudo Modal Operating Deflection Shape Based Estimation Technique of Mode Shape Using Time History Modal Assurance Criterion
Authors: Doyoung Kim, Hyo Seon Park
Abstract:
Studies of System Identification(SI) based on Structural Health Monitoring(SHM) have actively conducted for structural safety. Recently SI techniques have been rapidly developed with output-only SI paradigm for estimating modal parameters. The features of these output-only SI methods consist of Frequency Domain Decomposition(FDD) and Stochastic Subspace Identification(SSI) are using the algorithms based on orthogonal decomposition such as singular value decomposition(SVD). But the SVD leads to high level of computational complexity to estimate modal parameters. This paper proposes the technique to estimate mode shape with lower computational cost. This technique shows pseudo modal Operating Deflections Shape(ODS) through bandpass filter and suggests time history Modal Assurance Criterion(MAC). Finally, mode shape could be estimated from pseudo modal ODS and time history MAC. Analytical simulations of vibration measurement were performed and the results with mode shape and computation time between representative SI method and proposed method were compared.Keywords: modal assurance criterion, mode shape, operating deflection shape, system identification
Procedia PDF Downloads 41018394 Power Series Solution to Sliding Velocity in Three-Dimensional Multibody Systems with Impact and Friction
Authors: Hesham A. Elkaranshawy, Amr M. Abdelrazek, Hosam M. Ezzat
Abstract:
The system of ordinary nonlinear differential equations describing sliding velocity during impact with friction for a three-dimensional rigid-multibody system is developed. No analytical solutions have been obtained before for this highly nonlinear system. Hence, a power series solution is proposed. Since the validity of this solution is limited to its convergence zone, a suitable time step is chosen and at the end of it a new series solution is constructed. For a case study, the trajectory of the sliding velocity using the proposed method is built using 6 time steps, which coincides with a Runge-Kutta solution using 38 time steps.Keywords: impact with friction, nonlinear ordinary differential equations, power series solutions, rough collision
Procedia PDF Downloads 48818393 Maximum Induced Subgraph of an Augmented Cube
Authors: Meng-Jou Chien, Jheng-Cheng Chen, Chang-Hsiung Tsai
Abstract:
Let maxζG(m) denote the maximum number of edges in a subgraph of graph G induced by m nodes. The n-dimensional augmented cube, denoted as AQn, a variation of the hypercube, possesses some properties superior to those of the hypercube. We study the cases when G is the augmented cube AQn.Keywords: interconnection network, augmented cube, induced subgraph, bisection width
Procedia PDF Downloads 40618392 Analysis the Trajectory of the Spacecraft during the Transition to the Planet's Orbit Using Aerobraking in the Atmosphere of the Planet
Authors: Zaw Min Tun
Abstract:
The paper focuses on the spacecraft’s trajectory transition from interplanetary hyperbolic orbit to the planet’s orbit using the aerobraking in the atmosphere of the planet. A considerable mass of fuel is consumed during the spacecraft transition from the planet’s gravitation assist trajectory into the planet’s satellite orbit. To reduce the fuel consumption in this transition need to slow down the spacecraft’s velocity in the planet’s atmosphere and reduce its orbital transition time. The paper is devoted to the use of the planet’s atmosphere for slowing down the spacecraft during its transition into the satellite orbit with uncertain atmospheric parameters. To reduce the orbital transition time of the spacecraft is controlled by the change of attack angles’ values at the aerodynamic deceleration path and adjusting the minimum flight altitude of the spacecraft at the pericenter of the planet’s upper atmosphere.Keywords: aerobraking, atmosphere of the planet, orbital transition time, Spacecraft’s trajectory
Procedia PDF Downloads 30518391 Optimum Design for Cathode Microstructure of Solid Oxide Fuel Cell
Authors: M. Riazat, H. Abdolvand, M. Baniassadi
Abstract:
In this present work, 3D reconstruction of cathode of SOFC is developed with various volume fractions and porosity. Three Phase Boundary (TPB) of construction of such derived micro structures is calculated. The neural network is used to optimize the porosity and volume fraction of each phase to reach a structure with maximum TPB.Keywords: fuel cell, solid oxide, TPB, 3D reconstruction
Procedia PDF Downloads 32518390 Performance Evaluation and Cost Analysis of Standby Systems
Authors: Mohammed A. Hajeeh
Abstract:
Pumping systems are an integral part of water desalination plants, their effective functioning is vital for the operation of a plant. In this research work, the reliability and availability of pressurized pumps in a reverse osmosis desalination plant are studied with the objective of finding configurations that provides optimal performance. Six configurations of a series system with different number of warm and cold standby components were examined. Closed form expressions for the mean time to failure (MTTF) and the long run availability are derived and compared under the assumption that the time between failures and repair times of the primary and standby components are exponentially distributed. Moreover, a cost/ benefit analysis is conducted in order to identify a configuration with the best performance and least cost. It is concluded that configurations with cold standby components are preferable especially when the pumps are of the size.Keywords: availability, cost/benefit, mean time to failure, pumps
Procedia PDF Downloads 28418389 Structural and Functional Correlates of Reaction Time Variability in a Large Sample of Healthy Adolescents and Adolescents with ADHD Symptoms
Authors: Laura O’Halloran, Zhipeng Cao, Clare M. Kelly, Hugh Garavan, Robert Whelan
Abstract:
Reaction time (RT) variability on cognitive tasks provides the index of the efficiency of executive control processes (e.g. attention and inhibitory control) and is considered to be a hallmark of clinical disorders, such as attention-deficit disorder (ADHD). Increased RT variability is associated with structural and functional brain differences in children and adults with various clinical disorders, as well as poorer task performance accuracy. Furthermore, the strength of functional connectivity across various brain networks, such as the negative relationship between the task-negative default mode network and task-positive attentional networks, has been found to reflect differences in RT variability. Although RT variability may provide an index of attentional efficiency, as well as being a useful indicator of neurological impairment, the brain substrates associated with RT variability remain relatively poorly defined, particularly in a healthy sample. Method: Firstly, we used the intra-individual coefficient of variation (ICV) as an index of RT variability from “Go” responses on the Stop Signal Task. We then examined the functional and structural neural correlates of ICV in a large sample of 14-year old healthy adolescents (n=1719). Of these, a subset had elevated symptoms of ADHD (n=80) and was compared to a matched non-symptomatic control group (n=80). The relationship between brain activity during successful and unsuccessful inhibitions and gray matter volume were compared with the ICV. A mediation analysis was conducted to examine if specific brain regions mediated the relationship between ADHD symptoms and ICV. Lastly, we looked at functional connectivity across various brain networks and quantified both positive and negative correlations during “Go” responses on the Stop Signal Task. Results: The brain data revealed that higher ICV was associated with increased structural and functional brain activation in the precentral gyrus in the whole sample and in adolescents with ADHD symptoms. Lower ICV was associated with lower activation in the anterior cingulate cortex (ACC) and medial frontal gyrus in the whole sample and in the control group. Furthermore, our results indicated that activation in the precentral gyrus (Broadman Area 4) mediated the relationship between ADHD symptoms and behavioural ICV. Conclusion: This is the first study first to investigate the functional and structural correlates of ICV collectively in a large adolescent sample. Our findings demonstrate a concurrent increase in brain structure and function within task-active prefrontal networks as a function of increased RT variability. Furthermore, structural and functional brain activation patterns in the ACC, and medial frontal gyrus plays a role-optimizing top-down control in order to maintain task performance. Our results also evidenced clear differences in brain morphometry between adolescents with symptoms of ADHD but without clinical diagnosis and typically developing controls. Our findings shed light on specific functional and structural brain regions that are implicated in ICV and yield insights into effective cognitive control in healthy individuals and in clinical groups.Keywords: ADHD, fMRI, reaction-time variability, default mode, functional connectivity
Procedia PDF Downloads 25518388 Generalized Model Estimating Strength of Bauxite Residue-Lime Mix
Authors: Sujeet Kumar, Arun Prasad
Abstract:
The present work investigates the effect of multiple parameters on the unconfined compressive strength of the bauxite residue-lime mix. A number of unconfined compressive strength tests considering various curing time, lime content, dry density and moisture content were carried out. The results show that an empirical correlation may be successfully developed using volumetric lime content, porosity, moisture content, curing time unconfined compressive strength for the range of the bauxite residue-lime mix studied. The proposed empirical correlations efficiently predict the strength of bauxite residue-lime mix, and it can be used as a generalized empirical equation to estimate unconfined compressive strength.Keywords: bauxite residue, curing time, porosity/volumetric lime ratio, unconfined compressive strength
Procedia PDF Downloads 23618387 Volunteered Geographic Information Coupled with Wildfire Fire Progression Maps: A Spatial and Temporal Tool for Incident Storytelling
Authors: Cassandra Hansen, Paul Doherty, Chris Ferner, German Whitley, Holly Torpey
Abstract:
Wildfire is a natural and inevitable occurrence, yet changing climatic conditions have increased the severity, frequency, and risk to human populations in the wildland/urban interface (WUI) of the Western United States. Rapid dissemination of accurate wildfire information is critical to both the Incident Management Team (IMT) and the affected community. With the advent of increasingly sophisticated information systems, GIS can now be used as a web platform for sharing geographic information in new and innovative ways, such as virtual story map applications. Crowdsourced information can be extraordinarily useful when coupled with authoritative information. Information abounds in the form of social media, emergency alerts, radio, and news outlets, yet many of these resources lack a spatial component when first distributed. In this study, we describe how twenty-eight volunteer GIS professionals across nine Geographic Area Coordination Centers (GACC) sourced, curated, and distributed Volunteered Geographic Information (VGI) from authoritative social media accounts focused on disseminating information about wildfires and public safety. The combination of fire progression maps with VGI incident information helps answer three critical questions about an incident, such as: where the first started. How and why the fire behaved in an extreme manner and how we can learn from the fire incident's story to respond and prepare for future fires in this area. By adding a spatial component to that shared information, this team has been able to visualize shared information about wildfire starts in an interactive map that answers three critical questions in a more intuitive way. Additionally, long-term social and technical impacts on communities are examined in relation to situational awareness of the disaster through map layers and agency links, the number of views in a particular region of a disaster, community involvement and sharing of this critical resource. Combined with a GIS platform and disaster VGI applications, this workflow and information become invaluable to communities within the WUI and bring spatial awareness for disaster preparedness, response, mitigation, and recovery. This study highlights progression maps as the ultimate storytelling mechanism through incident case studies and demonstrates the impact of VGI and sophisticated applied cartographic methodology make this an indispensable resource for authoritative information sharing.Keywords: storytelling, wildfire progression maps, volunteered geographic information, spatial and temporal
Procedia PDF Downloads 17618386 Formulation Design and Optimization of Orodispersible Tablets of Diphenhydramine Hydrochloride Having Adequate Mechanical Strength
Authors: Jiwan P. Lavande, A. V. Chandewar
Abstract:
In the present study, orodispersible tablets of diphenhydramine hydrochloride were prepared using croscarmellose sodium, crospovidone and camphor, menthol (as subliming agents) in different ratios and ODTs prepared with superdisintegrants were compared with ODTs prepared with camphor and menthol (subliming agents) for the following evaluation of in vitro disintegration time, dispersion time, wetting time, hardness and water absorption ratio. Results revealed that the tablets of all formulations have acceptable physical parameters. The drug and excipients compatibility study was evaluated using FTIR technique and has not detected any incompatibility. The in vitro release of drug from DC6 formulation was quick when compared to other formulations. Stability study was carried out as per ICH guidelines for three months and results revealed that upon storage disintegration time of tablets had not shown any significant difference. Microscopic study of different formulations of sublimed tablets showed formation of pores for the tablets prepared by sublimation method. Thus, conclusion can be made that the stable orodispersible tablets of diphenhydramine hydrochloride can be developed for the rapid release of diphenhydramine hydrochloride.Keywords: orodispersible tablet, subliming agent, super disintegrants, diphenhydramine hydrochloride
Procedia PDF Downloads 23518385 Criminal Law and Internet of Things: Challenges and Threats
Authors: Celina Nowak
Abstract:
The development of information and communication technologies (ICT) and a consequent growth of cyberspace have become a reality of modern societies. The newest addition to this complex structure has been Internet of Things which is due to the appearance of smart devices. IoT creates a new dimension of the network, as the communication is no longer the domain of just humans, but has also become possible between devices themselves. The possibility of communication between devices, devoid of human intervention and real-time supervision, generated new societal and legal challenges. Some of them may and certainly will eventually be connected to criminal law. Legislators both on national and international level have been struggling to cope with this technologically evolving environment in order to address new threats created by the ICT. There are legal instruments on cybercrime, however imperfect and not of universal scope, sometimes referring to specific types of prohibited behaviors undertaken by criminals, such as money laundering, sex offences. However, the criminal law seems largely not prepared to the challenges which may arise because of the development of IoT. This is largely due to the fact that criminal law, both on national and international level, is still based on the concept of perpetration of an offence by a human being. This is a traditional approach, historically and factually justified. Over time, some legal systems have developed or accepted the possibility of commission of an offence by a corporation, a legal person. This is in fact a legal fiction, as a legal person cannot commit an offence as such, it needs humans to actually behave in a certain way on its behalf. Yet, the legislators have come to understand that corporations have their own interests and may benefit from crime – and therefore need to be penalized. This realization however has not been welcome by all states and still give rise to doubts of ontological and theoretical nature in many legal systems. For this reason, in many legislations the liability of legal persons for commission of an offence has not been recognized as criminal responsibility. With the technological progress and the growing use of IoT the discussions referring to criminal responsibility of corporations seem rather inadequate. The world is now facing new challenges and new threats related to the ‘smart’ things. They will have to be eventually addressed by legislators if they want to, as they should, to keep up with the pace of technological and societal evolution. This will however require a reevaluation and possibly restructuring of the most fundamental notions of modern criminal law, such as perpetration, guilt, participation in crime. It remains unclear at this point what norms and legal concepts will be and may be established. The main goal of the research is to point out to the challenges ahead of the national and international legislators in the said context and to attempt to formulate some indications as to the directions of changes, having in mind serious threats related to privacy and security related to the use of IoT.Keywords: criminal law, internet of things, privacy, security threats
Procedia PDF Downloads 16218384 Green Supply Chain Network Optimization with Internet of Things
Authors: Sema Kayapinar, Ismail Karaoglan, Turan Paksoy, Hadi Gokcen
Abstract:
Green Supply Chain Management is gaining growing interest among researchers and supply chain management. The concept of Green Supply Chain Management is to integrate environmental thinking into the Supply Chain Management. It is the systematic concept emphasis on environmental problems such as reduction of greenhouse gas emissions, energy efficiency, recycling end of life products, generation of solid and hazardous waste. This study is to present a green supply chain network model integrated Internet of Things applications. Internet of Things provides to get precise and accurate information of end-of-life product with sensors and systems devices. The forward direction consists of suppliers, plants, distributions centres and sales and collect centres while, the reverse flow includes the sales and collects centres, disassembled centre, recycling and disposal centre. The sales and collection centre sells the new products are transhipped from factory via distribution centre and also receive the end-of life product according their value level. We describe green logistics activities by presenting specific examples including “recycling of the returned products and “reduction of CO2 gas emissions”. The different transportation choices are illustrated between echelons according to their CO2 gas emissions. This problem is formulated as a mixed integer linear programming model to solve the green supply chain problems which are emerged from the environmental awareness and responsibilities. This model is solved by using Gams package program. Numerical examples are suggested to illustrate the efficiency of the proposed model.Keywords: green supply chain optimization, internet of things, greenhouse gas emission, recycling
Procedia PDF Downloads 32818383 Reviewing Special Education Preservice Teachers' Reflective Practices over Two Field Experiences: Topics and Changes in Reflection
Authors: Laurie U. deBettencourt
Abstract:
During pre-service field experiences teacher candidates are often asked to reflect as part of their training and in this investigation candidates’ reflective journal entries were reviewed, coded and analyzed with results suggesting teacher candidates need more direct instruction on how to describe, analyze, and make judgements on their instructional practices so that their practices improve over time. Teacher education programs often incorporate reflective-based activities during field experiences. The purpose of this investigation was to determine if special education teacher candidate’s reflective practices changed as they completed their two supervised field experiences and to determine what topics the candidates focused on in their reflections. The six females graduate students were completing two field experiences in special education classrooms within one academic year as part of their coursework leading to a master’s degree and special education teacher state certification. Each candidate wrote 15 reflection journal entries (approximately 200 words each) per field experience. Each of the journal entries were reviewed sentence by sentence to determine a reflective practice score and to determine the topics discussed. The reflective practice score was calculated using four dimensions of reflection (describe, analyze, judge, and apply) in order to create a continuous variable representing their reflective practice across four points of time. A One-way Repeated Measures Analysis of Variance (ANOVA) suggested that special education teacher candidates did not change their reflective practices over time (i.e., at time-point one the practitioner’s mean score was 56.0 out of 100 (SD = 7.6), 53.8 (SD = 4.3) at time-point two, 51.2 (SD = 4.5) at time-point three, and 57.7 (SD = 8.2) at time-point four). Qualitative findings suggest candidates focused mostly on themselves in their reflections. Conclusions suggest the need for teacher preparation programs to provide more direct instruction on how a teacher should reflect. Specific implications are provided for teacher training and future research.Keywords: field experiences, reflective practices, special educators, teacher preparation
Procedia PDF Downloads 35118382 Unlocking Academic Success: A Comprehensive Exploration of Shaguf Bites’s Impact on Learning and Retention
Authors: Joud Zagzoog, Amira Aldabbagh, Radiyah Hamidaddin
Abstract:
This research aims to test out and observe whether artificial intelligence (AI) software and applications could actually be effective, useful, and time-saving for those who use them. Shaguf Bites, a web application that uses AI technology, claims to help students study and memorize information more effectively in less time. The website uses smart learning, or AI-powered bite-sized repetitive learning, by transforming documents or PDFs with the help of AI into summarized interactive smart flashcards (Bites, n.d.). To properly test out the websites’ effectiveness, both qualitative and quantitative methods were used in this research. An experiment was conducted on a number of students where they were first requested to use Shaguf Bites without any prior knowledge or explanation of how to use it. Second, they were asked for feedback through a survey on how their experience was after using it and whether it was helpful, efficient, time-saving, and easy to use for studying. After reviewing the collected data, we found out that the majority of students found the website to be straightforward and easy to use. 58% of the respondents agreed that the website accurately formulated the flashcard questions. And 53% of them reported that they are most likely to use the website again in the future as well as recommend it to others. Overall, from the given results, it is clear that Shaguf Bites have proved to be very beneficial, accurate, and time saving for the majority of the students.Keywords: artificial intelligence (AI), education, memorization, spaced repetition, flashcards.
Procedia PDF Downloads 19018381 Automatic Detection and Update of Region of Interest in Vehicular Traffic Surveillance Videos
Authors: Naydelis Brito Suárez, Deni Librado Torres Román, Fernando Hermosillo Reynoso
Abstract:
Automatic detection and generation of a dynamic ROI (Region of Interest) in vehicle traffic surveillance videos based on a static camera in Intelligent Transportation Systems is challenging for computer vision-based systems. The dynamic ROI, being a changing ROI, should capture any other moving object located outside of a static ROI. In this work, the video is represented by a Tensor model composed of a Background and a Foreground Tensor, which contains all moving vehicles or objects. The values of each pixel over a time interval are represented by time series, and some pixel rows were selected. This paper proposes a pixel entropy-based algorithm for automatic detection and generation of a dynamic ROI in traffic videos under the assumption of two types of theoretical pixel entropy behaviors: (1) a pixel located at the road shows a high entropy value due to disturbances in this zone by vehicle traffic, (2) a pixel located outside the road shows a relatively low entropy value. To study the statistical behavior of the selected pixels, detecting the entropy changes and consequently moving objects, Shannon, Tsallis, and Approximate entropies were employed. Although Tsallis entropy achieved very high results in real-time, Approximate entropy showed results slightly better but in greater time.Keywords: convex hull, dynamic ROI detection, pixel entropy, time series, moving objects
Procedia PDF Downloads 74