Search results for: free movement of persons
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5815

Search results for: free movement of persons

2575 Untargeted Small Metabolite Identification from Thermally Treated Tualang Honey

Authors: Lee Suan Chua

Abstract:

This study investigated the effects of thermal treatment on Tualang honey sample in terms of honey colour and heat-induced small metabolites. The heating process was carried out in a temperature controlled water batch at 90 °C for 4 hours. The honey samples were put in cylinder tubes with the dimension of 1 cm diameter and 10 cm length for homogenous heat transfer. The results found that the thermal treatment produced not only hydroxylmethylfurfural, but also other harmful substances such as phthalic anhydride and radiolytic byproducts. The degradation of honey protein was reported due to the detection of free amino acids such as cysteine and phenylalanine in heat-treated honey samples. Sugar dehydration also occurred because fragmented di-galactose was identified based on the presence of characteristic ions in the mass fragmentation pattern. The honey colour was found getting darker as the heating duration was increased up to 4 hours. Approximately, 60 mm PFund of increment was noticed for the honey colour with the colour change rate of 14.8 mm PFund per hour. Based on the principal component analysis, the chemical profile of Tualang honey was significantly altered after 2 hours of heating at 90 °C.

Keywords: honey colour, hydroxylmethylfurfural, thermal treatment, tualang honey

Procedia PDF Downloads 376
2574 Analysis of the Cutting Force with Ultrasonic Assisted Manufacturing of Steel (S235JR)

Authors: Philipp Zopf, Franz Haas

Abstract:

Manufacturing of very hard and refractory materials like ceramics, glass or carbide poses particular challenges on tools and machines. The company Sauer GmbH developed especially for this application area ultrasonic tool holders working in a frequency range from 15 to 60 kHz and superimpose the common tool movement in the vertical axis. This technique causes a structural weakening in the contact area and facilitates the machining. The possibility of the force reduction for these special materials especially in drilling of carbide with diamond tools up to 30 percent made the authors try to expand the application range of this method. To make the results evaluable, the authors decide to start with existing processes in which the positive influence of the ultrasonic assistance is proven to understand the mechanism. The comparison of a grinding process the Institute use to machine materials mentioned in the beginning and steel could not be more different. In the first case, the authors use tools with geometrically undefined edges. In the second case, the edges are geometrically defined. To get valid results of the tests, the authors decide to investigate two manufacturing methods, drilling and milling. The main target of the investigation is to reduce the cutting force measured with a force measurement platform underneath the workpiece. Concerning to the direction of the ultrasonic assistance, the authors expect lower cutting forces and longer endurance of the tool in the drilling process. To verify the frequencies and the amplitudes an FFT-analysis is performed. It shows the increasing damping depending on the infeed rate of the tool. The reducing of amplitude of the cutting force comes along.

Keywords: drilling, machining, milling, ultrasonic

Procedia PDF Downloads 274
2573 Institutional Preferences of Elites and Society: Paradoxes of Economic Development in Georgia

Authors: Inga Balarjishvili, Ia Natsvlishvili

Abstract:

Article aims to discuss the controversial character of the institutional preferences of elites and society in modern Georgia. Desktop research method is used to formulate the findings and analyze the outcomes. It is accepted that transformation process in Post-Soviet Georgia went with the prevalence of elites’ institutional preferences over the needs of the society that induced voluntarism in the process of formation of institutions. Hypothesis of 'quasi-inclusion trap' is put forward in the article as an effect of authoritarian modernization that is proved by instable paces of wealth and economic growth in the post-authoritarian period. On the one hand, monopolization of institutional choice by the elites, blocking formation of inclusive political and economic institutions for fear of losing status-quo worsen perspectives for achieving free availability regime. On the other hand, consciousness of the society is dominated by informal institutions, judicial nihilism and orientation on 'self-survival values.' This hinders its consolidation as a 'collective principal' against 'institutional utilitarianism,' result of which is hindered economic development.

Keywords: elites, hypothesis of 'quasi-inclusion trap', institutional preferences, post-Soviet Georgia

Procedia PDF Downloads 255
2572 Immobilization Strategy of Recombinant Xylanase from Trichoderma reesei by Cross-Linked Enzyme Aggregates

Authors: S. Md. Shaarani, J. Md. Jahim, R. A. Rahman, R. Md. Illias

Abstract:

Modern developments in biotechnology have paved the way for extensive use of biocatalysis in industries. Although it offers immense potential, industrial application is usually hampered by lack of operational stability, difficulty in recovery as well as limited re-use of the enzyme. These drawbacks, however, can be overcome by immobilization. Cross-linked enzyme aggregates (CLEAs), a versatile carrier-free immobilization technique is one that is currently capturing global interest. This approach involves precipitating soluble enzyme with an appropriate precipitant and subsequent crosslinking by a crosslinking reagent. Without ineffective carriers, CLEAs offer high enzymatic activity, stability and reduced production cost. This study demonstrated successful CLEA synthesis of recombinant xylanase from Trichoderma reesei using ethanol as aggregating agent and glutaraldehyde (2% (v/v); 100 mM) as crosslinker. Effects of additives including proteic feeder such as bovine serum albumin (BSA) and poly-L-Lysine were investigated to reveal its significance in enhancing the performance of enzyme. Addition of 0.1 mg BSA/U xylanase showed considerable increment in CLEA development with approximately 50% retained activity.

Keywords: cross-linked, immobilization, recombinant, xylanase

Procedia PDF Downloads 358
2571 Dispersion-Less All Reflective Split and Delay Unit for Ultrafast Metrology

Authors: Akansha Tyagi, Mehar S. Sidhu, Ankur Mandal, Sanjay Kapoor, Sunil Dahiya, Jan M. Rost, Thomas Pfeifer, Kamal P. Singh

Abstract:

An all-reflective split and delay unit is designed for dispersion free measurement of broadband ultrashort pulses using a pair of reflective knife edge prism for splitting and recombining of the measuring pulse. It is based on symmetrical wavefront splitting of the measuring pulse having two separate arms to independently shape both split parts. We have validated our delay line with NIR –femtosecond pulse measurement centered at 800 nm using second harmonic-Interferometric frequency resolved optical gating (SH-IFROG). The delay line is compact, easy to align and provides attosecond stability and precision and thus make it more versatile for wide range of applications in ultrafast measurements. We envision that the present delay line will find applications in IR-IR controlling for high harmonic generation (HHG) and attosecond IR-XUV pump-probe measurements with solids and gases providing attosecond resolution and wide delay range.

Keywords: HHG, nonlinear optics, pump-probe spectroscopy, ultrafast metrology

Procedia PDF Downloads 200
2570 Lamb Wave-Based Blood Coagulation Measurement System Using Citrated Plasma

Authors: Hyunjoo Choi, Jeonghun Nam, Chae Seung Lim

Abstract:

Acoustomicrofluidics has gained much attention due to the advantages, such as noninvasiveness and easy integration with other miniaturized systems, for clinical and biological applications. However, a limitation of acoustomicrofluidics is the complicated and costly fabrication process of electrodes. In this study, we propose a low-cost and lithography-free device using Lamb wave for blood analysis. Using a Lamb wave, calcium ion-removed blood plasma and coagulation reagents can be rapidly mixed for blood coagulation test. Due to the coagulation process, the viscosity of the sample increases and the viscosity change can be monitored by internal acoustic streaming of microparticles suspended in the sample droplet. When the acoustic streaming of particles stops by the viscosity increase is defined as the coagulation time. With the addition of calcium ion at 0-25 mM, the coagulation time was measured and compared with the conventional index for blood coagulation analysis, prothrombin time, which showed highly correlated with the correlation coefficient as 0.94. Therefore, our simple and cost-effective Lamb wave-based blood analysis device has the powerful potential to be utilized in clinical settings.

Keywords: acoustomicrofluidics, blood analysis, coagulation, lamb wave

Procedia PDF Downloads 340
2569 Stability Analysis of Modelling the Effect of Vaccination and Novel Quarantine-Adjusted Incidence on the Spread of Newcastle Disease

Authors: Nurudeen O. Lasisi, Sirajo Abdulrahman, Abdulkareem A. Ibrahim

Abstract:

Newcastle disease is an infection of domestic poultry and other bird species with the virulent Newcastle disease virus (NDV). In this paper, we study the dynamics of the modeling of the Newcastle disease virus (NDV) using a novel quarantine-adjusted incidence. The comparison of Vaccination, linear incident rate and novel quarantine-adjusted incident rate in the models are discussed. The dynamics of the models yield disease-free and endemic equilibrium states.The effective reproduction numbers of the models are computed in order to measure the relative impact of an individual bird or combined intervention for effective disease control. We showed the local and global stability of endemic equilibrium states of the models and we found that the stability of endemic equilibrium states of models are globally asymptotically stable if the effective reproduction numbers of the models equations are greater than a unit.

Keywords: effective reproduction number, Endemic state, Mathematical model, Newcastle disease virus, novel quarantine-adjusted incidence, stability analysis

Procedia PDF Downloads 122
2568 Functionalization of Polypropylene with Chiral Monomer for Improving Hemocompatibility

Authors: Xiaodong Xu, Dan Zhao, Xiujuan Chang, Chunming Li, Huiyun Zhou, Xin Li, Qiang Shi, Shifang Luan, Jinghua Yin

Abstract:

Polypropylene (PP) is one of the most commonly used plastics because of its low density, outstanding mechanical properties, and low cost. However, its drawbacks such as low surface energy, poor dyeability, lack of chemical functionalities, and poor compatibility with polar polymers and inorganic materials, have restricted the application of PP. To expand its application in biomedical materials, functionalization is considered to be the most effective way. In this study, PP was functionalized with a chiral monomer, (S)-1-acryloylpyrrolidine-2-carboxylic acid ((S)-APCA), by free-radical grafting in the solid phase. The grafting degree of PP-g-APCA was determined by chemical titration method, and the chemical structure of functionalized PP was characterized by FTIR spectroscopy, which confirmed that the chiral monomer (S)-APCA was successfully grafted onto PP. Static water contact angle results suggested that the surface hydrophilicity of PP was significantly improved by solid phase grafting and assistance of surface water treatment. Protein adsorption and platelet adhesion results showed that hemocompatibility of PP was greatly improved by grafting the chiral monomer.

Keywords: functionalization, polypropylene, chiral monomer, hemocompatibility

Procedia PDF Downloads 381
2567 Social Representations: Unplanned and Unwanted Pregnancy in Adolescents from Leon-Mexico

Authors: Alejandra Sierra, Maria de los Angeles Covarrubias, Guillermo Julian Gonzalez, Noe Alfaro

Abstract:

The objective of this study was to identify the cultural dimensions of the terms unplanned pregnancy and unwanted pregnancy built by adolescent women, through the focus of the social representations. Two associative methods were used: free listings and the paired comparison. 72 female students between the ages of 15 and 19 were interviewed, from the downtown area of Leon Guanajuato, Mexico. Words related to inducer terms were classified into five thematic categories: facilitators, consequences, reactions, expectations, and lexicon. The results showed that the social representations of unplanned pregnancy highlighted elements related to economic difficulties and negative emotional aspects, while unwanted pregnancy was associated with negative emotional aspects such as anger, anxiety, and sadness. The meanings each person attributes to terms related to pregnancy are culturally constructed and differ between populations; therefore, more attention should be paid to understanding the cultural meanings and attitudes of people in fertility decision-making, including also the views of adolescent men and other types of population, stratified by age groups and social conditions.

Keywords: adolescent, qualitative research, unplanned pregnancy, unwanted pregnancy

Procedia PDF Downloads 213
2566 Mapping the Technological Interventions to the National Action Plan for Marine Litter Management 2018-2025: Addressing the Marine Plastic Litter at the Marine Tourism Destinations in Indonesia

Authors: Kaisar Akhir, Azhar Slamet

Abstract:

This study aims to provide recommendations for addressing marine plastic litter at the ocean tourism destinations in Indonesia sustainably through technological interventions in the framework of the National Action Plan for Marine Litter Management 2018-2025. In Indonesia, marine tourism is a rapidly growing economic sector. However, marine tourism destinations are facing a global challenge called marine plastic litter. Marine plastic litter is a threat to those destinations since it has potential impacts on the reduction of marine environmental sustainability, the health of tourists and local communities as well as tourism business income. Since 2018, the Indonesian government has passed and promulgated the National Plan of Action on Marine Litter Management 2018-2025. This national action plan consists of three important key aspects of interventions (i.e., societal effort, technological application, and institutional coordination) and five strategies for addressing marine litter in Indonesia, in particular, to address 70% of marine plastic litter by 2025. The strategies include 1) National movement for raising awareness of stakeholders, 2) Land-based litter management, 3) Litter management at the sea and coasts, 4) Funding mechanism, institutional strengthening, monitoring, and law enforcement, and 5) Research and development. In this study, technological interventions around the world and in Indonesia are reviewed and analyzed on their relevance to the national action plan based on five criteria. As a result, there are twelve kinds of technological interventions recommended to be implemented for addressing marine plastic litter in the marine tourism destinations in Indonesia.

Keywords: marine litter management, marine plastic litter, national action plan, ocean sustainability, ocean tourism destination, technological interventions

Procedia PDF Downloads 169
2565 Design of Robust and Intelligent Controller for Active Removal of Space Debris

Authors: Shabadini Sampath, Jinglang Feng

Abstract:

With huge kinetic energy, space debris poses a major threat to astronauts’ space activities and spacecraft in orbit if a collision happens. The active removal of space debris is required in order to avoid frequent collisions that would occur. In addition, the amount of space debris will increase uncontrollably, posing a threat to the safety of the entire space system. But the safe and reliable removal of large-scale space debris has been a huge challenge to date. While capturing and deorbiting space debris, the space manipulator has to achieve high control precision. However, due to uncertainties and unknown disturbances, there is difficulty in coordinating the control of the space manipulator. To address this challenge, this paper focuses on developing a robust and intelligent control algorithm that controls joint movement and restricts it on the sliding manifold by reducing uncertainties. A neural network adaptive sliding mode controller (NNASMC) is applied with the objective of finding the control law such that the joint motions of the space manipulator follow the given trajectory. A computed torque control (CTC) is an effective motion control strategy that is used in this paper for computing space manipulator arm torque to generate the required motion. Based on the Lyapunov stability theorem, the proposed intelligent controller NNASMC and CTC guarantees the robustness and global asymptotic stability of the closed-loop control system. Finally, the controllers used in the paper are modeled and simulated using MATLAB Simulink. The results are presented to prove the effectiveness of the proposed controller approach.

Keywords: GNC, active removal of space debris, AI controllers, MatLabSimulink

Procedia PDF Downloads 132
2564 Efficiency of the Strain Based Approach Formulation for Plate Bending Analysis

Authors: Djamal Hamadi, Sifeddine Abderrahmani, Toufik Maalem, Oussama Temami

Abstract:

In recent years many finite elements have been developed for plate bending analysis. The formulated elements are based on the strain based approach. This approach leads to the representation of the displacements by higher order polynomial terms without the need for the introduction of additional internal and unnecessary degrees of freedom. Good convergence can also be obtained when the results are compared with those obtained from the corresponding displacement based elements, having the same total number of degrees of freedom. Furthermore, the plate bending elements are free from any shear locking since they converge to the Kirchhoff solution for thin plates contrarily for the corresponding displacement based elements. In this paper the efficiency of the strain based approach compared to well known displacement formulation is presented. The results obtained by a new formulated plate bending element based on the strain approach and Kirchhoff theory are compared with some others elements. The good convergence of the new formulated element is confirmed.

Keywords: displacement fields, finite elements, plate bending, Kirchhoff theory, strain based approach

Procedia PDF Downloads 297
2563 Examination of the Reasons for the Formation of Red Oil in Spent Caustic from Olefin Plant

Authors: Mehdi Seifollahi, Ashkan Forootan, Sajjad Bahrami Reyhan

Abstract:

Due to the complexity of olefinic plants, various environmental pollutants exist such as NOx, CO2, Tar Water, and most importantly Spent Caustic. In this paper, instead of investigating ways of treating this pollutant, we evaluated the production in relation to plant’s variable items. We primarily discussed the factors affecting the quality of the output spent caustic such as impurities in the feed of olefin plant, the amount of injected dimethyl disulfide (DMDS) in furnaces, variation in feed composition, differences among gas temperatures and the concentration of caustic solution at the bottom of the tower. The results of the laboratory proved that in the formation of Red Oil, 1,3butadiene and acetaldehyde followed free radical and aldol condensation mechanism respectively. By increasing the injection rate of DMDS, Mercaptide amount increases in the effluent. In addition, pyrolysis gasoline accumulation is directly related to caustic concentration in the tower. Increasing naphtenes in the liquid feed augments the amount of 1,3butadiene, as one of the sources of Red Oil formation. By increasing the oxygenated compound in the feed, the rate of acetaldehyde formation, as the main source of Red Oil formation, increases.

Keywords: olefin, spent caustic, red oil, caustic wash tower

Procedia PDF Downloads 447
2562 Liquid Temperature Effect on Sound Propagation in Polymeric Solution with Gas Bubbles

Authors: S. Levitsky

Abstract:

Acoustic properties of polymeric liquids are high sensitive to free gas traces in the form of fine bubbles. Their presence is typical for such liquids because of chemical reactions, small wettability of solid boundaries, trapping of air in technological operations, etc. Liquid temperature influences essentially its rheological properties, which may have an impact on the bubble pulsations and sound propagation in the system. The target of the paper is modeling of the liquid temperature effect on single bubble dynamics and sound dispersion and attenuation in polymeric solution with spherical gas bubbles. The basic sources of attenuation (heat exchange between gas in microbubbles and surrounding liquid, rheological and acoustic losses) are taken into account. It is supposed that in the studied temperature range the interface mass transfer has a minor effect on bubble dynamics. The results of the study indicate that temperature raise yields enhancement of bubble pulsations and increase in sound attenuation in the near-resonance range and may have a strong impact on sound dispersion in the liquid-bubble mixture at frequencies close to the resonance frequency of bubbles.

Keywords: sound propagation, gas bubbles, temperature effect, polymeric liquid

Procedia PDF Downloads 304
2561 Layout Optimization of a Start-up COVID-19 Testing Kit Manufacturing Facility

Authors: Poojan Vora, Hardik Pancholi, Sanket Tajane, Harsh Shah, Elias Keedy

Abstract:

The global COVID-19 pandemic has affected the industry drastically in many ways. Even though the vaccine is being distributed quickly and despite the decreasing number of positive cases, testing is projected to remain a key aspect of the ‘new normal’. Improving existing plant layout and improving safety within the facility are of great importance in today’s industries because of the need to ensure productivity optimization and reduce safety risks. In practice, it is essential for any manufacturing plant to reduce nonvalue adding steps such as the movement of materials and rearrange similar processes. In the current pandemic situation, optimized layouts will not only increase safety measures but also decrease the fixed cost per unit manufactured. In our case study, we carefully studied the existing layout and the manufacturing steps of a new Texas start-up company that manufactures COVID testing kits. The effects of production rate are incorporated with the computerized relative allocation of facilities technique (CRAFT) algorithm to improve the plant layout and estimate the optimization parameters. Our work reduces the company’s material handling time and increases their daily production. Real data from the company are used in the case study to highlight the importance of colleges in fostering small business needs and improving the collaboration between college researchers and industries by using existing models to advance best practices.

Keywords: computerized relative allocation of facilities technique, facilities planning, optimization, start-up business

Procedia PDF Downloads 138
2560 Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity

Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi

Abstract:

Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields.

Keywords: Adomian’s decomposition method, magneto-thermoelasticity, finite conductivity, iteration method, thermal load

Procedia PDF Downloads 150
2559 CFD Analysis of Ammonia/Hydrogen Combustion Performance under Partially Premixed and Non-premixed Modes with Varying Inlet Characteristics

Authors: Maria Alekxandra B. Sison, Reginald C. Mallare, Joseph Albert M. Mendoza

Abstract:

Ammonia (NH₃) is the alternative carbon-free fuel of the future for its promising applications. Investigations on NH₃-fuel blends recommend using hydrogen (H₂) to increase the heating value of NH3, promote combustion performance, and improve NOx efflux mitigation. To further examine the effects of this concept, the study analyzed the combustion performance, in terms of turbulence, combustion efficiency (CE), and NOx emissions, of NH3/fuel with variations of combustor diameter ratio, H2 fuel mole fraction, and fuel mass flow rate (ṁ). The simulations were performed using Computational Fluid Dynamics (CFD) modeling to represent a non-premixed (NP) and partially premixed (PP) combustion under a two-dimensional ultra-low NOx Rich-Burn, Quick-Quench, Lean-Burn (RQL) combustor. Governed by the Detached Eddy Simulation model, it was found that the diameter ratio greatly affects the turbulence in PP and NP mode, whereas ṁ in PP should be prioritized when increasing CE. The NOx emission is minimal during PP combustion, but NP combustion suggested modifying ṁ to achieve higher CE and Reynolds number without sacrificing the NO generation from the reaction.

Keywords: combustion efficiency, turbulence, dual-stage combustor, NOx emission

Procedia PDF Downloads 104
2558 Analyzing the Risk Based Approach in General Data Protection Regulation: Basic Challenges Connected with Adapting the Regulation

Authors: Natalia Kalinowska

Abstract:

The adoption of the General Data Protection Regulation, (GDPR) finished the four-year work of the European Commission in this area in the European Union. Considering far-reaching changes, which will be applied by GDPR, the European legislator envisaged two-year transitional period. Member states and companies have to prepare for a new regulation until 25 of May 2018. The idea, which becomes a new look at an attitude to data protection in the European Union is risk-based approach. So far, as a result of implementation of Directive 95/46/WE, in many European countries (including Poland) there have been adopted very particular regulations, specifying technical and organisational security measures e.g. Polish implementing rules indicate even how long password should be. According to the new approach from May 2018, controllers and processors will be obliged to apply security measures adequate to level of risk associated with specific data processing. The risk in GDPR should be interpreted as the likelihood of a breach of the rights and freedoms of the data subject. According to Recital 76, the likelihood and severity of the risk to the rights and freedoms of the data subject should be determined by reference to the nature, scope, context and purposes of the processing. GDPR does not indicate security measures which should be applied – in recitals there are only examples such as anonymization or encryption. It depends on a controller’s decision what type of security measures controller considered as sufficient and he will be responsible if these measures are not sufficient or if his identification of risk level is incorrect. Data protection regulation indicates few levels of risk. Recital 76 indicates risk and high risk, but some lawyers think, that there is one more category – low risk/now risk. Low risk/now risk data processing is a situation when it is unlikely to result in a risk to the rights and freedoms of natural persons. GDPR mentions types of data processing when a controller does not have to evaluate level of risk because it has been classified as „high risk” processing e.g. processing on a large scale of special categories of data, processing with using new technologies. The methodology will include analysis of legal regulations e.g. GDPR, the Polish Act on the Protection of personal data. Moreover: ICO Guidelines and articles concerning risk based approach in GDPR. The main conclusion is that an appropriate risk assessment is a key to keeping data safe and avoiding financial penalties. On the one hand, this approach seems to be more equitable, not only for controllers or processors but also for data subjects, but on the other hand, it increases controllers’ uncertainties in the assessment which could have a direct impact on incorrect data protection and potential responsibility for infringement of regulation.

Keywords: general data protection regulation, personal data protection, privacy protection, risk based approach

Procedia PDF Downloads 252
2557 English Learning Speech Assistant Speak Application in Artificial Intelligence

Authors: Albatool Al Abdulwahid, Bayan Shakally, Mariam Mohamed, Wed Almokri

Abstract:

Artificial intelligence has infiltrated every part of our life and every field we can think of. With technical developments, artificial intelligence applications are becoming more prevalent. We chose ELSA speak because it is a magnificent example of Artificial intelligent applications, ELSA speak is a smartphone application that is free to download on both IOS and Android smartphones. ELSA speak utilizes artificial intelligence to help non-native English speakers pronounce words and phrases similar to a native speaker, as well as enhance their English skills. It employs speech-recognition technology that aids the application to excel the pronunciation of its users. This remarkable feature distinguishes ELSA from other voice recognition algorithms and increase the efficiency of the application. This study focused on evaluating ELSA speak application, by testing the degree of effectiveness based on survey questions. The results of the questionnaire were variable. The generality of the participants strongly agreed that ELSA has helped them enhance their pronunciation skills. However, a few participants were unconfident about the application’s ability to assist them in their learning journey.

Keywords: ELSA speak application, artificial intelligence, speech-recognition technology, language learning, english pronunciation

Procedia PDF Downloads 106
2556 Strain Sensing Seams for Monitoring Body Movement

Authors: Sheilla Atieno Odhiambo, Simona Vasile, Alexandra De Raeve, Ann Schwarz

Abstract:

Strain sensing seams have been developed by integrating conductive sewing threads in different types of seams design on a fabric typical for sports clothing using sewing technology. The aim is to have a simple integrated textile strain sensor that can be applied to sports clothing to monitor the movements of the upper body parts of the user during sports. Different types of commercially available sewing threads were used as the bobbin thread in the production of different architectural seam sensors. These conductive sewing threads have been integrated into seams in particular designs using specific seam types. Some of the threads are delicate and needed to be laid into the seam with as little friction as possible and less tension; thus, they could only be sewn in as the bobbin thread and not the needle thread. Stitch type 304; 406; 506; 601;602; 605. were produced. The seams were made on a fabric of 80% polyamide 6.6 and 20% elastane. The seams were cycled(stretch-release-stretch) for five cycles and up to 44 cycles following EN ISO 14704-1: 2005 (modified), using a tensile instrument and the changes in the resistance of the seams with time were recorded using Agilent meter U1273A. Both experiments were conducted simultaneously on the same seam sample. Sensing functionality, among which is sensor gauge and reliability, were evaluated on the promising sensor seams. The results show that the sensor seams made from HC Madeira 40 conductive yarns performed better inseam stitch 304 and 602 compared to the other combination of stitch type and conductive sewing threads. These sensing seams 304, 406 and 602 will further be interconnected to our developed processing and communicating unit and further integrated into a sports clothing prototype that can track body posture. This research is done within the framework of the project SmartSeam.

Keywords: conductive sewing thread, sensing seams, smart seam, sewing technology

Procedia PDF Downloads 190
2555 Synthesis and Properties of Poly(N-(sulfophenyl)aniline) Nanoflowers and Poly(N-(sulfophenyl)aniline) Nanofibers/Titanium dioxide Nanoparticles by Solid Phase Mechanochemical and Their Application in Hybrid Solar Cell

Authors: Mazaher Yarmohamadi-Vasel, Ali Reza Modarresi-Alama, Sahar Shabzendedara

Abstract:

Purpose/Objectives: The first purpose was synthesize Poly(N-(sulfophenyl)aniline) nanoflowers (PSANFLs) and Poly(N-(sulfophenyl)aniline) nanofibers/titanium dioxide nanoparticles ((PSANFs/TiO2NPs) by a solid-state mechano-chemical reaction and template-free method and use them in hybrid solar cell. Also, our second aim was to increase the solubility and the processability of conjugated nanomaterials in water through polar functionalized materials. poly[N-(4-sulfophenyl)aniline] is easily soluble in water because of the presence of polar groups of sulfonic acid in the polymer chain. Materials/Methods: Iron (III) chloride hexahydrate (FeCl3∙6H2O) were bought from Merck Millipore Company. Titanium oxide nanoparticles (TiO2, <20 nm, anatase) and Sodium diphenylamine-4-sulfonate (99%) were bought from Sigma-Aldrich Company. Titanium dioxide nanoparticles paste (PST-20T) was prepared from Sharifsolar Co. Conductive glasses coated with indium tin oxide (ITO) were bought from Xinyan Technology Co (China). For the first time we used the solid-state mechano-chemical reaction and template-free method to synthesize Poly(N-(sulfophenyl)aniline) nanoflowers. Moreover, for the first time we used the same technique to synthesize nanocomposite of Poly(N-(sulfophenyl)aniline) nanofibers and titanium dioxide nanoparticles (PSANFs/TiO2NPs) also for the first time this nanocomposite was synthesized. Examining the results of electrochemical calculations energy gap obtained by CV curves and UV–vis spectra demonstrate that PSANFs/TiO2NPs nanocomposite is a p-n type material that can be used in photovoltaic cells. Doctor blade method was used to creat films for three kinds of hybrid solar cells in terms of different patterns like ITO│TiO2NPs│Semiconductor sample│Al. In the following, hybrid photovoltaic cells in bilayer and bulk heterojunction structures were fabricated as ITO│TiO2NPs│PSANFLs│Al and ITO│TiO2NPs│PSANFs /TiO2NPs│Al, respectively. Fourier-transform infrared spectra, field emission scanning electron microscopy (FE-SEM), ultraviolet-visible spectra, cyclic voltammetry (CV) and electrical conductivity were the analysis that used to characterize the synthesized samples. Results and Conclusions: FE-SEM images clearly demonstrate that the morphology of the synthesized samples are nanostructured (nanoflowers and nanofibers). Electrochemical calculations of band gap from CV curves demonstrated that the forbidden band gap of the PSANFLs and PSANFs/TiO2NPs nanocomposite are 2.95 and 2.23 eV, respectively. I–V characteristics of hybrid solar cells and their power conversion efficiency (PCE) under 100 mWcm−2 irradiation (AM 1.5 global conditions) were measured that The PCE of the samples were 0.30 and 0.62%, respectively. At the end, all the results of solar cell analysis were discussed. To sum up, PSANFLs and PSANFLs/TiO2NPs were successfully synthesized by an affordable and straightforward mechanochemical reaction in solid-state under the green condition. The solubility and processability of the synthesized compounds have been improved compared to the previous work. We successfully fabricated hybrid photovoltaic cells of synthesized semiconductor nanostructured polymers and TiO2NPs as different architectures. We believe that the synthesized compounds can open inventive pathways for the development of other Poly(N-(sulfophenyl)aniline based hybrid materials (nanocomposites) proper for preparing new generation solar cells.

Keywords: mechanochemical synthesis, PSANFLs, PSANFs/TiO2NPs, solar cell

Procedia PDF Downloads 67
2554 On Transferring of Transient Signals along Hollow Waveguide

Authors: E. Eroglu, S. Semsit, E. Sener, U.S. Sener

Abstract:

In Electromagnetics, there are three canonical boundary value problem with given initial conditions for the electromagnetic field sought, namely: Cavity Problem, Waveguide Problem, and External Problem. The Cavity Problem and Waveguide Problem were rigorously studied and new results were arised at original works in the past decades. In based on studies of an analytical time domain method Evolutionary Approach to Electromagnetics (EAE), electromagnetic field strength vectors produced by a time dependent source function are sought. The fields are took place in L2 Hilbert space. The source function that performs signal transferring, energy and surplus of energy has been demonstrated with all clarity. Depth of the method and ease of applications are emerged needs of gathering obtained results. Main discussion is about perfect electric conductor and hollow waveguide. Even if well studied time-domain modes problems are mentioned, specifically, the modes which have a hollow (i.e., medium-free) cross-section domain are considered.

Keywords: evolutionary approach to electromagnetics, time-domain waveguide mode, Neumann problem, Dirichlet boundary value problem, Klein-Gordon

Procedia PDF Downloads 329
2553 A Fast Algorithm for Electromagnetic Compatibility Estimation for Radio Communication Network Equipment in a Complex Electromagnetic Environment

Authors: C. Temaneh-Nyah

Abstract:

Electromagnetic compatibility (EMC) is the ability of a Radio Communication Equipment (RCE) to operate with a desired quality of service in a given Electromagnetic Environment (EME) and not to create harmful interference with other RCE. This paper presents an algorithm which improves the simulation speed of estimating EMC of RCE in a complex EME, based on a stage by stage frequency-energy criterion of filtering. This algorithm considers different interference types including: Blocking and intermodulation. It consist of the following steps: simplified energy criterion where filtration is based on comparing the free space interference level to the industrial noise, frequency criterion which checks whether the interfering emissions characteristic overlap with the receiver’s channels characteristic and lastly the detailed energy criterion where the real channel interference level is compared to the noise level. In each of these stages, some interference cases are filtered out by the relevant criteria. This reduces the total number of dual and different combinations of RCE involved in the tedious detailed energy analysis and thus provides an improved simulation speed.

Keywords: electromagnetic compatibility, electromagnetic environment, simulation of communication network

Procedia PDF Downloads 218
2552 Erector Spine Plane Block versus Para Vertebral Block in Brest Surgery

Authors: Widad Kouachi, Nacera Benmouhoub

Abstract:

Background: Erector spinae plane block (ESP) and thoracic paravertebral block (PVB) are two widely used regional anesthesia techniques in breast cancer surgery. Both techniques aim to improve postoperative pain management and reduce opioid consumption. However, comparative data on their efficacy in oncologic breast surgery remains limited. Objectives: This study aims to compare the efficacy of ESP and PVB in postoperative pain control, patient satisfaction, and opioid consumption in breast cancer surgery. Methods: A randomized, double-blind trial was conducted involving 100 patients undergoing oncologic breast surgery. Patients were randomly assigned to two groups: 50 received ESP, and 50 received PVB. Postoperative pain scores (at rest and during movement), opioid consumption, patient satisfaction, and hospital length of stay were recorded and analyzed. Results: Both ESP and PVB provided effective postoperative analgesia. No significant difference in pain scores was observed between the two groups within the first 24 hours. However, ESP showed a notable advantage in managing chronic postoperative pain at the 6-month follow-up. Opioid consumption was lower in both groups compared to patients without a block. No significant differences in complication rates or hospital stay were noted between the groups. Conclusion: ESP and PVB offer comparable efficacy for immediate postoperative pain control in breast cancer surgery. Nevertheless, ESP may have a superior role in managing long-term pain. Further research is needed to explore the mechanisms behind the observed differences in chronic pain outcomes.

Keywords: pain assessment, brest surgery, bpv block, ESP block

Procedia PDF Downloads 32
2551 Educational Fieldworks towards Urban Biodiversity Preservation: Case Study of Japanese Gardens Management of Kanazawa City, Japan

Authors: Aida Mammadova, Juan Pastor Ivars

Abstract:

Japanese gardens can be considered as the unique hubs to preserve urban biodiversity, as they provide the habitat for the diverse network of living organisms, facilitating to the movement of the rare species around the urban landscape, became the refuge for the moss and many endangered species. For the centuries, Japanese gardens were considered as ecologically sustainable and well-organized ecosystems, due to the skilled maintenances and management. However, unfortunately, due to the depopulations and ageing in Japanese societies, gardens are becoming more abandoned, and there is an urgent need to increase the awareness about the importance of the Japanese gardens to preserve the urban biodiversity. In this study, we have conducted the participatory educational field trips for 12 students into the to the five gardens protected by Kanazawa City and learned about the preservation activities conducted at the governmental, municipal, and local levels. After the courses, students have found a strong linkage between the gardens with the traditional culture. Kanazawa City, for more than 400 years is famous with traditional craft makings and tea ceremonies, and it was noticed that the cultural diversity of the city was strongly supported by the biodiversity of the gardens, and loss of the gardens would bring to the loss of the traditional culture. Using the experiential approach during the fieldworks, it was observed by the students that the linkage between the bio-cultural diversity strongly depends on humans’ activities. The continuous management and maintenance of the gardens are the contributing factor for the preservation of urban diversity. However, garden management is very time and capital consuming process, and it was also noticed that there is a big need to attract all levels of the society to preserve the urban biodiversity through the participatory urbanism.

Keywords: biodiversity, conservation, educational fieldwork, Japanese gardens

Procedia PDF Downloads 212
2550 Theoretical Investigations and Simulation of Electromagnetic Ion Cyclotron Waves in the Earth’s Magnetosphere Through Magnetospheric Multiscale Mission

Authors: A. A. Abid

Abstract:

Wave-particle interactions are considered to be the paramount in the transmission of energy in collisionless space plasmas, where electromagnetic fields confined the charged particles movement. One of the distinct features of energy transfer in collisionless plasma is wave-particle interaction which is ubiquitous in space plasmas. The three essential populations of the inner magnetosphere are cold plasmaspheric plasmas, ring-currents, and radiation belts high energy particles. The transition region amid such populations initiates wave-particle interactions among distinct plasmas and the wave mode perceived in the magnetosphere is the electromagnetic ion cyclotron (EMIC) wave. These waves can interact with numerous particle species resonantly, accompanied by plasma particle heating is still in debate. In this work we paid particular attention to how EMIC waves impact plasma species, specifically how they affect the heating of electrons and ions during storm and substorm in the Magnetosphere. Using Magnetospheric Multiscale (MMS) mission and electromagnetic hybrid simulation, this project will investigate the energy transfer mechanism (e.g., Landau interactions, bounce resonance interaction, cyclotron resonance interaction, etc.) between EMIC waves and cold-warm plasma populations. Other features such as the production of EMIC waves and the importance of cold plasma particles in EMIC wave-particle interactions will also be worth exploring. Wave particle interactions, electromagnetic hybrid simulation, electromagnetic ion cyclotron (EMIC) waves, Magnetospheric Multiscale (MMS) mission, space plasmas, inner magnetosphere

Keywords: MMS, magnetosphere, wave particle interraction, non-maxwellian distribution

Procedia PDF Downloads 62
2549 Development of Multifunctional Yarns and Fabrics for Interactive Textiles

Authors: Muhammad Bilal Qadir, Danish Umer, Amir Shahzad

Abstract:

The use of conductive materials in smart and interactive textiles is gaining significant importance for creating value addition, innovation, and functional product development. These products find their potential applications in health monitoring, military, protection, communication, sensing, monitoring, actuation, fashion, and lifestyles. The materials which are most commonly employed in such type of interactive textile include intrinsically conducting polymers, conductive inks, and metallic coating on textile fabrics and inherently conducting metallic fibre yarns. In this study, silver coated polyester filament yarn is explored for the development of multifunctional interactive gloves. The composite yarn was developed by covering the silver coated polyester filament around the polyester spun yarn using hollow spindle technique. The electrical and tensile properties of the yarn were studied. This novel yarn was used to manufacture a smart glove to explore the antibacterial, functional, and interactive properties of the yarn. The change in electrical resistance due to finger movement at different bending positions and antimicrobial properties were studied. This glove was also found useful as an interactive tool to operate the commonly used touch screen devices due to its conductive nature. The yarn can also be used to develop the sensing elements like stretch, strain, and piezoresistive sensors. Such sensor can be effectively used in medical and sports textile for performance monitoring, vital signs monitoring and development of antibacterial textile for healthcare and hygiene.

Keywords: conductive yarn, interactive textiles, piezoresistive sensors, smart gloves

Procedia PDF Downloads 243
2548 From Communalism to Individualism: Critical Insights on the Changing Nature of Hausa Society in Northern Nigeria

Authors: Waisu Iliyasu

Abstract:

It is a well-known fact that the Hausa people have, since time immemorial, had a distinct culture of living together and assisting one another. In fact, the communal bond has been an important aspect that bound society together. Over the years, this communal bond has been eroded, giving way to an individualistic society whereby everyone lives a different way of life free from social cohesion and family bonds. It is against this backdrop the paper examines the forces of change in Hausa society and their effect on communal living. The paper also highlights the factors and actors involved in such change and how, in the later years of Nigeria’s independence, such factors transformed the social, political and economic structures of Hausa society in Northern Nigeria. In writing this paper, qualitative research is used in which questionnaires and oral interviews were used as a method of data collection. Along this way, other sources like primary and secondary are also used extensively in writing the paper. The concluding part of the paper reveals that unless the problems of elitism, corruption and poverty are addressed, the gap between have and have-nots, wealthy and poor, literate and illiterate, will continue to widen, thereby leading to an individualistic society that negates all forms of communal living.

Keywords: communalism, individualism, historical insights, Hausa land

Procedia PDF Downloads 69
2547 Leading with Skill Development: A Collaborative and Community Based Approach to Ending Open Defecation in Rural India via Computerized Technical Vocational Education and Training

Authors: Srividya Sheshadri, Christopher Coley, Roa. R. Bhavani

Abstract:

India currently accounts for 60 percent of the open defecation that is practiced globally. While research in the domain of sanitation development makes it apparent that girls and women living in rural India are disproportionately affected, interventions to address this dilemma are lacking. An important but relatively unexplored connection with poor sanitation is that women living in rural India are not only the largest marginalized group without access to adequate sanitation facilities, they also represent a majority of India’s unskilled workers. By training women to build their own toilets, through an approach that has demonstrated success in empowering marginalized communities through technical and vocational education and training (TVET), a collaborative dynamic emerges that can engage entire communities in the movement towards total sanitation. Designed and implemented by Amrita University, this technology-enhanced, community-based approach to skill development, known as Amrita computerized Vocational Education and Training (or Amrita cVET), has begun to show promise in addressing the struggle to end open defecation, and raise sanitation awareness, as well as strengthen personal and community development among women living in rural India. While Amrita cVET project, known as Women Empowerment: Sanitation, is currently in implementation in seven states throughout India, this paper will discuss early stages of the intervention in rural villages within the Indian states of: Karnataka and Goa, where previous sanitation efforts have failed to take hold.

Keywords: community based development, empowerment studies, sanitation in India, computerized vocational training

Procedia PDF Downloads 388
2546 Algorithm Development of Individual Lumped Parameter Modelling for Blood Circulatory System: An Optimization Study

Authors: Bao Li, Aike Qiao, Gaoyang Li, Youjun Liu

Abstract:

Background: Lumped parameter model (LPM) is a common numerical model for hemodynamic calculation. LPM uses circuit elements to simulate the human blood circulatory system. Physiological indicators and characteristics can be acquired through the model. However, due to the different physiological indicators of each individual, parameters in LPM should be personalized in order for convincing calculated results, which can reflect the individual physiological information. This study aimed to develop an automatic and effective optimization method to personalize the parameters in LPM of the blood circulatory system, which is of great significance to the numerical simulation of individual hemodynamics. Methods: A closed-loop LPM of the human blood circulatory system that is applicable for most persons were established based on the anatomical structures and physiological parameters. The patient-specific physiological data of 5 volunteers were non-invasively collected as personalized objectives of individual LPM. In this study, the blood pressure and flow rate of heart, brain, and limbs were the main concerns. The collected systolic blood pressure, diastolic blood pressure, cardiac output, and heart rate were set as objective data, and the waveforms of carotid artery flow and ankle pressure were set as objective waveforms. Aiming at the collected data and waveforms, sensitivity analysis of each parameter in LPM was conducted to determine the sensitive parameters that have an obvious influence on the objectives. Simulated annealing was adopted to iteratively optimize the sensitive parameters, and the objective function during optimization was the root mean square error between the collected waveforms and data and simulated waveforms and data. Each parameter in LPM was optimized 500 times. Results: In this study, the sensitive parameters in LPM were optimized according to the collected data of 5 individuals. Results show a slight error between collected and simulated data. The average relative root mean square error of all optimization objectives of 5 samples were 2.21%, 3.59%, 4.75%, 4.24%, and 3.56%, respectively. Conclusions: Slight error demonstrated good effects of optimization. The individual modeling algorithm developed in this study can effectively achieve the individualization of LPM for the blood circulatory system. LPM with individual parameters can output the individual physiological indicators after optimization, which are applicable for the numerical simulation of patient-specific hemodynamics.

Keywords: blood circulatory system, individual physiological indicators, lumped parameter model, optimization algorithm

Procedia PDF Downloads 137