Search results for: single cell omics
4689 Wave Powered Airlift PUMP for Primarily Artificial Upwelling
Authors: Bruno Cossu, Elio Carlo
Abstract:
The invention (patent pending) relates to the field of devices aimed to harness wave energy (WEC) especially for artificial upwelling, forced downwelling, production of compressed air. In its basic form, the pump consists of a hydro-pneumatic machine, driven by wave energy, characterised by the fact that it has no moving mechanical parts, and is made up of only two structural components: an hollow body, which is open at the bottom to the sea and partially immersed in sea water, and a tube, both joined together to form a single body. The shape of the hollow body is like a mushroom whose cap and stem are hollow; the stem is open at both ends and the lower part of its surface is crossed by holes; the tube is external and coaxial to the stem and is joined to it so as to form a single body. This shape of the hollow body and the type of connection to the tube allows the pump to operate simultaneously as an air compressor (OWC) on the cap side, and as an airlift on the stem side. The pump can be implemented in four versions, each of which provides different variants and methods of implementation: 1) firstly, for the artificial upwelling of cold, deep ocean water; 2) secondly, for the lifting and transfer of these waters to the place of use (above all, fish farming plants), even if kilometres away; 3) thirdly, for the forced downwelling of surface sea water; 4) fourthly, for the forced downwelling of surface water, its oxygenation, and the simultaneous production of compressed air. The transfer of the deep water or the downwelling of the raised surface water (as for pump versions indicated in points 2 and 3 above), is obtained by making the water raised by the airlift flow into the upper inlet of another pipe, internal or adjoined to the airlift; the downwelling of raised surface water, oxygenation, and the simultaneous production of compressed air (as for the pump version indicated in point 4), is obtained by installing a venturi tube on the upper end of the pipe, whose restricted section is connected to the external atmosphere, so that it also operates like a hydraulic air compressor (trompe). Furthermore, by combining one or more pumps for the upwelling of cold, deep water, with one or more pumps for the downwelling of the warm surface water, the system can be used in an Ocean Thermal Energy Conversion plant to supply the cold and the warm water required for the operation of the same, thus allowing to use, without increased costs, in addition to the mechanical energy of the waves, for the purposes indicated in points 1 to 4, the thermal one of the marine water treated in the process.Keywords: air lifted upwelling, fish farming plant, hydraulic air compressor, wave energy converter
Procedia PDF Downloads 1484688 Analysis of the Degradation of the I-V Curve of the PV Module in a Harsh Environment: Estimation of the Site-Specific Factor (Installation Area)
Authors: Maibigue Nanglet, Arafat Ousman Béchir, Mahamat Hassan Béchir
Abstract:
The economy of Central African countries is growing very fast, and the demand for energy is increasing every day. As a result, insufficient power generation is one of the major problems slowing down development. This paper explores the factors of degradation of the I-V curve of the PV Generator (GPV) in harsh environments, taking the case of two locals: Mongo and Abeche. Its objective is to quantify the voltage leaks due to the different GPV installation areas; after using the Newton-Raphson numerical method of the solar cell, a survey of several experimental measurement points was made. The results of the simulation in MATLAB/Simulink show a relative power loss factor of 11.8765% on the GPVs installed in Mongo and 8.5463% on those installed in Abeche; these results allow us to say that the supports on which the modules are installed have an average impact of 10.2114% on their efficiency.Keywords: calculation, degradation, site, GPV, severe environment
Procedia PDF Downloads 364687 Synthesis of Microporous Interconnected Polymeric Foam of Poly (Glycidyl Methacrylate-Co-Divinylbenzene-Co-Butyl Acrylate) by Using Aqueous Foam as a Template
Authors: A. A. Gadgeel, S. T. Mhaske
Abstract:
Hexadecyltrimethylammonium bromide (HTAB) modified nano silica were used as pore stabilizer for the preparation of interconnected macroporous copolymer foam of glycidyl methacrylate (GMA), divinylbenzene (DVB) and tert-butyl acrylate (BA). The polymerization of air infused aqueous foam is carried out through free radical thermal initiator. The porosity of the polymerized foam depends on the concentration of HTAB used to control the hydrophobic and hydrophilic behavior of silica nanoparticle. Modified silica particle results to form closed cell foam with 74% of porosity for 60% of air infusion during aqueous foaming. The preliminary structure of microfoam was observed through optical microscopy, whereas for a better understanding of morphology SEM was used. The proposed route is an eco-friendly route for synthesizing polymeric microporous polymer as compared to other chemical and additive-based routes available.Keywords: air-infused, interconnected microporous, porosity, aqueous foam
Procedia PDF Downloads 1204686 Combined Fuzzy and Predictive Controller for Unity Power Factor Converter
Authors: Abdelhalim Kessal
Abstract:
This paper treats a design of combined control of a single phase power factor correction (PFC). The strategy of the proposed control is based on two parts, the first, for the outer loop (DC output regulated voltage), and the second govern the input current of the converter in order to achieve a sinusoidal form in phase with the grid voltage. Two kinds of regulators are used, Fuzzy controller for the outer loop and predictive controller for the inner loop. The controllers are verified and discussed through simulation under MATLAB/Simulink platform. Also an experimental confirmation is applied. Results present a high dynamic performance under various parameters changes.Keywords: boost converter, harmonic distortion, Fuzzy, predictive, unity power factor
Procedia PDF Downloads 4924685 Coupling of Microfluidic Droplet Systems with ESI-MS Detection for Reaction Optimization
Authors: Julia R. Beulig, Stefan Ohla, Detlev Belder
Abstract:
In contrast to off-line analytical methods, lab-on-a-chip technology delivers direct information about the observed reaction. Therefore, microfluidic devices make an important scientific contribution, e.g. in the field of synthetic chemistry. Herein, the rapid generation of analytical data can be applied for the optimization of chemical reactions. These microfluidic devices enable a fast change of reaction conditions as well as a resource saving method of operation. In the presented work, we focus on the investigation of multiphase regimes, more specifically on a biphasic microfluidic droplet systems. Here, every single droplet is a reaction container with customized conditions. The biggest challenge is the rapid qualitative and quantitative readout of information as most detection techniques for droplet systems are non-specific, time-consuming or too slow. An exception is the electrospray mass spectrometry (ESI-MS). The combination of a reaction screening platform with a rapid and specific detection method is an important step in droplet-based microfluidics. In this work, we present a novel approach for synthesis optimization on the nanoliter scale with direct ESI-MS detection. The development of a droplet-based microfluidic device, which enables the modification of different parameters while simultaneously monitoring the effect on the reaction within a single run, is shown. By common soft- and photolithographic techniques a polydimethylsiloxane (PDMS) microfluidic chip with different functionalities is developed. As an interface for the MS detection, we use a steel capillary for ESI and improve the spray stability with a Teflon siphon tubing, which is inserted underneath the steel capillary. By optimizing the flow rates, it is possible to screen parameters of various reactions, this is exemplarity shown by a Domino Knoevenagel Hetero-Diels-Alder reaction. Different starting materials, catalyst concentrations and solvent compositions are investigated. Due to the high repetition rate of the droplet production, each set of reaction condition is examined hundreds of times. As a result, of the investigation, we receive possible reagents, the ideal water-methanol ratio of the solvent and the most effective catalyst concentration. The developed system can help to determine important information about the optimal parameters of a reaction within a short time. With this novel tool, we make an important step on the field of combining droplet-based microfluidics with organic reaction screening.Keywords: droplet, mass spectrometry, microfluidics, organic reaction, screening
Procedia PDF Downloads 3014684 Correlation between the Levels of Some Inflammatory Cytokines/Haematological Parameters and Khorana Scores of Newly Diagnosed Ambulatory Cancer Patients
Authors: Angela O. Ugwu, Sunday Ocheni
Abstract:
Background: Cancer-associated thrombosis (CAT) is a cause of morbidity and mortality among cancer patients. Several risk factors for developing venous thromboembolism (VTE) also coexist with cancer patients, such as chemotherapy and immobilization, thus contributing to the higher risk of VTE in cancer patients when compared to non-cancer patients. This study aimed to determine if there is any correlation between levels of some inflammatory cytokines/haematological parameters and Khorana scores of newly diagnosed chemotherapy naïve ambulatory cancer patients (CNACP). Methods: This was a cross-sectional analytical study carried out from June 2021 to May 2022. Eligible newly diagnosed cancer patients 18 years and above (case group) were enrolled consecutively from the adult Oncology Clinics of the University of Nigeria Teaching Hospital, Ituku/Ozalla (UNTH). The control group was blood donors at UNTH Ituku/Ozalla, Enugu blood bank, and healthy members of the Medical and Dental Consultants Association of Nigeria (MDCAN), UNTH Chapter. Blood samples collected from the participants were assayed for IL-6, TNF-Alpha, and haematological parameters such as haemoglobin, white blood cell count (WBC), and platelet count. Data were entered into an Excel worksheet and were then analyzed using Statistical Package for Social Sciences (SPSS) computer software version 21.0 for windows. A P value of < 0.05 was considered statistically significant. Results: A total of 200 participants (100 cases and 100 controls) were included in the study. The overall mean age of the participants was 47.42 ±15.1 (range 20-76). The sociodemographic characteristics of the two groups, including age, sex, educational level, body mass index (BMI), and occupation, were similar (P > 0.05). Following One Way ANOVA, there were significant differences between the mean levels of interleukin-6 (IL-6) (p = 0.036) and tumor necrotic factor-α (TNF-α) (p = 0.001) in the three Khorana score groups of the case group. Pearson’s correlation analysis showed a significant positive correlation between the Khorana scores and IL-6 (r=0.28, p = 0.031), TNF-α (r= 0.254, p= 0.011), and PLR (r= 0.240, p=0.016). The mean serum levels of IL-6 were significantly higher in CNACP than in the healthy controls [8.98 (8-12) pg/ml vs. 8.43 (2-10) pg/ml, P=0.0005]. There were also significant differences in the mean levels of the haemoglobin (Hb) level (P < 0.001)); white blood cell (WBC) count ((P < 0.001), and platelet (PL) count (P = 0.005) between the two groups of participants. Conclusion: There is a significant positive correlation between the serum levels of IL-6, TNF-α, and PLR and the Khorana scores of CNACP. The mean serum levels of IL-6, TNF-α, PLR, WBC, and PL count were significantly higher in CNACP than in the healthy controls. Ambulatory cancer patients with high-risk Khorana scores may benefit from anti-inflammatory drugs because of the positive correlation with inflammatory cytokines. Recommendations: Ambulatory cancer patients with 2 Khorana scores may benefit from thromboprophylaxis since they have higher Khorana scores. A multicenter study with a heterogeneous population and larger sample size is recommended in the future to further elucidate the relationship between IL-6, TNF-α, PLR, and the Khorana scores among cancer patients in the Nigerian population.Keywords: thromboprophylaxis, cancer, Khorana scores, inflammatory cytokines, haematological parameters
Procedia PDF Downloads 824683 Ion Thruster Grid Lifetime Assessment Based on Its Structural Failure
Authors: Juan Li, Jiawen Qiu, Yuchuan Chu, Tianping Zhang, Wei Meng, Yanhui Jia, Xiaohui Liu
Abstract:
This article developed an ion thruster optic system sputter erosion depth numerical 3D model by IFE-PIC (Immersed Finite Element-Particle-in-Cell) and Mont Carlo method, and calculated the downstream surface sputter erosion rate of accelerator grid; Compared with LIPS-200 life test data, the results of the numerical model are in reasonable agreement with the measured data. Finally, we predict the lifetime of the 20cm diameter ion thruster via the erosion data obtained with the model. The ultimate result demonstrates that under normal operating condition, the erosion rate of the grooves wears on the downstream surface of the accelerator grid is 34.6μm⁄1000h, which means the conservative lifetime until structural failure occurring on the accelerator grid is 11500 hours.Keywords: ion thruster, accelerator gird, sputter erosion, lifetime assessment
Procedia PDF Downloads 5654682 An Advanced Match-Up Scheduling Under Single Machine Breakdown
Abstract:
When a machine breakdown forces a Modified Flow Shop (MFS) out of the prescribed state, the proposed strategy reschedules part of the initial schedule to match up with the preschedule at some point. The objective is to create a new schedule that is consistent with the other production planning decisions like material flow, tooling and purchasing by utilizing the time critical decision making concept. We propose a new rescheduling strategy and a match-up point determination procedure through a feedback mechanism to increase both the schedule quality and stability. The proposed approach is compared with alternative reactive scheduling methods under different experimental settings.Keywords: advanced critical task methods modified flow shop (MFS), Manufacturing, experiment, determination
Procedia PDF Downloads 4054681 Size Selective Synthesis of Sulfur Nanoparticles and Their Anticancer Activity
Authors: Anas Al-Ali, Mohammed Suleiman, Ayman Hussein
Abstract:
Sulfur is an important element has many practical applications in present as nanoparticles. Nanosize sulfur particles also have many important applications like in pharmaceuticals, medicine, syn-thesis of nano-composites for lithium batteries, modification of carbon nano tubes. Different methods were used for nano-sized particle synthesis; among those, chemical precipitation, electrochemical method, micro emulsion technique, composing of oil, surfactant, co-surfactant, aqueous phases with the specific compositions and ultrasonic treatment of sulfur-cystine solution. In this work Sulfur nanoparticles (S NPs) were prepared by a quick precipitation method with and without using a surfactant to stabilize the formed S NPs. The synthesized S NPs were characterized by XRD, SEM and TEM in order to confirm their sizes and structures.Application of nanotechnology is suggested for diag-nosis and treatment of cancer. The anticancer activity of the prepared S NPs has been tested on various types of cancer cell clones including leukemia, kidney and colon cancers.Keywords: sulfur nanoparticles (S-NPs), TEM, SEM, XRD
Procedia PDF Downloads 6544680 Size Selective Synthesis of Sulfur Nanoparticles and Their Anti Cancer Activity
Authors: Anas Al-Ali, Mohammed Suleiman, Ayman Hussein
Abstract:
Sulfur is an important element has many practical applications in present as nanoparticles. Nanosize sulfur particles also have many important applications like in pharmaceuticals, medicine, synthesis of nanocomposites for lithium batteries, modification of carbon nanotubes. Different methods were used for nano-sized particle synthesis; among those, chemical precipitation, electrochemical method, micro-emulsion technique, composing of oil, surfactant, co-surfactant, aqueous phases with the specific compositions and ultrasonic treatment of sulfur-cystine solution. In this work, sulfur nanoparticles (S NPs) were prepared by a quick precipitation method with and without using a surfactant to stabilize the formed S NPs. The synthesized S NPs were characterized by XRD, SEM, and TEM in order to confirm their sizes and structures. Application of nanotechnology is suggested for diagnosis and treatment of cancer. The anticancer activity of the prepared S NPs has been tested on various types of cancer cell clones including leukemia, kidney and colon cancers.Keywords: sulfur nanoparticles (S-NPs), TEM, SEM, anti cancer activity, XRD
Procedia PDF Downloads 5164679 Working Mode and Key Technology of Thermal Vacuum Test Software for Spacecraft Test
Authors: Zhang Lei, Zhan Haiyang, Gu Miao
Abstract:
A universal software platform is developed for improving the defects in the practical one. This software platform has distinct advantages in modularization, information management, and the interfaces. Several technologies such as computer technology, virtualization technology, network technology, etc. are combined together in this software platform, and four working modes are introduced in this article including single mode, distributed mode, cloud mode, and the centralized mode. The application area of the software platform is extended through the switch between these working modes. The software platform can arrange the thermal vacuum test process automatically. This function can improve the reliability of thermal vacuum test.Keywords: software platform, thermal vacuum test, control and measurement, work mode
Procedia PDF Downloads 4154678 Evaluation of Hydrogen Particle Volume on Surfaces of Selected Nanocarbons
Authors: M. Ziółkowska, J. T. Duda, J. Milewska-Duda
Abstract:
This paper describes an approach to the adsorption phenomena modeling aimed at specifying the adsorption mechanisms on localized or nonlocalized adsorbent sites, when applied to the nanocarbons. The concept comes from the fundamental thermodynamic description of adsorption equilibrium and is based on numerical calculations of the hydrogen adsorbed particles volume on the surface of selected nanocarbons: single-walled nanotube and nanocone. This approach enables to obtain information on adsorption mechanism and then as a consequence to take appropriate mathematical adsorption model, thus allowing for a more reliable identification of the material porous structure. Theoretical basis of the approach is discussed and newly derived results of the numerical calculations are presented for the selected nanocarbons.Keywords: adsorption, mathematical modeling, nanocarbons, numerical analysis
Procedia PDF Downloads 2684677 Effect on Bandwidth of Using Double Substrates Based Metamaterial Planar Antenna
Authors: Smrity Dwivedi
Abstract:
The present paper has revealed the effect of double substrates over a bandwidth performance for planar antennas. The used material has its own importance to get minimum return loss and improved directivity. The author has taken double substrates to enhance the efficiency in terms of gain of antenna. Metamaterial based antenna has its own specific structure which increased the performance of antenna. Improved return loss is -20 dB, and the voltage standing wave ratio (VSWR) is 1.2, which is better than single substrate having return loss of -15 dB and VSWR of 1.4. Complete results are obtained using commercial software CST microwave studio.Keywords: CST microwave studio, metamaterial, return loss, VSWR
Procedia PDF Downloads 3904676 Enhancement of Radiosensitization by Aptamer 5TR1-Functionalized AgNCs for Triple-Negative Breast Cancer
Authors: Xuechun Kan, Dongdong Li, Fan Li, Peidang Liu
Abstract:
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer with a poor prognosis, and radiotherapy is one of the main treatment methods. However, due to the obvious resistance of tumor cells to radiotherapy, high dose of ionizing radiation is required during radiotherapy, which causes serious damage to normal tissues near the tumor. Therefore, how to improve radiotherapy resistance and enhance the specific killing of tumor cells by radiation is a hot issue that needs to be solved in clinic. Recent studies have shown that silver-based nanoparticles have strong radiosensitization, and silver nanoclusters (AgNCs) also provide a broad prospect for tumor targeted radiosensitization therapy due to their ultra-small size, low toxicity or non-toxicity, self-fluorescence and strong photostability. Aptamer 5TR1 is a 25-base oligonucleotide aptamer that can specifically bind to mucin-1 highly expressed on the membrane surface of TNBC 4T1 cells, and can be used as a highly efficient tumor targeting molecule. In this study, AgNCs were synthesized by DNA template based on 5TR1 aptamer (NC-T5-5TR1), and its role as a targeted radiosensitizer in TNBC radiotherapy was investigated. The optimal DNA template was first screened by fluorescence emission spectroscopy, and NC-T5-5TR1 was prepared. NC-T5-5TR1 was characterized by transmission electron microscopy, ultraviolet-visible spectroscopy and dynamic light scattering. The inhibitory effect of NC-T5-5TR1 on cell activity was evaluated using the MTT method. Laser confocal microscopy was employed to observe NC-T5-5TR1 targeting 4T1 cells and verify its self-fluorescence characteristics. The uptake of NC-T5-5TR1 by 4T1 cells was observed by dark-field imaging, and the uptake peak was evaluated by inductively coupled plasma mass spectrometry. The radiation sensitization effect of NC-T5-5TR1 was evaluated through cell cloning and in vivo anti-tumor experiments. Annexin V-FITC/PI double staining flow cytometry was utilized to detect the impact of nanomaterials combined with radiotherapy on apoptosis. The results demonstrated that the particle size of NC-T5-5TR1 is about 2 nm, and the UV-visible absorption spectrum detection verifies the successful construction of NC-T5-5TR1, and it shows good dispersion. NC-T5-5TR1 significantly inhibited the activity of 4T1 cells and effectively targeted and fluoresced within 4T1 cells. The uptake of NC-T5-5TR1 reached its peak at 3 h in the tumor area. Compared with AgNCs without aptamer modification, NC-T5-5TR1 exhibited superior radiation sensitization, and combined radiotherapy significantly inhibited the activity of 4T1 cells and tumor growth in 4T1-bearing mice. The apoptosis level of NC-T5-5TR1 combined with radiation was significantly increased. These findings provide important theoretical and experimental support for NC-T5-5TR1 as a radiation sensitizer for TNBC.Keywords: 5TR1 aptamer, silver nanoclusters, radio sensitization, triple-negative breast cancer
Procedia PDF Downloads 614675 Mathematical Modeling of the Working Principle of Gravity Gradient Instrument
Authors: Danni Cong, Meiping Wu, Hua Mu, Xiaofeng He, Junxiang Lian, Juliang Cao, Shaokun Cai, Hao Qin
Abstract:
Gravity field is of great significance in geoscience, national economy and national security, and gravitational gradient measurement has been extensively studied due to its higher accuracy than gravity measurement. Gravity gradient sensor, being one of core devices of the gravity gradient instrument, plays a key role in measuring accuracy. Therefore, this paper starts from analyzing the working principle of the gravity gradient sensor by Newton’s law, and then considers the relative motion between inertial and non-inertial systems to build a relatively adequate mathematical model, laying a foundation for the measurement error calibration, measurement accuracy improvement.Keywords: gravity gradient, gravity gradient sensor, accelerometer, single-axis rotation modulation
Procedia PDF Downloads 3274674 The Molecular Biology Behind the Spread of Breast Cancer Inflammatory Breast Cancer: Symptoms and Genetic Factors
Authors: Fakhrosadat Sajjadian
Abstract:
In the USA, about 5% of women diagnosed with breast cancer annually are affected by Inflammatory Breast Cancer (IBC), which is a highly aggressive type of Locally Advanced Breast Cancer (LABC). It is a type of LABC that is clinically and pathologically different, known for its rapid growth, invasiveness, and ability to promote the growth of blood vessels. Almost all women are found to have lymph nodes affected upon diagnosis, while around 36% show obvious distant metastases. Even with the latest improvements in multimodality therapies, the outlook for patients with IBC remains bleak, as the average disease-free survival time is less than 2.5 years. Recent research on the genetic factors responsible for the IBC phenotype has resulted in the discovery of genes that play a role in the advancement of this illness. The development of primary human cell lines and animal models has assisted in this research. These advancements offer new possibilities for future actions in identifying and treating IBC.Keywords: breast cancer, inflammation, diagnosis, IBC, LABC
Procedia PDF Downloads 434673 Hybrid Molecules: A Promising Approach to Design Potent Antimicrobial and Anticancer Drugs
Authors: Blessing Atim Aderibigbe
Abstract:
A series of amine/ester-linked hybrid compounds containing pharmacophores, such as ursolic acid, oleanolic acid, ferrocene and bisphosphonates, were synthesized in an attempt to develop potent antibacterial and anticancer agents. Their structures were analyzed and confirmed using Nuclear Magnetic Resonance, Fourier Transform Infrared Spectroscopy, and mass spectroscopy. All the synthesized hybrid compounds were evaluated for their antibacterial activities against eleven selected bacterial strains using a serial dilution method. Some of the compounds displayed significant antibacterial activity against most of the bacterial and fungal strains. In addition, the in vitro cytotoxicity of these compounds was also performed against selected cancer cell lines. Some of the compounds were also found to be more active than their parent compounds, revealing the efficacy of designing hybrid molecules using plant-based bioactive agents.Keywords: ursolic acid, hybrid drugs, oleanolic acid, bisphosphonates
Procedia PDF Downloads 864672 Rooting Out Breast Cancer by Repressing ER Gene Expression: Correlating Bioactivity of Pomegranate Rind with Chemical Constituents Identified by HPLC-MS/MS
Authors: Alaa M. M. Badr Eldin, Marwa I. Ezzat, Mohammed S. Sedeek, Manal S. Afifi, Omar M. Sabry
Abstract:
Cytotoxic activity of the total methanol extract against breast cancer cell line MCF-7 was amazing IC50 at 54 ug/ml. 130 polyphenolic compounds were tentatively identified in pomegranate peel (Punica granatum L.) methanol extract using HPLC-MS/MS technique. The antiestrogenic activity of the polyphenolic constituents found in pomegranate extract was confirmed experimentally in-vitro and by the in-silico molecular docking using gallagic acid, ellagic acid, and Punicalagin as these are considered model compounds confirmed in pomegranate peel extract. The methanolic extract was found to suppress ER, TGF-β, and NF-kB in-vitro gene expression strongly, and that was verified by qPCR and Western Blot gel electrophoresis techniques.Keywords: HPLC-MS/MS, pomegranate, breast cancer, ovarian cancer, ER, TGF-β, NF-kB
Procedia PDF Downloads 1024671 Numerical Modelling of Effective Diffusivity in Bone Tissue Engineering
Authors: Ayesha Sohail, Khadija Maqbool, Anila Asif, Haroon Ahmad
Abstract:
The field of tissue engineering is an active area of research. Bone tissue engineering helps to resolve the clinical problems of critical size and non-healing defects by the creation of man-made bone tissue. We will design and validate an efficient numerical model, which will simulate the effective diffusivity in bone tissue engineering. Our numerical model will be based on the finite element analysis of the diffusion-reaction equations. It will have the ability to optimize the diffusivity, even at multi-scale, with the variation of time. It will also have a special feature, with which we will not only be able to predict the oxygen, glucose and cell density dynamics, more accurately, but will also sort the issues arising due to anisotropy. We will fix these problems with the help of modifying the governing equations, by selecting appropriate spatio-temporal finite element schemes, by adaptive grid refinement strategy and by transient analysis.Keywords: scaffolds, porosity, diffusion, transient analysis
Procedia PDF Downloads 5414670 Sensitive Analysis of the ZF Model for ABC Multi Criteria Inventory Classification
Authors: Makram Ben Jeddou
Abstract:
The ABC classification is widely used by managers for inventory control. The classical ABC classification is based on the Pareto principle and according to the criterion of the annual use value only. Single criterion classification is often insufficient for a closely inventory control. Multi-criteria inventory classification models have been proposed by researchers in order to take into account other important criteria. From these models, we will consider the ZF model in order to make a sensitive analysis on the composite score calculated for each item. In fact, this score based on a normalized average between a good and a bad optimized index can affect the ABC items classification. We will then focus on the weights assigned to each index and propose a classification compromise.Keywords: ABC classification, multi criteria inventory classification models, ZF-model
Procedia PDF Downloads 5084669 Mechanism of Dual Ferroic Properties Formation in Substituted M-Type Hexaferrites
Authors: A. V. Trukhanov, S. V. Trukhanov, L. V. Panina, V. G. Kostishin, V. A. Turchenko
Abstract:
It has been shown that BaFe12O19 is a perspective room-temperature multiferroic material. A large spontaneous polarization was observed for the BaFe12O19 ceramics revealing a clear ferroelectric hysteresis loop. The maximum polarization was estimated to be approximately 11.8 μC/cm2. The FeO6 octahedron in its perovskite-like hexagonal unit cell and the shift of Fe3+ off the center of octahedron are suggested to be the origin of the polarization in BaFe12O19. The magnetic field induced electric polarization has been also observed in the doped BaFe12-x-δScxMδO19 (δ=0.05) at 10 K and in the BaScxFe12−xO19 and SrScxFe12−xO19 (x = 1.3–1.7) M-type hexaferrites. The investigated BaFe12-xDxO19 (x=0.1, D-Al3+, In3+) samples have been obtained by two-step “topotactic” reactions. The powder neutron investigations of the samples were performed by neutron time of flight method at High Resolution Fourier Diffractometer.Keywords: substituted hexaferrites, ferrimagnetics, ferroelectrics, neutron powder diffraction, crystal and magnetic structures
Procedia PDF Downloads 2574668 Opto-Mechanical Characterization of Aspheric Lenses from the Hybrid Method
Authors: Aliouane Toufik, Hamdi Amine, Bouzid Djamel
Abstract:
Aspheric optical components are an alternative to the use of conventional lenses in the implementation of imaging systems for the visible range. Spherical lenses are capable of producing aberrations. Therefore, they are not able to focus all the light into a single point. Instead, aspherical lenses correct aberrations and provide better resolution even with compact lenses incorporating a small number of lenses. Metrology of these components is very difficult especially when the resolution requirements increase and insufficient or complexity of conventional tools requires the development of specific approaches to characterization. This work is part of the problem existed because the objectives are the study and comparison of different methods used to measure surface rays hybrid aspherical lenses.Keywords: manufacture of lenses, aspherical surface, precision molding, radius of curvature, roughness
Procedia PDF Downloads 4674667 Comparison Between Fuzzy and P&O Control for MPPT for Photovoltaic System Using Boost Converter
Authors: M. Doumi, A. Miloudi, A. G. Aissaoui, K. Tahir, C. Belfedal, S. Tahir
Abstract:
The studies on the photovoltaic system are extensively increasing because of a large, secure, essentially exhaustible and broadly available resource as a future energy supply. However, the output power induced in the photovoltaic modules is influenced by an intensity of solar cell radiation, temperature of the solar cells and so on. Therefore, to maximize the efficiency of the photovoltaic system, it is necessary to track the maximum power point of the PV array, for this Maximum Power Point Tracking (MPPT) technique is used. Some MPPT techniques are available in that perturbation and observation (P&O) and Fuzzy logic controller (FLC). The fuzzy control method has been compared with perturb and observe (P&O) method as one of the most widely conventional method used in this area. Both techniques have been analyzed and simulated. MPPT using fuzzy logic shows superior performance and more reliable control with respect to the P&O technique for this application.Keywords: photovoltaic system, MPPT, perturb and observe, fuzzy logic
Procedia PDF Downloads 6044666 An Efficient Automated Radiation Measuring System for Plasma Monopole Antenna
Authors: Gurkirandeep Kaur, Rana Pratap Yadav
Abstract:
This experimental study is aimed to examine the radiation characteristics of different plasma structures of a surface wave-driven plasma antenna by an automated measuring system. In this study, a 30 cm long plasma column of argon gas with a diameter of 3 cm is excited by surface wave discharge mechanism operating at 13.56 MHz with RF power level up to 100 Watts and gas pressure between 0.01 to 0.05 mb. The study reveals that a single structured plasma monopole can be modified into an array of plasma antenna elements by forming multiple striations or plasma blobs inside the discharge tube by altering the values of plasma properties such as working pressure, operating frequency, input RF power, discharge tube dimensions, i.e., length, radius, and thickness. It is also reported that plasma length, electron density, and conductivity are functions of operating plasma parameters and controlled by changing working pressure and input power. To investigate the antenna radiation efficiency for the far-field region, an automation-based radiation measuring system has been fabricated and presented in detail. This developed automated system involves a combined setup of controller, dc servo motors, vector network analyzer, and computing device to evaluate the radiation intensity, directivity, gain and efficiency of plasma antenna. In this system, the controller is connected to multiple motors for moving aluminum shafts in both elevation and azimuthal plane whereas radiation from plasma monopole antenna is measured by a Vector Network Analyser (VNA) which is further wired up with the computing device to display radiations in polar plot forms. Here, the radiation characteristics of both continuous and array plasma monopole antenna have been studied for various working plasma parameters. The experimental results clearly indicate that the plasma antenna is as efficient as a metallic antenna. The radiation from plasma monopole antenna is significantly influenced by plasma properties which provides a wider range in radiation pattern where desired radiation parameters like beam-width, the direction of radiation, radiation intensity, antenna efficiency, etc. can be achieved in a single monopole. Due to its wide range of selectivity in radiation pattern; this can meet the demands of wider bandwidth to get high data speed in communication systems. Moreover, this developed system provides an efficient and cost-effective solution for measuring the radiation pattern in far-field zone for any kind of antenna system.Keywords: antenna radiation characteristics, dynamically reconfigurable, plasma antenna, plasma column, plasma striations, surface wave
Procedia PDF Downloads 1194665 Surface Coating of Polyester Fabrics by Sol Gel Synthesized ZnO Particles
Authors: Merve Küçük, M. Lütfi Öveçoğlu
Abstract:
Zinc oxide particles were synthesized using the sol-gel method and dip coated on polyester fabric. X-ray diffraction (XRD) analysis revealed a single crystal phase of ZnO particles. Chemical characteristics of the polyester fabric surface were investigated using attenuated total reflection-Fourier transform infrared (ATR-FTIR) measurements. Morphology of ZnO coated fabric was analyzed using field emission scanning electron microscopy (FESEM). After particle analysis, the aqueous ZnO solution resulted in a narrow size distribution at submicron levels. The deposit of ZnO on polyester fabrics yielded a homogeneous spread of spherical particles. Energy dispersive X-ray spectroscopy (EDX) results also affirmed the presence of ZnO particles on the polyester fabrics.Keywords: dip coating, polyester fabrics, sol gel, zinc oxide
Procedia PDF Downloads 4344664 Numerical Erosion Investigation of Standalone Screen (Wire-Wrapped) Due to the Impact of Sand Particles Entrained in a Single-Phase Flow (Water Flow)
Authors: Ahmed Alghurabi, Mysara Mohyaldinn, Shiferaw Jufar, Obai Younis, Abdullah Abduljabbar
Abstract:
Erosion modeling equations were typically acquired from regulated experimental trials for solid particles entrained in single-phase or multi-phase flows. Evidently, those equations were later employed to predict the erosion damage caused by the continuous impacts of solid particles entrained in streamflow. It is also well-known that the particle impact angle and velocity do not change drastically in gas-sand flow erosion prediction; hence an accurate prediction of erosion can be projected. On the contrary, high-density fluid flows, such as water flow, through complex geometries, such as sand screens, greatly affect the sand particles’ trajectories/tracks and consequently impact the erosion rate predictions. Particle tracking models and erosion equations are frequently applied simultaneously as a method to improve erosion visualization and estimation. In the present work, computational fluid dynamic (CFD)-based erosion modeling was performed using a commercially available software; ANSYS Fluent. The continuous phase (water flow) behavior was simulated using the realizable K-epsilon model, and the secondary phase (solid particles), having a 5% flow concentration, was tracked with the help of the discrete phase model (DPM). To accomplish a successful erosion modeling, three erosion equations from the literature were utilized and introduced to the ANSYS Fluent software to predict the screen wire-slot velocity surge and estimate the maximum erosion rates on the screen surface. Results of turbulent kinetic energy, turbulence intensity, dissipation rate, the total pressure on the screen, screen wall shear stress, and flow velocity vectors were presented and discussed. Moreover, the particle tracks and path-lines were also demonstrated based on their residence time, velocity magnitude, and flow turbulence. On one hand, results from the utilized erosion equations have shown similarities in screen erosion patterns, locations, and DPM concentrations. On the other hand, the model equations estimated slightly different values of maximum erosion rates of the wire-wrapped screen. This is solely based on the fact that the utilized erosion equations were developed with some assumptions that are controlled by the experimental lab conditions.Keywords: CFD simulation, erosion rate prediction, material loss due to erosion, water-sand flow
Procedia PDF Downloads 1634663 Interactive, Topic-Oriented Search Support by a Centroid-Based Text Categorisation
Authors: Mario Kubek, Herwig Unger
Abstract:
Centroid terms are single words that semantically and topically characterise text documents and so may serve as their very compact representation in automatic text processing. In the present paper, centroids are used to measure the relevance of text documents with respect to a given search query. Thus, a new graphbased paradigm for searching texts in large corpora is proposed and evaluated against keyword-based methods. The first, promising experimental results demonstrate the usefulness of the centroid-based search procedure. It is shown that especially the routing of search queries in interactive and decentralised search systems can be greatly improved by applying this approach. A detailed discussion on further fields of its application completes this contribution.Keywords: search algorithm, centroid, query, keyword, co-occurrence, categorisation
Procedia PDF Downloads 2824662 Smart Multifunctionalized and Responsive Polymersomes as Targeted and Selective Recognition Systems
Authors: Silvia Moreno, Banu Iyisan, Hannes Gumz, Brigitte Voit, Dietmar Appelhans
Abstract:
Polymersomes are materials which are considered as artificial counterparts of natural vesicles. The nanotechnology of such smart nanovesicles is very useful to enhance the efficiency of many therapeutic and diagnostic drugs. Those compounds show a higher stability, flexibility, and mechanical strength to the membrane compared to natural liposomes. In addition, they can be designed in detail, the permeability of the membrane can be controlled by different stimuli, and the surface can be functionalized with different biological molecules to facilitate monitoring and target. For this purpose, this study demonstrates the formation of multifunctional and pH sensitive polymersomes and their functionalization with different reactive groups or biomolecules inside and outside of polymersomes´ membrane providing by crossing the membrane and docking/undocking processes for biomedical applications. Overall, they are highly versatile and thus present new opportunities for the design of targeted and selective recognition systems, for example, in mimicking cell functions and in synthetic biology.Keywords: multifunctionalized, pH stimulus, controllable release, cellular uptake
Procedia PDF Downloads 3204661 The Effect of Immobilization Conditions on Hydrogen Production from Palm Oil Mill Effluent
Authors: A. W. Zularisam, Lakhveer Singh, Mimi Sakinah Abdul Munaim
Abstract:
In this study, the optimization of hydrogen production using polyethylene glycol (PEG) immobilized sludge was investigated in batch tests. Palm oil mill effluent (POME) is used as a substrate that can act as a carbon source. Experiment focus on the effect of some important affecting factors on fermentative hydrogen production. Results showed that immobilized sludge demonstrated the maximum hydrogen production rate of 340 mL/L-POME/h under follow optimal condition: amount of biomass 10 mg VSS/ g bead, PEG concentration 10%, and cell age 24 h or 40 h. More importantly, immobilized sludge not only enhanced hydrogen production but can also tolerate the harsh environment and produce hydrogen at the wide ranges of pH. The present results indicate the potential of PEG-immobilized sludge for large-scale operations as well; these factors play an important role in stable and continuous hydrogen production.Keywords: bioydrogen, immobilization, polyethylene glycol, palm oil mill effluent, dark fermentation
Procedia PDF Downloads 3434660 Anti-Inflammatory Effect of Myristic Acid through Inhibiting NF-κB and MAPK Signaling Pathways in Lipopolysaccharide-Stimulated RAW 264.7 Macrophage Cells
Authors: Hyun Ji Hyun, Hyo Sun Suh, Min Kook Kim, Yong Chan Kwon, Byung-Mu Lee
Abstract:
Scope: This study is focused on the effect of myristic acid on LPS-induced inflammation in RAW 264.7 macrophage cells. Methods and results: For the experiment, RAW 264.7 mouse macrophage cell line was used. Results showed that treatment with myristic acid can attenuate LPS-induced inflammation. Moreover, myristic acid significantly suppressed expression of inflammatory mediators and down-regulating UVB-induced intracellular ROS generation. Furthermore, myristic acid reduced the expression of NF-κB by inhibiting degradation of IκB-α and ERK, JNK, and p38 pathways by inhibiting phosphorylation in RAW 264.7 macrophage cells. Conclusion: Overall, these data suggest that the myristic acid could reduce LPS-induced inflammation. Acknowledgment: This research was supported by the Ministry of Trade, Industry & Energy(MOTIE), Korea Institute for Advancement of Technology(KIAT) through the Encouragement Program for The Industries of Economic Cooperation RegionKeywords: anti-inflammation, myristic acid, ROS, ultraviolet light
Procedia PDF Downloads 205